Enumerable primes
Programming II

Johan Montelius

Spring Term 2022

Introduction

Your task is to implement a data structure that holds the infinite sequence
of primes and can be used by the Enum and Stream modules. In the end we
should be able to do like this:

iex(10)> Enum.take(Stream.map(Primes.primes(), fn(x) -> 2#x end), 5)
(4, 6, 10, 14, 22]

or, using the pipe notation:

iex(11)> Primes.primes() |>
Stream.map(fn(x) -> 2+#x end) |>
Enum.take(5)

The primes should implement the Enumarable protocol and so you should
have some understanding of Structs and Protocols but don’t be afraid,
things will work out.

Infinite sequence of primes

Before implementing the enumerable protocol you should implement a in-
finite sequence of primes using anonymous functions. We divide this into
three tasks and we start by implementing the infinite sequence of natural
numbers (starting on 3).

Zz

The function z/1 should take one argument, an integer, and return a func-
tion that when applied returns a tuple {n, fun} where n is the integer given
and fun is a function that takes no argument and when applied returns a
tuple {n+1, fun}. The function now returned should of course return a
tuple with the firste element n+2 etc.

This is what it should look like:

ID1019 KTH 1/5

iex(29)> z = Primes.z(3)

z = Primes.z(3)

#Function<4.106663018/0 in Primes.z/1>
iex(30)> {_, z} = z.0

{., 2z} =2.0

{4, #Function</.106663018/0 in Primes.z/1>}
iex(31)> {_, z} = z.0

{,2z}=2.0

{5, #Function<4.106663018/0 in Primes.z/1>}
iex(32)> {_, z} = z.0

{_,2zr=2.0

filter

The next thing you should implement is a filter/2 function. This function
should take a function that can be used to generate a sequence as above,
and a number, £, that it should use as a filter. It should return a tuple {p,
fun} where p is the first number in the sequence that is not divisable by f.
The function, the second element in the tuple, is a function that will deliver
the next number in the sequnce not divisable by £. This is what it should
look like:

iex(55)> {_n, f} = Primes.filter(Primes.z(3), 2)
{_n, £} = Primes.filter(fn() —-> Primes.z(3) end, 2)
{3, #Function<1.106663018/0 in Primes.filter/2>}
iex(56)> {_n, f} = £.0

{n, £} =£.0

{5, #Function<1.106663018/0 in Primes.filter/2>}
iex(67)> {_n, £} = £.0

{n, £} = £.0

{7, #Function<l.106663018/0 in Primes.filter/2>}

If this works we have way of implementing a sequence of all numbers not
divisable by two; why not continue on this path and implement the sieve of
Eratosthenes.

sieve

Implement a function sieve/2 that takes a function and a (prime) number
as arguments. The function should be a sequence generator like z of £ in
the above examples. We will assume that the generator returns all possible
primes greater than the prime given as the second argument.

def sieve(n, p) do

ID1019 KTH 2/5

end

When we say “possible” we mean that the numbers generated have been
filtered by all primes less than p. How do you generate the next prime
greater than p? Can you also create a function that returns all possible
primes greater than this prime although they might be divisable by the new
prime that you generated?

If you can do this, how do you let sieve/2 return a tuple {next, fun}
where next is the next prime greater than p and fun is function that returns
all possible primes greater than, and filtered by, the prime that you have
found?

primes

This final thing is to boot strap everything and provide a function primes
that returns a function that when applied generates a tuple {2, fun} where
2 of course is the first prime and fun is a function that will return the
remaining primes.

def primes() do
fa() > {2, fn() -> end} end
end

Hmm, what do we write on the dotted line? We could try with z(3);
that would give us all numbers greater than 3 but we don’t want to have all
the even numbers. Should we filter the number from z(3) with 27 Close,

but that would give us the sequence 2,3,5,6 and we do not want to have 6.
Ahh,....

iex(4)>p = Primes.primes()
#Function<2.128507103/0 in Primes.primef/0>
iex(5)> {_, p} = p-0O

{., pt=p.0

{2, #Function<7.128507103/0 in Primes.primef/0>}
iex(6)> {_, p} = p. 0O

{,p}r=p.0

{3, #Function</.128507103/0 in Primes.sieve/2>}
iex(7)> {_, p} = p.0O

{.,pt=p.0

{5, #Function<1.128507103/0 in Primes.filter/2>}
iex(8)> {_, p} = p.0O

{., p}=p.0

{7, #Function<1.128507103/0 in Primes.filter/2>}
iex(9)> {_, p} = p-0O

1D1019 KTH 3/5

{,pr=p.0
{11, #Function<1.128507103/0 in Primes.filter/2>}
iex(10)>

Enumerable

So now you can generate an infinite sequence of primes, time to make it
work with the Enum and Strem modules. The thing you now nned to do is
implement the Enumerable protocol.

A protocol is defined for a particular struct so we have to create a
struct associated with the Primes module. It’s a simple data structure with
only one element, next. that will be your primes function. The function
primes/0 will now return a Primes struct with the initial fucntion.

defmodule Primes do
defstruct [:next]

def primes() do
%Primes{next: ... }
end

The protocol can now be defined and we nned to implement four func-
tions. The first three are not applicable since we have an infinite sequence
so we simply return {:error, __MODULE__}. It is in the function reduce/3
where the magic happens.

defimpl Enumerable do

def count(_) do {:error, __MODULE__} end
def member?(_, _) do {:error, __MODULE__} end
def slice(_) do {:error, __MODULE__} end

def reduce(_, {:halt, acc}, _fun) do
{:halted, acc}

end

def reduce(primes, {:suspend, acc}, fun) do
{:suspended, acc, fn(cmd) -> reduce(primes, cmd, fun) end}

end

def reduce(primes, {:cont, acc}, fun) do
{p, next} = Primes.next(primes)
reduce(next, fun.(p,acc), fun)

end

end

ID1019 KTH 4/5

Now for you to implement the function next/1, it should return a tuple,
the next prime and a Primes struct that represents the continuation. If
everything works you should be able to do something like this.

iex(59)> Enum.take(Stream.map(Primes.primes(), fn(x) -> 2#x end), 5)
(4, 6, 10, 14, 22]

1D1019 KTH 5/5

