
Huffman Coding
Programming II - Elixir Version

Johan Montelius

Spring Term 2018

Getting started
In this seminar session we will look at different ways to represent data, using
lists, trees and tuples to find the best representation. The best representation
could of course mean many things, we might need a representation that gives
us efficient code or we might want a representation that is easy to explain,
implement and maintain. We will start by using quite simple representations
and then refine them to gain better performance.

To have something to work with we will implement the Huffman encoding
and decoding functions. You should do some reading on Huffman coding,
this text will not explain the algorithm but how to implement it.

1 Huffman overview
Huffman coding can divided into two parts, one part is how to construct
the coding tables and the other, much simpler, is how to encode or decode
a text using the tables.

The idea behind Huffman coding is of course to encode frequent charac-
ters with few bits and infrequent characters with more bits. To keep things
simple we will represent sequences of bits as lists of zeros and ones but this
could of course be changes if we intend to do a real implementation that
reads and writes to files. For our experiments it is sufficient.

The table should give a one to one maping from characters to codes but
we might use one representation when we encode text and another when we
decode text; the information it holds is the same but we might want to do
this for efficiency.

Once we are done we will have a module that defines the following func-
tions:

• tree(sample): create a Huffman tree given a sample text.

• encode_table(tree): create an encoding table containing the map-
ping from characters to codes given a Huffman tree.

ID1019 KTH 1 / 6

• decode_table(tree): create an decoding table containing the map-
ping from codes to characters given a Huffman tree.

• encode(text, table): encode the text using the mapping in the ta-
ble, return a sequence of bits.

• decode(sequence, table): decode the bit sequence using the map-
ping in table, return a text.

Start by defining the module, some compile directives, things that are
good to have and dummy code for the functions.

defmodule Huffman do

def sample do
'the quick brown fox jumps over the lazy dog
this is a sample text that we will use when we build
up a table we will only handle lower case letters and
no punctuation symbols the frequency will of course not
represent english but it is probably not that far off'

end

def text() do
'this is something that we should encode'

end

def test do
sample = sample()
tree = tree(sample)
encode = encode_table(tree)
decode = decode_table(tree)
text = text()
seq = encode(text, encode)
decode(seq, decode)

end

def tree(sample) do
To implement...

end

def encode_table(tree) do
To implement...

end

def decode_table(tree) do

ID1019 KTH 2 / 6

To implement...
end

def encode(text, table) do
To implement...

end

def decode(seq, tree) do
To implement...

end
end

2 The table
In order to create the Huffman tree we need first to find out the frequency
distribution in our sample text. Once we have the frequency distribution we
can start building the tree.

def tree(sample) do
freq = freq(sample)
huffman(freq)

end

The sample is of course a list of characters ([102,111,111]), you should
run through this list and collect the frequencies of the characters. If “foo”
was the sample text we should have the frequencies f/1, o/2. How would
you represent this information? Note that you need not know beforehand
which characters that will occur in the sample.

You will probably end up with a structure that looks like this, but how
you represent the frequencies is up to you.

def freq(sample) do
freq(sample, ...)

end

def freq([], freq) do
...

end

def freq([char | rest], freq) do
freq(rest, ...)

end

ID1019 KTH 3 / 6

Now once we have the frequencies we will create a Huffman tree. This
is simpler than you might think but before you read further you must un-
derstand why we create a tree and what properties it should have. If you
started to read this with out understanding how Huffman coding works this
is the time to stop reading.

2.1 The Huffman tree

OK, so a Huffman tree is a tree with the characters in the leafs but the low
frequency characters have long branches and high frequency characters have
short branches. Assume we represent a leaf with a single character and a
node as a simple tuple with two branches: {left, right}.

If you turn your table into an ordered sequence of leafs where each leaf
represents a character and its frequency. The “foo” example above would
correspond to the sequence [{?f, 1},{?o, 2}]. You could also view this
as a frequency table where each entry is a tuple {tree, freq}, after all, a
single character is a leaf.

Now, assuming we have such a sequence, what would happen if we took
the two smallest elements (lowest frequencies) and combined them into a new
node {{c1, c2}, f1 + f2} and added the node to the remaining sequence
while keeping the sequence sorted? Can we repeat this process, what will
the final result be?

