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Concurrency

Elixir was designed for concurrent programming. You will quickly learn how
to divide your program into communicating processes and thereby give it
far better structure. Try the following:

defmodule Wait do

def hello do

receive do

x -> IO.puts("aaa! surprise, a message: #{x}")

end

end

end

The IO.puts procedure will output the string to the stdout and insert
the x value by means of string interpolation. Compile and load the above
module in the Elixir interactive shell iex (the returned PID number may be
different):

iex(1)> c("wait.ex")

[Wait]

iex(2)> p = spawn(Wait, :hello, [])

#PID<0.92.0>

The variable p is now bound to the process identifier of spawned process.
The process was created and called the procedure hello/0 (this is how we
name a function with zero arguments). It is now suspended waiting for
incoming messages. In the same Elixir iex shell execute the command:

iex(3)> send p, "hello"

...

ID1019 KTH 1 / 3



Now register the process identifier under the name :foo after having
started a new process (the one above died after having received the message):

iex(4)> p = spawn(Wait, :hello, [])

#PID<0.99.0>

iex(5)> Process.register(p, :foo)

true

iex(6)> send :foo, "hello"

...

1 Tic-Tac-Toe

In the example above the only thing we sent was a string but we can send
arbitrary complex data structures. The receive statement can have several
clauses that try to match incoming messages. Only if a match is found will
a clause be used. Try this:

defmodule Tic do

def first do

receive do

{:tic, x} ->

IO.puts("tic: #{x}")

second()

end

end

defp second do

receive do

{:tac, x} ->

IO.puts("tac: #{x}")

last()

{:toe, x} ->

IO.puts("toe: #{x}")

last()

end

end

defp last do

receive do

{t, x} ->

IO.puts("#{t}: #{x}")
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end

end

end

Then in the iex shell execute the following commands:

iex(1)> c("tic.ex")

[Tic]

iex(2)> p = spawn(Tic, :first, [])

#PID<0.103.0>

iex(3)> send p, {:toe, :bar}

...

iex(4)> send p, {:tac, :gurka}

...

iex(5)> send p, {:tic, :foo}

...

In what order where they received by the process? Note how messages
are queued and how the process selects in what order to process them.
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