
Elixir Concurrency
Programming II - Elixir Version

Johan Montelius

Spring Term 2018

Concurrency

Elixir was designed for concurrent programming. You will quickly learn how
to divide your program into communicating processes and thereby give it
far better structure. Try the following:

defmodule Wait do

def hello do

receive do

x -> IO.puts("aaa! surprise, a message: #{x}")

end

end

end

The IO.puts procedure will output the string to the stdout and insert
the x value by means of string interpolation. Compile and load the above
module in the Elixir interactive shell iex (the returned PID number may be
different):

iex(1)> c("wait.ex")

[Wait]

iex(2)> p = spawn(Wait, :hello, [])

#PID<0.92.0>

The variable p is now bound to the process identifier of spawned process.
The process was created and called the procedure hello/0 (this is how we
name a function with zero arguments). It is now suspended waiting for
incoming messages. In the same Elixir iex shell execute the command:

iex(3)> send p, "hello"

...

ID1019 KTH 1 / 3



Now register the process identifier under the name :foo after having
started a new process (the one above died after having received the message):

iex(4)> p = spawn(Wait, :hello, [])

#PID<0.99.0>

iex(5)> Process.register(p, :foo)

true

iex(6)> send :foo, "hello"

...

1 Tic-Tac-Toe

In the example above the only thing we sent was a string but we can send
arbitrary complex data structures. The receive statement can have several
clauses that try to match incoming messages. Only if a match is found will
a clause be used. Try this:

defmodule Tic do

def first do

receive do

{:tic, x} ->

IO.puts("tic: #{x}")

second()

end

end

defp second do

receive do

{:tac, x} ->

IO.puts("tac: #{x}")

last()

{:toe, x} ->

IO.puts("toe: #{x}")

last()

end

end

defp last do

receive do

{t, x} ->

IO.puts("#{t}: #{x}")

ID1019 KTH 2 / 3



end

end

end

Then in the iex shell execute the following commands:

iex(1)> c("tic.ex")

[Tic]

iex(2)> p = spawn(Tic, :first, [])

#PID<0.103.0>

iex(3)> send p, {:toe, :bar}

...

iex(4)> send p, {:tac, :gurka}

...

iex(5)> send p, {:tic, :foo}

...

In what order where they received by the process? Note how messages
are queued and how the process selects in what order to process them.

ID1019 KTH 3 / 3


