
Monte Carlo and Π
Programming II

Johan Montelius

Spring Term 2023

Introduction

You all know that π is sort of 3.141592... but how do you calculate a better
approximation? Archimedes knew that π was slightly smaller than 22/7 but
was not sure about the third decimal. Zu Chongzhi could narrow it down
to 355/113 wich is correct to the sixth decimal. Your task is to compute a
better approximation using something called Monte Carlo method.

What do we know

The Monty Carlo method is surprisingly simple and builds on that we can
generate a sequence of random numbers and that we know the Pythagorean
theorem.

Take a look at Fig.1, we have an arch with radious 5 and a dot at (2, 3).
If I ask you if the dot is inside our outside the area limited by the arch you
would of course say that it is inside, but how do you prove this without
looking at the picture?

One way is to use the Pythagorean theorem and show that the distance
from origo to the dot is

√
22 + 32 = 3.6.. which is less than 5. This is trivial

but how would it help us finding a good aproximation of π?
The trick is to look at the size of the area ”inside” the arch (i.e. the

sector limited by the x and y axis and the arch) and compare this to the
area of the square limited by origo and the upper right corner at (5, 5).

The square of course has an area of 52 and the sector an area of (π/4)∗52
and this is where π comes into the picture.

A random dart

If you throw a thound random darts at the square, how many would you
estimate hit the arch sector? The ratio would of course be proability that a
dart hits inside the arch is π/4 or aproximate 785 darts. We know this since
we know a good aproximation of π but if we didn’t we could throw a

ID1019 KTH 1 / 4

(2, 3)

Figure 1: Does (3,4) fall inside the circle?

thousand darts and count how many hit inside the arch (and you know how
to determine this).

If we throw a thousand darts and 782 land inside the arch you would
estimate pi to be 4 ∗ 785/1000 = 3.140 which of course is quite close. You
could of course and up with 782 darts inside the arch and estimate π to be
3.128. You would not know which one was closes to the truth but if you
throw ten thousand darts you woudl probably be able to estimate π with a
better value.

This is how the Monte Carlo method or simulation works; do a serie of
experiments (on a computer) and try to aproximate what would be very
difficult to calculate.

The challenge

In order to find a good estimate of π you need to set up a program that
throws more and more darts at a square and continiusly estimates a value
for π. As more darts are thrown you will see this estimate fluctuate less
and less and slowly converge. The challenge is to beat the estimtes found
by Archimedes, two decimals, and Zu Chongzhi, six decimals.

You need a function can throw a random dart and tell you wether it hit
inside the arch or not. To your help you have a function Enum.random/1 that
will give you a random number in a given range. For example Enum.random(0..10)
will give you a number between 0 and 10). The function dart/1) should
take a number, the radious r, and return true or false a randomly thrown
dart.

Now when we check if we are inside the arch we could of course calculate√
x2 + y2 and compare it to r but we might as well compare x2 + y2 to r2.

ID1019 KTH 2 / 4

It’s the same you say but there is a difference. We avoid doing an expensive
root calculation and we avoid any problems with how floating point numbers
are represneted (whoch would not be a problem in this exercise). Use the
function :math.pow/2 to caculate the square.

def dart(r) do

x = Enum.ranomd(0..r)

y = Enum.ranomd(0..r)

... > ... + ...

end

Once we can throw one dart we throw a hundred or a thousand but since
we want to know how our estimate comes closer and closer to the true value
we trow a number of darts, called a round, and accumulate how many that
land inside the acrch. Define a function round/3 that throws a number of
darts, k, on a target with radious r and add the hits to the accumulated
value a.

def round(0, _, a) do ... end

def round(k, r, a) do

if ... do

round(..., ..., ...)

else

round(..., ..., ...)

end

end

Now you’re fit to set up a test where you run a number of rounds and
display the estimated value for π after each round. You can compare the
estimate to :math.pi() to see how far off your are.

def rounds(k, j, r) do

rounds(k, j, 0, r, 0)

end

def rounds(0, _, t, _, a) do ... end

def rounds(k, j, t, r, a) do

a = round(j, r, a)

t = t + j

pi = ...

:io.format(" ... ", [pi, (pi - :math.pi()])

rounds(k-1, j, t, r, a)

end

ID1019 KTH 3 / 4

Do some experiments and try to beat Archimedes. How many darts do
you need before your can for sure state that you have better value; how
would you know if you did not have :math.pi()?

Try to beat Zu Chongzhi; note that you now have to produce a value
that is accurate to the sixth decimal. It means that you will have to throw
many millions of darts. If you only throw a hundredthousand darts you will,
if you’re lucky, find 78.540 dars inside the arch and guess that π = 3.14159
but you will not get closer than this.

It also means that your discrete radious, r, needs to be suffienctly large
to captue the difference in the sixth decimal. If you only have a radius of
1000 and thus have 1000000 points to examine, you will not get closer than
3.14159 even if you throw all darts.

Since you will need to throw a slot of darts you might want to modify
the definition of rounds/5 so that it doubles the number of dart throwns i
each round.

How close do you come, what is you best estimate of π?

Summary

All though a fun exercise, the Monte Carlo method is not used to estimate
the value of π. As you probably learned it takes for ever to find an aproxi-
amtion with more than five accurate decimals. There are more efficiet ways
to calculate π, for example summing up the Leibniz formula:

π/4 = 1− 1/3 + 1/5− 1/7 + 1/9− ...

Try:

4 * Enum.reduce(0..1000, 0, fn(k,a) -> a + 1/(4*k + 1) - 1/(4*k + 3) end)

The idea with Monte Carlo is to get a rough estimate of somthing that
i to complicated to calculate. As you saw you could get a an aproximation
of 3.1 or 3.2 in only a few darts and it might be sufficent to have an idé of a
value with a error margin of a couple of percent if the alternative is to know
nothing at all.

ID1019 KTH 4 / 4