How do we represent the sequence so that it is easy to find the two
smallest elements? How do we keep this representation? What is the final
result when you only have one element in your sequence?

2.2 The encoding table

I assume now that you have a Huffman tree and it is time to extract the
codes. The codes are of course hidden in the tree in the branches and the
code of a character is the path to the leaf holding the character (left, left,
right, left or 0, 0, 1, 0).

Traverse the tree, and collect the characters in the leafs. Keep track
of the path to the leaf and record this path as a sequence of zeros and
ones. When you’re done you should have something like [{?f, [1, 1,
0]}, {?o, [1, 0, 1, 0]}, ...], or whatever the tree looks like.

Start by writing a function that only collects the characters, once this is
mastered you can start to keep track of the path.

2.3 Half way

Half-way there might be an exaggeration but at lest you’re now done with
the first part, you have a mapping from characters to Huffman codes. It’s
represented by a list of tuples {?f, [1, 1, 0]}, one for each characters.
Time to use this table in the encoding and decoding.

ID1019 KTH 4 / 6

3 Huffman encoding
This is simple, we have a text represented as a list of characters and for each
character we have a sequence of bits found in the table. You could probably
create something very simple that works.

If you manage to implement the encoder you should be able to turn
the text “this is something...” into a list of bits {[1, 1, 0, 1, 0, 1, 0,
...].

Stop here an ponder what the time complexity is. You will of course
have a linear factor, depending on the length of the text, since the text is
encoded character by character but you might have other factors. What is
the the time complexity of looking up a character in the table? What is the
complexity of producing the final sequence of bits?

I’m quite sure that your original code is open for improvements but let’s
leave it for now.

4 Huffman decoding
Decoding is slightly more tricky since we do not know exactly how many bits
are used to code each character. If we have a sequence [1, 1, 0, 1, 0,
1, 0, ...] it could be that the first four bits is a t and the following three
is an i but we do not know; what we do know is that thanks to Huffman it
is only possible to decode it in one way given a table with Huffman codes.

We will do a very simple implementation of the decoding and actually
use the same table as wee used in the encoding phase; we will later see how
to improve this.

Start by looking at the bit sequence, assume that one bit is used in the
coding and then search the table for a character with this pattern ([1]). If
a character is found, problem solved, if not, look for a character using two
bits ([1, 0]). Let’s implement this function first and see what we have, it
will work and will probably not take that much time.

Your solution might look something like this:

def decode([], _) do
[]

end

def decode(seq, table) do
{char, rest} = decode_char(seq, 1, table)
[char | decode(rest, table)]

end

def decode_char(seq, n, table) do
{code, rest} = Enum.split(seq, n)

ID1019 KTH 5 / 6

case List.keyfind(table, code, 1) do
... ->

...;
nil ->

decode_char(..., ..., table)
end

end

I’m using some functions from the Lists and Enum libraries, you should
look these up and understand how they work. If you fill in the blanks you’re
up and running, you have your first Huffman encoder/decoder.

Make sure that it works correctly, by testing the smaller functions and
make sure that they behave correctly, then work your way up. Always test
the corner cases i.e. when lists are empty etc before trying more complicated
tasks.

5 Performance
Let’s now run some performance tests. You need to find a large text that
you can use to benchmark the program. You would also need to find a
sample text of the given language that gives you the correct frequencies but
we can cheat and use the text it self to do the frequency analysis.

One thing that you have to look out for is that you have to make sure
that you sample text contains all the possible characters. You can ensure
this by adding an alphabet to the text or pre-load the frequency table with
all possible characters.

Do some benchmark of your system and determine how well it performs,
try to estimate the time to encode or decode a text given the length of the
text.

If you have time try to do some experiments where you change the size of
the alphabet, for example: using only eight characters, the regular alphabet,
all ASCII characters, etc. You would of course have to find a suitable texts
but you could of course work with a large text file and filter out a list with
only the characters from your selected alphabet.

You can also read in files from other languages. All Elixir strings are
encoded using UTF8 so some languages (Swedish) might use more than one
byte per character. To read a file you can use the following code:

def read(file) do
text = File.read!(file)
chars = String.to_charlist(text)
{:ok, chars, String.length(text), Kernel.byte_size(text)}

end

ID1019 KTH 6 / 6

