My first report

My Name

Spring Term 2023

Introduction

This is what a report should look like. It is written using the document class
article with a4paper and 11pt options. You should of course replace the
”My first report” with something more descriptive and of course have your
name below the title.

What follows is a set of rules and hints on how to write you reports.
Follow these guidelines to make life easier and avoid failing an assignment
by including a screen shot. Do read these guidelines but also look at the
source code of this document. The code will hopefully show you how to do
things. It will also show what packages are included to get things to work.

Page layout

Use vanilla N TEXwith regular page width and height and single spaced lines.
Don’t use any fancy packages that will turn your report into a Christmas
tree, keep it simple!

Since this is a small report you can omit having numbered sections and
you do this by using section commands that end with a * (for example
\section*). You can of course have subsections etc but if you don’t have
numbers on the main sections don’t add numbers to the subsections.

Inserting code

Code snippets are included using the package minted. To get it to work on
you laptop you need to have Pygments installed. If you use it in Overleaf it
should work directly.

def append([], b) do b end
def append([h|t], b) do

[h | append(t, b)]
end

If you want to include a program statement in running text you can do
this using for example teletype-text: append([1,2,3],[4,5]).

The reports that you hand in should be up to four pages long - but not
four pages of code! Use code snippets where you want to describe how things
are done but don’t include code just because you have written it.

Numbers

You will include some run-time measurements in your reports. You should
then think about the number of significant figures that you use. Just because
a benchmark took 12345678us does not mean that you should report it in
this way. If you write this in your report you’re implicitly saying - if I do
this again the run-time will be the same. This could be true but I doubt
that anything you do on a computer can be determined with an 8 figure
accuracy. The next time you try it might very well take 12354678s. What
you report is maybe 12.3s or 12s?

Do read the paragraph above one more time. Handing in a report where
time measurements are reported with more than three figures accuracy is
a sure way to fail - since I then know that you have not read the above
paragraph twice.

Tables

Numbers are often best presented in a table. You will have to do some
reading on how to format tables but the general structures is quite easy.
This is for example a table with some run-time figures.

prgm ‘ run time ‘ ratio

dummy 115 1.0
union 535 4.6
tailr 420 3.6

Table 1: Union and friends, list of 50000 elements, run time in micro seconds

As you see in the table above, the run time per se might not be inter-
esting. The interesting thing is how it relates to something else. Look at
the ratios above, it gives you the information that we are looking for. So
when you include numbers, ask yourself why you have these numbers in the
report. What is the purpose, can you describe it in a better way?

File Edit View Bookmarks Plugins Settings Help

[T NewTab [I] Split View (I} [paste O Find

tional-programming duct $ L

j/exercises tion/sr ex
rce] [64-bit] [smp:16:16] [ds:16:16:10] [async-threads:1] [jit:ns]

ress Ctrl+C to exit (type h() ENTER for help)

Figure 1: This should never be used

No f*ing screen shots

I know that you are all very happy that things actually work and eagerly
want to show what things look like on you screen but please, don’t use screen
shots. It looks ugly and it’s impossible to mark or copy the things that you
want to show. It also, most often, show a lot of irrelevant things so instead
of using an image, copy the text and format it so it’s easy to read.

Graphs

Once you start to generate graphs make sure that they are readable and
have sensible information on the axes.

There are many ways to generate graphs but you want to use a way that
minimize manual work. My tool over the years has been Gnuplot and if you
do not have a favorite tool you could give it a try. The Gnuplot program is
a stand alone program that will generate a graph that you then can include
in you report.

If you work with Gnuplot you should write the commands needed to
generate a diagram in a small script. Take a look in the file fib.p and
you will see how the diagram in Fig.2 was created from the data given in
fib.dat (the .png file was generated from fib.pdf using the Linux convert
program found in imagemagick).

When you include graphs you should make sure that the images you

include are not raster images (gif, png etc) but a vector image that scales
when you zoom-in. In Fig.2 you see the same graph saved as a raster image
(png) compared to a vector graphic image. You might not see the difference
but if you zoom-in you will see that the vector image scales.

20 T T T T T T T 2500 T T T T T T T
e 0f) —— run-time fib(n) ——

! /

/ /

2000
/

o 1500 [
z /

/
."I
= ! £
/ o
£ / 5
T 1m0 / 1000 -
/ B /

— — 0
12 14 16 18 20

w
1

(a) using raster graphics (b) using vector graphics.

Figure 2: Difference in image formats.

An alternative to including a graph produced by a separate program is
to describe the graph in IXTEX. This can be done using the TikZ library.
This library is used to create all types of graphics and the learning curve is
quite steep. The benefit is that the I TEXdocument becomes self contained

and that you are in complete control over the result.
The data can either be written in the latex source file but better read

from a separate file. Reading from a separate file makes it easier to combine
the output from a benchmark with the report. If you construct your bench-
mark to produce a file with the x and y values in columns you can plot them
using a simple \addplot command. If you do changes to your program you
simply run the benchmark again and re-compile the KTEXfile.

The graph in Fig.3 is generated using Tikz and as you can see, I know

have the time in ” us” instead of in ”us”.

Errors

Some ATEXerrors that I frequently see that could easily be avoided if you

only know where they come from.

less than

If you in your LaTeX code write ”5 < 7”7 it will look like 5 | 7 and 79 > 77
will look like 9 ; 7. Using the characters < and > directly does not work ...
so, how did I do it? I used the commands \textless and \textgreater to

generate the symbols < and >.
You could also use {\tt 5 < 7} but then it will use the teletype font

and look like this: 5 < 7.

3.000 1 —run time fib(n) ||

2,000

time in us

1,000 |

| | : : 1 | |
012 14 16 18 20 22 24 26 28
n

Figure 3: The same graph using TikZ

Still another way is to write it using so called math mode. This is a
mode used for writing mathematical formulas in a nice way. You enclose
your expression in $ signs like this $5 < 7$ and then it will look like this
5<T.

If you have a larger mathematical expression you enclose it in double $
and the result is that it is written centered with some space around it like
this:

5 < (3%8/3)

why strange font

If you want to write foo in teletype font you write like this {\tt foo}. If
you forget the closing } then it will look like this: foo. Now everything
here after until the end of you report will look like this.

Make

To automate a process of running benchmarks and compiling a report one
can add everything that needs to be done using a Makefile. The make
program will determine which files that needs to be regenerated and re-do
only the necessary steps. If you take a look at the make-file that comes with
this report you will see that a change to the Fibonacci benchmark (£ib.ex)
will trigger the file £ib.dat to be regenerated. This will in turn mean that
he diagrams are regenerated and in the end the IXTEXreport i recompiled.

Working with make-files that causes more than just the report to be
regenerated in one reason why it’s more powerful to run KTEXon your own
machine rather than using Overleaf. It does require some tinkering to get
everything to work but once you have it up and running the development
cycle becomes much shorter.

