
A game of Pong

Johan Montelius

KTH

VT23

1 / 12

the classical game of Pong

2 / 12

architectur

server

session 1

session 2

socket

handler 1

handler 2

browser 1

browser 2 timer

Pong

SessionWebSocketpong.js

Game

3 / 12

layers of communication
user pong server

pong.js session

WebSocket handler

HTTP HTTP

TCP TCP

key pressed {:player1, :up}

"U" {:ws, ws, {:msg, «?U»}

130 1 85 «130, 1, 85»

GET ... GET ...
byte stream

4 / 12



sequence diagram

browser pong server

start(name, me)session 1/2

start(8080,[ses1, ses2])WebSocket

handler 1/2

websocket

{:ws, pid, :open}

{:ready, name}

5 / 12

WebSocket interface

The Javascript client communicate using a websocket interface. After the initial HTTP
handshake, a bidirectional message channel is created. Each message consist of
sequence of bytes.

browser handlerwebsocket session
{:msg, «bytes»}

The handler process will take care of the WebSocket internals and deliver a stream of
messages to the session process.

Each client is connected through a unique handler process that is communicating with
a single session process.

6 / 12

Session handler lower interface

Messages from the websocket handler to the session handler:

{:ws, pid, :open} : a connection was establishes
{:ws, pid, :close} : the connection was closed by the client
{:ws, pid, {:msg, «byte encoded message»}} : message from the client

Messages from the session handler to the websocket handler:
{:frw, «byte encoded message»} : encode and send message to client
:stop : time to close the connection

7 / 12

The session handler

Works as a decoder/encoder of byte-encoded messages and Elixir messages.

Messages from the client forwarded to the pong game server:

«?U» : player pressed up - {name, :up}
«?D» : player pressed down - {name, :down}

8 / 12



session handler

Messages from pong server forwarded to the websocket handler:

{:player1, :up} : player moved up - «?P,?U»
{:player1, :down} : player moved down - «?P,?D»
{:player1, :score, score} : player scored - «?P,?S, score»
{:player2, ... } : same messages for opponent - «?O, ... »
{:ball, x, y } : ball moved to new position - «?B, x::16, y::16 »
{:frw, msg} : raw message to client - msg

9 / 12

the game engine

The game server:

create two session handlers with unique names
create a WebSocket process, give session handlers as arguments
wait for session handlers to report
start the game

10 / 12

the game engine

The pong engine keeps a state consisting of:

Two players (player1 and player2).
A ball.
The current score.
Two session pids to send messages to the players.

The pong engine is defined by two modules:

The Pong module that describes the server as a communicating process.
The Game module that describe the rules as functions.

11 / 12

Rules of the game

A player is represented as a tuple {name, x-pos, y-pos, dir}.

player1(name) : return a named player 1
player2(name) : return a named player 2
up(player) : return either {:ok, player} or :no
down(player) : return either {:ok, player} or :no

A ball is represented a as tuple {:ball, x, y, dx, dy}.

serve(player) : return {pos, ball}
move_ball(player1, player2, ball) : return either

{:bounce, pos, ball} (increase speed)
{:moved, pos, ball}
{:score, name}

12 / 12



the Game module

The Game module provides only functions; it does not keep a state.

The Game module knows how large the court is.

The state (apart from the score) is held by the three data structures: player1, player2
and the ball.

13 / 12


