
The last assignment
ID1019 Programming II

Johan Montelius

Spring Term 2022

Introduction
Morse codes were used in the days of telegraphs and manual radio commu-
nication. It is similar in the idea to Huffman coding in that it uses fewer
symbols for frequent occurring characters and more symbols for the infre-
quent ones. You task is to write an encoder and a decoder for Morse signals,
encode your name and decode two secret messages.

The solution that you present should be your original code
i.e. not copied from any source apart from the More code tree in
appendix.

Morse codes
There are several standards for Morse codes and we will here use a slightly
extended version since we also want to code some special character. The
Morse code uses, as you probably know, long and short symbols to encode
characters (often pronounced da and di). Since the idea is to encode frequent
characters with few symbols you might think that is identical to Huffman
codes but there is a difference. In Morse coding we have a special signal
that tells us when one character ends and the next start. The pause between
characters is necessary in order to decode a message.

As an exampe we can look at how “ai” is coded. The code for ’a’ is di-
da, ’i’ is di-di but the code for ’l’ is di-da-di-di. If we just had the sequence
di-da-di-di we would not know if this was “ai” or “j”; we need a third signal,
the pause, to tell the difference. A sequence di-da-pause-di-di-pause is then
decoded as “ai”.

How does this change the structure of our coding tree? In a Huffman
tree we only have characters in the leafs and when we hit a leaf we know
that we have a complete code for a character. In a Morse tree we can finish
anywhere along the path to a leaf. We thus have characters in the nodes of
the tree (not all nodes but almost).

ID1019 KTH 1 / 5

Encoding
Your first task is to implement an encoder. The Morse codes are given in
the appendix so the only thing that you need to do is to use this information
to construct an encoding table that can then be used to encode a message.
You should use the codes given since it includes some special characters not
normally found in the Morse alphabet.

the encode table

If you look in the appendix the Morse codes are given represented as a tree
where one branch represents a short signal ’.’ and one branch the long signal
’-’. The character of the node is the ASCII value of a character or :na if
no character has the corresponding code. Empty branches are represented
by nil.

@tyespec node() :: {:node, char(), node(), node()} | :nil

The Morse trees starts like follows; a single long signal is the code for
ASCII 116 which is a ’t’ and a single short is the code for 101 i.e. an ’e’.

{:node, :na,
{:node, 116, ..., ...},
{:node, 101, ..., ...}}

The tree is not the best structure to use when you encode a message so
your first task is to transform this into a form that gives you a O(lg(k)) or
O(1) lookup operation (where k is the number of letters in the alphabet).
Describe why you have chosen the representation that you have and its
characteristics. Also present how you construct this table given the tree in
the appendix.

the encoder

Once you have an encoding table you should implement an encoder that
can encode a charlist (a list of ASCII values) as a Morse code represented
as a charlist of short ’.’, long ’-’ and pause ’ ’ characters. These could in
Elixir be written using there ASCII values (46,45,32) or the special syntax
for ASCII-values (?. ?- ?/s).

The encoder should have a complexity of O(n ∗ m) where n is the length
of the message and m is the length of the Morse codes. Since messages might
be very long you should provide an implementation that does not use stack
space proportional to the length of the message. This means that you need
to provide a tail recursive solution. The Mores codes are so short so you
could have a solution that uses stack space proportional to the code length.

ID1019 KTH 2 / 5

Describe your encoder and why it meets the requirements and include
the code in your report.

Show that your encoder works by encoding you name (and if you have
non-ASCII characters in your name replace them with something close i.e.
’è’ becomes ’e’ etc)

Decoding
Your next task is to implement a decoder that can take a charlist of a Morse
coded message and return the clear text message. You will of course first
need a decoding table and the table that you constructed for the encoder
might not be your best choice.

the decode data structure

The datastructure that you use should give you a lookup operation that
has an O(m) complexity i.e. it should be proportional to the length of the
Morse code. This means that you can not use for example a list of all the
codes and their corresponding characters since this would require and O(k)
operation to search through all the codes and an O(m) operation to see if a
code matches the code that you’re looking for. The situation would improve
somewhat if you choose to represent that table as a map structure but then
the lookup operation would be O(lg(k)) which is good but does not take
advantage of the fact that frequent occurring characters have short codes
and this is something that you want to take advantage of (very much the
way how Huffman decoding works).

So what is your choice of decoding data structure and what does your
lookup function look like?

the decoder

Once you have the lookup operation you can implement the decoder. Since
the Morse encoded messages of course could be very long your solution
should not use stack space that is proportional to the length of the mes-
sages. Describe your decoder and why it meets the requirements, include
the implementation in your report.

Decode the secret messages below. If you cut and paste the code, make
sure that you don’t have carriage-return etc in the string. The string should
only contain the dash, dot and space characters (I’ve included an extra space
in the end so all codes end with a pause).

'.- .-.. .-.. ..-- -.-- --- ..- .-. ..--
-... .--- .- .-. . ..--
-... . .-.. --- -. --. ..-- - --- ..-- ..- ... '

ID1019 KTH 3 / 5

'.... - - .--. ... ---... .----- .----- .-- .--
.-- .-.-.- -.-- --- ..- - ..- -... . .-.-.- -.-.
--- -- .----- .-- .- - -.-.--.. ...- .----.
-.. .--.------ .--- .-- ----. .--.--
..... --... --. .--.-- ---.. -.-. .--.--
..... .---- '

ID1019 KTH 4 / 5

The Morse codes
def morse() do

{:node, :na,
{:node, 116,

{:node, 109,
{:node, 111,

{:node, :na, {:node, 48, nil, nil}, {:node, 57, nil, nil}},
{:node, :na, nil, {:node, 56, nil, {:node, 58, nil, nil}}}},

{:node, 103,
{:node, 113, nil, nil},
{:node, 122,

{:node, :na, {:node, 44, nil, nil}, nil},
{:node, 55, nil, nil}}}},

{:node, 110,
{:node, 107, {:node, 121, nil, nil}, {:node, 99, nil, nil}},
{:node, 100,

{:node, 120, nil, nil},
{:node, 98, nil, {:node, 54, {:node, 45, nil, nil}, nil}}}}},

{:node, 101,
{:node, 97,

{:node, 119,
{:node, 106,

{:node, 49, {:node, 47, nil, nil}, {:node, 61, nil, nil}},
nil},

{:node, 112,
{:node, :na, {:node, 37, nil, nil}, {:node, 64, nil, nil}},
nil}},

{:node, 114,
{:node, :na, nil, {:node, :na, {:node, 46, nil, nil}, nil}},
{:node, 108, nil, nil}}},

{:node, 105,
{:node, 117,

{:node, 32,
{:node, 50, nil, nil},
{:node, :na, nil, {:node, 63, nil, nil}}},

{:node, 102, nil, nil}},
{:node, 115,

{:node, 118, {:node, 51, nil, nil}, nil},
{:node, 104, {:node, 52, nil, nil}, {:node, 53, nil, nil}}}}}}

end

ID1019 KTH 5 / 5

