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WebSocket interface

The Javascript client communicate using a websocket interface. After the initial HTTP
handshake, a bidirectional message channel is created. Each message consist of
sequence of bytes.

browser handlerwebsocket session
{:msg, «bytes»}

The handler process will take care of the WebSocket internals and deliver a stream of
messages to the session process.

Each client is connected through a unique handler process that is communicating with
a single session process.
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Session handler lower interface

Messages from the websocket handler to the session handler:

{:ws, pid, :open} : a connection was establishes
{:ws, pid, :close} : the connection was closed by the client
{:ws, pid, {:msg, «byte encoded message»}} : message from the client

Messages from the session handler to the websocket handler:
{:frw, «byte encoded message»} : encode and send message to client
:stop : time to close the connection
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The session handler

Works as a decoder/encoder of byte-encoded messages and Elixir messages.

Messages from the client forwarded to the pong game server:

«?U» : player pressed up - {name, :up}
«?D» : player pressed down - {name, :down}
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session handler

Messages from pong server forwarded to the websocket handler:

{:player1, :up} : player moved up - «?P,?U»
{:player1, :down} : player moved down - «?P,?D»
{:player1, :score, score} : player scored - «?P,?S, score»
{:player2, ... } : same messages for opponent - «?O, ... »
{:ball, x, y } : ball moved to new position - «?B, x::16, y::16 »
{:frw, msg} : raw message to client - msg
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the game engine

The game server:

create two session handlers with unique names
create a WebSocket process, give session handlers as arguments
wait for session handlers to report
start the game
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the game engine

The pong engine keeps a state consisting of:

Two players (player1 and player2).
A ball.
The current score.
Two session pids to send messages to the players.

The pong engine is defined by two modules:

The Pong module that describes the server as a communicating process.
The Game module that describe the rules as functions.
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Rules of the game

A player is represented as a tuple {name, x-pos, y-pos, dir}.

player1(name) : return a named player 1
player2(name) : return a named player 2
up(player) : return either {:ok, player} or :no
down(player) : return either {:ok, player} or :no

A ball is represented a as tuple {:ball, x, y, dx, dy}.

serve(player) : return {pos, ball}
move_ball(player1, player2, ball) : return either

{:bounce, pos, ball} (increase speed)
{:moved, pos, ball}
{:score, name}
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the Game module

The Game module provides only functions; it does not keep a state.

The Game module knows how large the court is.

The state (apart from the score) is held by the three data structures: player1, player2
and the ball.
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