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Instructions

• All answers should be written in these pages, use the space allocated

after each question to write down your answer.

• Answers should be written in English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grade

The exam consists of two parts. A basic part of �ve questions (1-5) and

one part for higher grade. The �rst �ve questions are about basic functional

programming: pattern matching, recursion, immutable data structures etc.

These �ve questions should be be answered satisfyingly (8 out of 10 points)

for the grade of E (7 points for FX).

The remaining four questions (6-9) are about: semantics, higher order func-

tions, complexity, processes etc. The higher grades are based only on these

questions but is only given (and only corrected) if the basic part has been

answered satisfyingly.

• D: 1 points

• C: 2 points

• B: 3 points

• A: 4 points
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Namn: Persnr:

1 double even [2p]

Implement a function that takes a list of numbers and returns a, equivalent

list but one where all even numbers have been doubled. You can use the

function rem(n.k) which returns the reminder when dividing n with k.

2 a binary tree [2p]

Implement a function, sum/1, that takes a binary tree and returns the sum

of all values in the tree. The tree is represented as follows:

@type tree :: {:node, integer(), tree(), tree()} | nil
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3 mirror a tree [2p]

Implement a function that mirrors a binary tree. A tree is mirrored by mir-

roring, and changing place on, its two branches.

4 add/2 [2p]

Implement the function add/2 that adds an integer to a heap. A heap is a

tree with the largest element in its root and where the two branches also are

heaps.

To keep the heap balanced you should swith the left and right branches that

is, when you add an element to a branch you add it to the right branch but

make the result the left branch of the heap.

• @spec add(heap(), integer()) :: heap()
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5 Fizz-Buzz [2p]

We should implement a function fizzbuzz/1 that given a number n ≥ 0
returns a list of the n �rst elements in the �zz-buzz series. Fizz-buzz is a

series from 1 to n where you replace all numbers that are a multiple of 3 by

:fizz, those multiple by 5 by :buzz and those a multiple of both 3 and 5
by :fizzbuzz. The �rst �ve elements is thus: [1,2,:fizz,4,:buzz].

You should implement the function fizzbuzz/4 that helps us do this. The

�rst argument is the next element in the list, the second tells us if we are

done and the third and fourth keeps track of if the number is a multiple of

3 or 5. You are only allowed to use addition, no other arithmetic operation.

You should not make the function tail recursive.

def fizzbuzz(n) do fizzbuzz(1, n+1, 1, 1) end
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6 Formal semantics [1p]

Lambda calculus

Evaluate the following lambda expressions:

• (λx→ x+ 5)4

• (λx→ (λy → x+ 2 ∗ y)3)5

• (λx→ (x)5)(λz → z + z)

Operational semantics

Something about operational semantics.
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7 reduce a tree [1p]

reduce/3

Implement a function reduce(tree, acc, op) that takes a binary tree, with

values in the nodes, an initial value and an operation, op, that takes two

arguments; a reduced value and the value of a node. The function reduce/3

should return a reduced value that is computed recursivly:

• the reduced value of an empty tree is the accumulated value

• the reduced value of a node is the reduced value of the right branch

- where the accumulated value is the operand applied to the reduced

value of the left branch and the value of the node.

The tree is represented as follows:

@type tree :: {:node, any(), tree(), tree()} | nil

to_list/1

Implement a function to_list/1, that takes a tree and returns a list of all

elements in the tree in in�x order. The function should be implemented using

reduce/3.
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8 a queue [1p]

Assume that we represent a queue with the help of two lists and have the

below implementation of enqueue/2 and dequeue/1. What is the amortized

time complexity for adding and then removing an element from a queue?

def enqueue({:queue, head, tail}, elem) do

{:queue, head, [elem|tail]}

end

def dequeue({:queue, [], []}) do :fail end

def dequeue({:queue, [elem|head], tail}) do

{:ok, elem, {:queue, head, tail}

end

def dequeue({:queue, [], tail}) do

dequeue({:queue, reverse(tail), []})

end
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9 parallel sum [1p]

Implement a �nction sum/1 that takes a binary tree with numbers in the

leafs, and sums all numbers of the tree in parallel.
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