
Evaluating an expression
Programming II - Elixir Version

Johan Montelius

Spring Term 2023

Introduction

In this assignment you will evaluate a mathematical expression containing
variables.

Expressions

Arithmetic expressions are represented as tuples {op, arg1, arg2} and we
can for the time being limit ourselves to the operators :add, :sub, :mul and
integer division :div. Expressions are thus:

@type expr() :: {:add, expr(), expr()}

| {:sub, expr(), expr()}

| {:mul, expr(), expr()}

| {:div, expr(), expr()}

| literal()

The literals that we will use are either integers, variables or rational
numbers. To make it explicit we choose to represent integers as {:num, n}
and variables as {:var, a}. Rational numbers are represented as {:q, n,

m}.
This gives us everything we need to represent a limited sets of expres-

sions. The expression 2x+ 3+ 1/2 could for example be represented by the
Elixir structure:

{:add, {:add, {:mul, {:num, 2}, {:var, :x}}, {:num, 3}}, {:q, 1,2}}

As you see it it is not a syntax we would like to use when we write expressions
by hand but it has its advantages when it comes to handle the expressions
using Elixir clauses.

ID1019 KTH 1 / 2



Evaluation

You task is to implement a function eval/2, that takes an expression and
an environment and evaluate the expression to a literal. The environment
is a mapping from variable names to values and we expect to have values
for all variables in the expression.

The environment should provide two functions, one to create a new en-
vironment with a given set of bindings and one function that finds a binding
given a variable name.

Once you have an environment working then the function eval/2 should
be done in fifteen minutes, this skeleton might give you a flying start:

def eval({:num, ..}, ...) do ... end

def eval({:var, ..}, ...) do ... end

def eval({:add, ..., ...}, ...) do

add(..., ...)

end

:

:

If you follow this skeleton you only have to implement the function add/2,
sub/2 etc. It seams like a trivial task and this is why we threw in rational
numbers and integer division. Dividing 5 by 2 is thus not 2.5 but 2/5 or as
we would represent it {:q, 2, 5}. So when you implement the arithmetic
operations you have to take into account that one of the operands might be
a rational number.

In order to make tings more readable we of course want to reduce the
rational numbers as much as possible. If you evaluate 2 × 3/4 the answer
should not be 6/4 but 3/2.

Implement the function eval/2 and show by some examples that it
works.

ID1019 KTH 2 / 2


