
An environment
Programming II - Elixir Version

Johan Montelius

Spring Term 2023

Introduction

The name of this assignment might be confusing and it will only be clear
later in the course why we call this assignment ”An environment”. What
you should implement is a key-value database, also called a ”map”, that
can be used to look up the value associated with a key. We don’t make any
assumptions about the keys and will simply compare them using the regular
operators.

You should implement the map using two different techniques, both im-
plementations should provide the following interface:

� new() : return an empty map.

� add(map, key, value) : return a map where an association of the
key key and the data structure value has been added to the given
map. If there already is an association of the key the value is changed.

� lookup(map, key) : return either {key, value}, if the key key is
associated with the data structure value, or nil if no association is
found.

� remove(key, map) : returns a map where the association of the key
key has been removed

We will in this assignment use keys of atoms and the values will be
integers but the implementation should not take this for granted.

a map as a list

If we assume that the map will be small, we can represent it as a list of key-
value tuples. The list [{:a, 12}, {:b, 13}] would then represent a map
where the atom :a is associated with 12 and the atom :b is associated
with 13.

ID1019 KTH 1 / 6



Note - Elixir has a way of printing lists of binary tuples where the first
element is an atoms. The above list is printed as [a: 12, b: 13]. You
can also use this syntax which makes it easier to write long sequences of key
value pairs.

In a module EnvList, implement the functions above and test that you
can perform the different operations. Would it make sense to keep the list
sorted?

a map as a tree

If the map grows larger the list implementation might not be our best option.
A tree structure would probably be a better approach. You could implement
you tree any way you want but why not choose a simple representation where
an empty tree is represented by the atom nil and a node by the structure
{:node, key, value, left, right}.

In a module EnvTree, implement the functions above and test that you
can perform the different operations.

The tree should of course be sorted to make the lookup operation effi-
cient. You don’t have to implement a balanced tree but this would of course
be something that one would need to consider.

The add/3 and lookup/2 functions are fairly straight forward to imple-
ment. Identify the base cases and then how to recurse down the right or left
branch. Use the following skeleton code to get you started:

def add(nil, key, value) do

... adding a key-value pair to an empty tree ..

end

def add({:node, key, _, left, right}, key, value) do

... if the key is found we replace it ..

end

def add({:node, k, v, left, right}, key, value) when key < k do

... return a tree that looks like the one we have

but where the left branch has been updated ...

end

def add({:node, k, v, left, right}, key, value) do

... same thing but instead update the right banch

end

Remember that we are in fact not ”updating” the tree that we have
but rather constructing a copy of the tree where we have added the new
key-value pair.

ID1019 KTH 2 / 6



Implementing lookup/2 is very similar to the add/3 function. The dif-
ference is of course that we are not building a new tree but returning the
found key-value pair or nil if not found.

Implementing remove/2 is slightly more tricky and you have to remem-
ber the algorithm how to do this. The idea is to first locate the key to
remove and then replace it with the leftmost key-value pair in the right
branch (or the rightmost in the left branch). Removing and returning the
leftmost key-value pair should be simple so if you only can handle all special
cases you should be up an running in a few minutes.

def remove(nil, _) do ... end

def remove({:node, key, _, nil, right}, key) do ... end

def remove({:node, key, _, left, nil}, key) do ... end

def remove({:node, key, _, left, right}, key) do

... = leftmost(right)

{:node, ..., ..., ..., ...}

end

def remove({:node, k, v, left, right}, key) when key < k do

{:node, k, v, ..., right}

end

def remove({:node, k, v, left, right}, key) do

{:node, k, v, left, ...}

end

def leftmost({:node, key, value, nil, rest}) do ... end

def leftmost({:node, k, v, left, right}) do

... = leftmost(left)

...

end

benchmark

Now let’s do some benchmarks to see how the implementations perform and
compare to each other. We want to see how the different implementations
work with a growing number of key-value pair so let’s set up a benchmark
where we first construct a map of a number of elements and then measure
the time it takes to perform an operation. We will set up the benchmark so
that we use the same key-value pairs for each of the implementations.

Measuring time can be done using the function :timer.tc(fun) (this
is the Erlang module timer and we thus write it using the regular atom
syntax). This function will take a function, call this function and return a
tuple with the number of microseconds it took and the result. The argument
to tc/1 is a function and as you will see this is quite efficient.

Using functions as arguments we can for example use the function Enum.each/2
to generate a list of random numbers. Try the following with different values

ID1019 KTH 3 / 6



of n and i:

Enum.map(1..n, fn(_) -> :rand.uniform(i) end)

To build a key-value store using our EnvList module we can do as fol-
lows:

seq = Enum.map(1..i, fn(_) -> :rand.uniform(i) end)

list = Enum.reduce(seq, EnvList.new(), fn(e, list) ->

EnvList.add(list, e, :foo)

end)

We first build a list of random numbers (from 0 to i) and then use this
list as keys when we add dummy key-value pairs to an empty store.

Once we have a store of i pairs we can construct another sequence of n
random numbers and use them when we benchmark for example adding a
new pair:

seq = Enum.map(1..n, fn(_) -> :rand.uniform(i) end)

{tla, _} = :timer.tc(fn() -> Enum.each(seq, fn(e) ->

EnvList.add(list, e, :foo)

end)

end)

Note that we here ignore the constructed store with the new pair, we
simply add the item and then drop the result. In this way we can first build
a store containing for example 64 entries and then measure the time it takes
to add a thousand new pairs without growing the store.

We can now do the same with the other operations and combine every-
thing in one function:

def bench(i, n) do

seq = Enum.map(1..i, fn(_) -> :rand.uniform(i) end)

list = Enum.reduce(seq, EnvList.new(), fn(e, list) ->

EnvList.add(list, e, :foo)

end)

seq = Enum.map(1..n, fn(_) -> :rand.uniform(i) end)

{add, _} = :timer.tc(fn() ->

Enum.each(seq, fn(e) ->

EnvList.add(list, e, :foo)

ID1019 KTH 4 / 6



end)

end)

{lookup, _} = :timer.tc(fn() ->

Enum.each(seq, fn(e) ->

EnvList.lookup(list, e)

end)

end)

{remove, _} = :timer.tc(fn() ->

Enum.each(seq, fn(e) ->

EnvList.remove(list, e)

end)

end)

{i, add, lookup, remove}

end

The bench/2 function is then used repeatedly with growing values of i.
If we print out the result we will have a nice sequence of numbers to plot or
present in a table.

The specification 12.2f means print a float with 2 decimals right aligned
using a width of 12 characters. Change it to anything that suits your needs.

def bench(n) do

ls = [16,32,64,128,256,512,1024,2*1024,4*1024,8*1024]

:io.format("# benchmark with ~w operations, time per operation in us\n", [n])

:io.format("~6.s~12.s~12.s~12.s\n", ["n", "add", "lookup", "remove"])

Enum.each(ls, fn (i) ->

{i, tla, tll, tlr} = bench(i, n)

:io.format("~6.w~12.2f~12.2f~12.2f\n", [i, tla/n, tll/n, tlr/n])

end)

end

Once you have your benchmark up an running you can compare your two
implementations of the key-value store. You might also wan to see how well
you did compared to the key-value store that comes with the Elixir system
form start. There is a module called Map that does exactly what you want
and more (the functions are called put/3, get/2 and delete/2). It uses a
trier data structure (a tree of hash tables) and is implemented in C++ so it
is not strange if it performs better than your solution but my guess is that
you’re not that far off.

ID1019 KTH 5 / 6



Take a look at the documentation of the Map module. From now on you
can use it if you want.

ID1019 KTH 6 / 6


