
Higher order functions
Programming II - Elixir Version

Johan Montelius

Spring Term 2023

Introduction

In this assignment you will learn how to implement two very powerful con-
structs: map and reduce. Once you master these higher order functions you
will cut the source code that you have to write by a factor of two.

Recursively transforming a list

Let’s start with a simple example; implement a function that takes a list of
integers as input and returns a list where all elements have been doubled.

def double(...) do .. end

def double(...) do

:

end

Now implement a function that will take a list of integers and returns a
list where you have added five to each element.

def five(...) do .. end

def five(...) do

:

end

Implement a function, animal/1, that takes a list of animals: :cat,
:dog, :cow etc and replaces each occurrence of :dog with :fido.

As you now hopefully see is that your three functions all have the same
pattern. We should be able to implement one function that does the recur-
sion for us and performs the transformation that we want to do.

Remove all of your functions and implement a function double five animal/2

that takes a list of either integers or animals and performs a transformation
depending on the second argument. If the second argument is :double you
should double the element, if it is :five you should etc.

ID1019 KTH 1 / 6

def double_five_animal(..., ...) do ... end

def double_five_animal(..., ...) do

case ... do

... -> ...

... -> ...

... -> ...

end

end

Now, using your implementation of double five animal/2, implement
the functions double/1, five/1 and animal.

Functions as data

We will now introduce something that for ever will change the way you pro-
gram. In the programming you have done so far you have probably always
seen the program and its procedures as one part and the data structures
that you work with as another part. This does not have to be the case, if
the language allows we can treat functions as data.

In the Elixir shell try the following:

f = fn(x) -> x * 2 end

What is f? The answer is that f is a function (or rather a closure but
more on this later). It’s a function that takes one argument and returns the
doubling of this argument. How do you use it, try the following:

f.(5)

Notice the dot between the f and the parenthesis, if f was the name of
a function we would write f(5) but now since it is a variable bound to a
function we have to use the dot notation.

In the same way you can construct a function g that adds five to its
argument and a function h that returns :fido if applied to :dog otherwise
returns the argument as is.

You can use the one row if-then-else: if x == :dog, do: :fido

, else: x

Now for the revolution.

A function as argument

If we no can hold a function in our hand we should of course also be able to
pass it as an argument to another function. Let’s go back and look at our

ID1019 KTH 2 / 6

original problem, implementing a generic transformer that transforms each
element in a list.

Implement a function called apply to all/2 that takes a list as its first
argument and ... a function ... as it’s second argument. The function
apply to all/2 should generate a list that is the result of applying the
given function to each of the elements in the list.

def apply_to_all(..., ...) do ... end

def apply_to_all(..., ...) do

:

end

Now, give that you have defined f, g and h, try the following in the
terminal:

apply_to_all([1,2,3,4], f)

apply_to_all([1,2,3,4], g)

apply_to_all([:dog, :cat, :cow, :horse], h)

Hmm, what if we try this:

apply_to_all([1,2,3,4], fn(x) -> 2*x + 5 end)

As you see the function apply to all/2 is quite versatile and can be
used any time you want to run through a list of items and apply a function
to each of its elements. It’s so useful that it has been given a very short
name map/2 and is part of the Enum module.

Reducing a list

Let’s try another scenario, assume that we should sum the elements of a
list. This should be something that you now can do in less than a minute
(don’t us an accumulator or try to do a tail-recursive implementation), give
it a try:

def sum(...) do ... end

def sum(...) do

...

end

As you see, this function also uses a simple recursive pattern, you’re
running down the list and adding the element to whatever the result is from
the recursive call. The result of summing an empty list is of course 0.

ID1019 KTH 3 / 6

If we follow the idea from apply to all/2 we could rewrite this using one
generic function fold right/3 that takes a list, a base value and a function
as arguments. It should of course return the base value for an empty list and
otherwise return the value obtained by applying the function to an element
and whatever is returned by the recursive call to fold right/3.

def fold_right(..., ..., -) do ... end

def fold_right(..., ..., f) do

f.(..., ...)

end

Using fold right/2 you can now implement both sum/1 and prod/2

(that returns the product of all elements).
You might wonder why it we call it right and the reason is that we

apply the function in a right to left order. When we sum the elements of
the list [1,2,3,4] we will apply the addition as follows:

1 + (2 + (3 + (4 + 0)))

Since addition is a symmetric function it does not matter if we pass the
function f(x,y) -> x + y end or f(y,x) -> x + 4 end to fold right/2

but most functions are not symmetric so we need to agree on how we pass the
arguments to the given function. Should we do f.(elem, fold right(...))

or f.(fold right(...), elem)? The agreement is to do it as in the first
example so if you try the following:

fold_right([1,2,3,4], 0, fn(x, acc) -> {x, acc} end)

you should receive the answer:

{1, {2, {3, {4, 0}}}}

Now if there is a fold right/3, obviously there must be a fold left/3.
This function will do the same thing but now apply the function left-to-right.
If we try:

fold_left([1,2,3,4], 0, fn(x, acc) -> {x, acc} end)

we should receive:

{4, {3, {2, {1, 0}}}}

To implement fold left/3 you need to use you skills in writing a tail
recursive function where we have an accumulating parameter. The second
argument is the accumulating parameter so the implementation looks like
this:

ID1019 KTH 4 / 6

def fold_left(..., ..., -) do ... end

def fold_left(..., ..., f) do

fold_left(..., f.(..., ...), f)

end

The left-to-right version is in most cases more efficient since we are not
using any stack space but it depends on the function that apply. With a
function with a constant execution time it does not matter if we apply the
function left-to-right or right-to-left but if the execution depends on the size
of either of its arguments we need to be careful.

The fold functions are so useful that they are provided in the module
List and they are called foldl/3 and foldr/3. There is also an implemen-
tation in the module Enum called reduce/3 that implements the left-to-right
strategy.

The reason it also occurs in the Enum module is that this module can
handle other enumerable data structures, not just lists.

Filter out the good ones

The third higher order construct that we shall look at is one that filters
out the elements in a list that meet some requirement. You have now seen
several examples of how we can define a higher order function so this one
should be no match for you.

Start by implementing a function odd/1 that takes a list and returns a
list of all the odd elements (rem(x,2) == 1).

def odd(...) do ... end

def odd(...) do

if ... do

...

else

...

end

end

Now rewrite this as a function filter/2 that takes a list and a function
that returns true or false. You should then be able to implement not
only the function odd/1 using filter/2 but also functions as even/1 or
greater than five/1.

Summary

Once you start to use the higher order functions map/2, reduce/3 and
filter/2 you will be able to write much shorter programs and spend less

ID1019 KTH 5 / 6

time writing recursive functions that looks more or less the same. It is very
often that most of a program actually consist of a series of these operations
(and their cousins) that once you get use to it your programs will not look
the same.

These higher order constructs are available in all functional programming
languages, you will find them in Haskell as well as in JavaScript. While the
hard core functional programmers argue that the lambda calculus, Church
numerals and the Y combinator is the reason to use functional programming,
most programmers just finds map, reduce and filter so useful that they need
no other reason.

In the future, write your programs as normal but then spend some time
to see if you can rephrase it using the higher order functions found in the
Enum module.

ID1019 KTH 6 / 6

