
Towers of Hanoi
Programming II - Elixir Version

Spring Term 2023

Introduction

In this exercise you will see how recursive thinking can help when solving
a problem. A small puzzle that you might have seen is quite tricky to
solve using brute force. Using a recursive strategy however, the puzzle is
surprisingly simple.

The towers

The classical puzzle that we will use is the Towers of Hanoi. It consists of
three pegs with a set of discs piled up on one. The puzzle is to move the
discs, one by one, from their initial position to the last peg. The problem is
that you’re only allowed to place a smaller disc on a larger (or as the first
disc on the peg). Figure 1 show a puzzle with four discs in their original
position.

A B C

Figure 1: The Towers of Hanoi

If the puzzle only has four discs it’s rather simple. One solution would
be to move the smallest disc to peg B, then ... hmm. I’m sure there is a
simple solution but is there a strategy that work for towers of five, six or
seven discs?

ID1019 KTH 1 / 3

Recursive strategy

The strategy that we will use is surprisingly simple. If we have a tower of
size four, we first move the upper three discs to peg A, then move the last
disc to peg C and then move the three discs from peg B to C.

This is cheating you say, we should move the discs one by one and can
not take three discs in one go. You’re of course right so let’s modify the
solution.

Moving the largest disc was not a problem, the violation was how we
moved a tower of three discs from peg A to B and then over to C. What if
we instead of moving all in one go , we did like this: move the upper two to
C, the third one to B and then the upper two from C to B.

Not allowed you say, we’re moving two discs in one go.
Ok, moving the larger disc was not a problem, the violations was how

we moved a tower of two discs fromHmm, move the smallest to B, then
the second to C and the smallest to B. That will solve the first problem.
After having moved the third disc to C we can use peg A as the extra peg
and move the smallest to A, the second one to C and then the smallest to
C.

Problem solved.... or almost. We have now moved a tower of three from
A to C and should when the fourth disc is placed on peg B move the tower
on top of it. We know how to move a tower of three if we have one extra
peg to use and since the disc that is left on peg A is larger than any disc in
our small tower we can use peg A as this extra peg.

The revolutionary insight is that if we can move a tower of four disc
from one peg to another, using a third one as a temporary peg. Then we
can solve the towers of Hanoi with a tower of five discs. In general it means
that a solution for a tower of n discs in the ticket to solving a tower of n+1
discs. Since it is trivial to solve the problem for a tower of 0 discs we thus
have a solution for a tower of 1 disc and this is the ticket to solve 2 discs
etc.

The sequence

Let’s implement a function that returns the sequence of moves necessary to
solve towers of Hanoi of a given size n. The pegs are called :a, :b and :c

and a move is represented by a tuple {:move, from, to} meaning that the
uppermost disc on the from peg is moved to the to peg.

The function takes four arguments: the size of the tower, the from peg,
an auxiliary peg and the to peg where the tower should be placed. We could
for example call the function like this:

hanoi(3, :a, :b, :c)

ID1019 KTH 2 / 3

and expect to have the result:

[

{:move, :a, :c},

{:move, :a, :b},

{:move, :c, :b},

{:move, :a, :c},

{:move, :b, :a},

{:move, :b, :c},

{:move, :a, :c}

]

Check that the sequence of moves actually solves the tower of Hanoi with
a tower of size 3. Also identify the three different sections; the first three
moves will move a tower of 2 to peg :b, the fourth the last disc to peg :c and
the last three will take the tower of 2 and place it on top of it.

When we implement a recursive function we first need to get the base
case right. In this puzzle the base case is solving the towers of Hanoi for the
size of 0. The number of moves we should then do is och course zero and is
independent of the pegs so the base case should look like this:

def hanoi(0, _, _, _) do ... end

No what about the recursive case? It is made up from three sequences:
moving a smaller tower from from to an auxiliary peg (using the third peg as
the auxiliary), moving the last disc from from to to and moving the smaller
tower from the auxiliary peg to to (using the em from peg as the auxiliary).
Hmm, something like this:

def hanoi(n, from, aux, to) do

move tower of size n-1 ++

[move one disc ...] ++

move tower of size n-1

end

Generate a sequence for size: 1, 2 and 3 to see that it works. What does
the sequence look like for size 4? How many moves do you need to solve
towers of Hanoi for size 10?

Write a small report where you explain the problem and how a recursive
solution works. Include the answers to the questions above.

ID1019 KTH 3 / 3

