
Parallel programming

Johan Montelius

KTH

VT23

1 / 26

Parallelism

Parallelism vs Concurrency

Concurrency:
multiple threads of control
structure of architecture
particularly suited for interactive
applications

Parallelism:
main goal - increase performance
make use of parallel hardware

A concurrent program could be parallelized.

2 / 26

types of parallel hardware

Multiple Instructions Multiple Data (MIMD) : what is provided by a multi-core
CPU but also by a distributed system
Single Instruction Multiple Data (SIMD): typically used by graphics cards, the
same operations should be performed but on many objects or pixels
Pipeline : processing units that work in series, for example the stages of execution
of an instruction in a CPU

We will try to utilize a MIMD architecture.

3 / 26

types of parallel programming

Several models of parallel computations:

loop parallelism: identify a loop where each iteration is independent
map-reduce: for each element in a set - perform an operation and collect the result
task parallelism: independent tasks are generated and executed in parallel
stream parallelism: a stream of events should be processes by several combinators

A concurrent program could be executed in parallel but the focus is then concurrency
not parallelism.

4 / 26

language support

What language support do we have:
parallel operators: extraction of parallelism by compiler, loop parallelism,
map-reduce etc
concurrency: concurrent processes that the can be execute in parallel

synchronization by shared memory/objects - Java, C++, ...
synchronization by message passing - Erlang/Elixir, Go, MPI, ...

5 / 26

how do we exploit parallelism

def fib(0) do 1 end
def fib(1) do 1 end
def fib(n) do

f1 = fib(n-1)
f2 = fib(n-2)
f1 + f2

end

def fib(0) do 1 end
def fib(1) do 1 end
def fib(n) do

f1 = spawn(fn() -> fib(n-1) end)
f2 = spawn(fn() -> fib(n-2) end)
f1 + f2

end

Ehhh, not the best thing to do - does not work, does it?

6 / 26

how do we exploit parallelism

def fib(0) do 1 end
def fib(1) do 1 end
def fib(n) do

r1 = make_ref()
r2 = make_ref()
parallel(fn() -> fib(n-1) end, r1)
parallel(fn() -> fib(n-2) end, r2)
f1 = collect(r1)
f2 = collect(r2)
f1 + f2

end

def parallel(fun, ref) ->
self = self()
spawn(fn() ->

res = fun.()
send(self, {:ok, ref, res})
end)

end

def collect(ref) do
receive do

{:ok, ^ref, res} ->
res

end
end

All right, let’s roll!
7 / 26

benchmark

fib(30), parallel vs sequential, 2 x AMD Opteron 12 cores

sequential: 64 ms
parallel: 1800 ms

so much for parallelism

8 / 26

granularity
We need to control the granularity of tasks:
def fix(0, _) do 0 end
def fix(1, _) do 1 end
def fix(n, m) when n > m do

r1 = make_ref()
r2 = make_ref()
parallel(fn() -> fix(n-1, m) end, r1)
parallel(fn() -> fix(n-2, m) end, r2)
f1 = collect(r)
f2 = collect(r2)
f1 + f2

end
def fix(n, _) do fib(n) end

All right, let’s roll!
9 / 26

finding the granularity

> Fib.bench(40,20)
fib(40) sequential: 7000 ms
fix(40,38) : 2900 ms
fix(40,36) : 1100 ms
fix(40,34) : 610 ms
fix(40,32) : 530 ms
fix(40,30) : 490 ms
fix(40,28) : 490 ms
fix(40,26) : 480 ms
fix(40,24) : 480 ms
fix(40,22) : 480 ms
fix(40,20) : 490 ms
ok

When does it pay off, what is the overhead?
10 / 26

the null test

:
fix(n,_) do 1 end

> Fib.bench(40,20)
fib(40) sequential: 7000 ms
fix(40,38) : 0 ms
fix(40,36) : 0 ms
fix(40,34) : 0 ms
fix(40,32) : 0 ms
fix(40,30) : 1 ms
fix(40,28) : 1 ms
fix(40,26) : 3 ms
fix(40,24) : 6 ms
fix(40,22) : 17 ms
fix(40,20) : 32 ms
ok

How many processes are created in fix(40,20)?
11 / 26

how do we scale

12 / 26

log scale

13 / 26

log-log scale

14 / 26

as good as it gets

speed-up 1 - 2 cores : 1.9
speed-up 2 - 4 cores : 1.9
speed-up 4 - 8 cores : 1.9
speed-up 6 - 12 cores : 1.9
speed-up 12 - 24 cores : 1.3

Calculating Fibonacci in parallel is an example of an “embarrassingly easy parallel
program”.

15 / 26

Image processing

Assume that we want to transform an image to a gray scale, and then reduce the color
depth of the image.

16 / 26

question

How do we parallelize this?

17 / 26

alternatives

Parallelize the gray transformer and/or the depth transformer, or
let the gray transformer feed the color-depth transformer, line by line.

A pipe-line: reader - transform - transform - writer

18 / 26

the pipeline

def stream() do
writer = PPM.writer("reduced.ppm", self())
reducer = Stream.start(gray_reduce(), writer)
grayer = Stream.start(rgb_to_gray(), reducer)
PPM.reader("hockey.ppm", grayer)
receive do
:done

end
end

19 / 26

a transformer

20 / 26

a transformer

21 / 26

benchmark

> Test.batch()
reading in 118 ms
gray in 66 ms
reduce in 66 ms
writing in 96 ms

total in 349 ms

> Test.stream()

total in 260 ms

This is using only one scheduler.

22 / 26

benchmark

> Test.stream()
reading turning gray, reducing and writing in 260 ms

> :erlang.system_flag(:schedulers_online, 2)
1

> Test.stream()
reading turning gray, reducing and writing in 161 ms

23 / 26

a sequence of task

Assume we have a sequence of independent task (for example images that should
processes) how do we parallelize the execution?

pipe-line, each task passes a sequence of processes
task parallel, each task is executed in a separate process

Pros and cons?

24 / 26

stream parallelism

Assume we have a flow of events (a twitter feed) and collect statistics of the most
frequent word during a minute, these words are then forwarded to a counter etc.

Create a network of processes, each process receives events, processes them and
forwards them to other processes.

Apache Storm.

25 / 26

Summary

parallelism vs concurrency
concurrency as a tool for parallelism
embarrassing easy parallelism is often easy
pipe-line parallelism
task parallelism
stream parallelism

26 / 26

