
ID1019

Johan Montelius

Programming II (ID1019)
2020-03-09

Instructions

• All answers should be written in these pages, use the space allocated

after each question to write down your answer (not on the back side).

• Answers should be written in English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grade

The exam consists of two parts. The �rst �ve questions are about basic func-

tional programming: pattern matching, recursion, immutable data structures

etc. The �rst part is the basic requirement to pass the course:

• FX: 7 points

• E: 8 points

The second part, questions 6-9, are about: semantics, higher-order functions,

complexity, processes etc. The higher grades are based only on these ques-

tions but is only given (and only corrected) if the basic part has been an-

swered satisfyingly (8 out of 10 point).

• D: one question correctly answered

• C: two questions correctly answered

• B: three questions correctly answered

• A: all questions correctly answered

1

Namn: Persnr:

1 toggle [2p]

Implement a function, toggle/1, that takes a list and returns a list where

the elements have changed place two-by-two. If the number of elements is

odd the last element keeps its position.

Example: toggle([:a,:b,:c,:d,:e,:f,:g]) should give the answer [:b,:a,:d,:c,:f,:e,:g].

Answer:

def toggle([a,b|rest]) do [b, a | toggle(rest)] end

def toggle(rest) do rest end

2 push and pop [2p]

Implement a stack: propose a data structure and implement the two functions

push/2 and pop/1. The function push/2 should return the updated stack and

the function pop/1 should return either: {:ok, any(), stack()} if there is

an element on the stack or :no if the stack is empty.

Answer:

@type stack() :: [any()]

def push(stack, elem) do [elem|stack] end

def pop([]) do :no end

def pop([elem|rest]) do {:ok, elem, rest} end

2

Namn: Persnr:

3 �atten [2p]

Implement a function flatten/1 that takes a list of lists, that in turn can

be lists of lists etc, and returns a �at list with all the elements of the original

list in the same order. You can use ++ to append two lists.

Example, the call: flatten([1,[2],[[3,[4,5]], 6]]) returns: [1,2,3,4,5,6]

Answer:

def flatten([]) do [] end

def flatten([head|tail]) do flatten(head) ++ flatten(tail) end

def flatten(item) do [item] end

3

Namn: Persnr:

4 h-index [2p]

An h-index can be used to describe how much and how far one runs. Your

h-index is the highest value h such that you have run at least h km at least

h times. Your h-index is for example 12 if you have done 12 km or more 16

times but have not done 13 km or more 13 times. It is fairly simple to have

a h-index of 10 but a bit tougher to come up to 30.

Implement a function index/1 that, given a list of values that describes runs

in km, calculates the h-index. The list is ordered with the longest runs �rst.

You will be able to calculate the value by going through the list only once.

The algorithm is simple:

• The initial estimate of the h-index is 0.

• Traverse the list and if the �rst element is greater than the current

estimate,

� then increment the estaimate by 1 and continue otherwise,

� you have found the correct h-index.

Example: index([12,10,8,8,6,4,4,4,2])

should return: 5

Answer:

def index(runs) do index(runs, 0) end

def index([k|rest], n) when k > n do

index(rest, n+1)

end

def index(_, n) do n end

4

Namn: Persnr:

5 more compact [2p]

Implement a function compact/1 that takes a tree on the form below and

returns a tree where each node with the same key is both its leafs (or if there

is only one leaf) had been replaced with a single leaf. The function should

be applied recursivly so that changes propagate towords the root.

Trees are represented as follows, note that only the leaves have values:

@type tree() :: :nil | {:node, tree(), tree()} | {:leaf, any()}

Example:

compact({:node, {:leaf, 4}, {:leaf, 4}})

should return: {:leaf, 4}

compact({:node, {:leaf, 5}, {:node, :nil, {:leaf, 4}}})

should return: {:node, {:leaf, 5}, {:leaf, 4}}

Answer:

def compact(:nil) do :nil end

def compact({:leaf, value}) do {:leaf,value} end

def compact({:node, left, right}) do

cl = compact(left)

cr = compact(right)

combine(cl, cr)

end

def combine(:nil, {:leaf, value}) do

{:leaf, value}

end

def combine({:leaf, value}, :nil) do

{:leaf, value}

end

def combine({:leaf, value}, {:leaf, value}) do

{:leaf, value}

end

def combine(left, right) do

{:node, left, right}

end

5

Namn: Persnr:

6 Formal semantics [P/F]

In the formal semantic that we have discussed we have used a rule call the

S-rule or scoping rule. The rule is used when we describe how a sequence of

pattern matching expressions are evaluated.

In Elixir we have the possibility to use pattern matching in the head of a fun-

ction de�nition (see example below). How should we describe the semantics

of a function call if we allow patternmatching in the head?

σ′ = σ \ {v/n | v/n ∈ σ ∧ v in p}
S(σ, p)→ σ′

Example of how pattern matching in the head of a function de�nition:

def member(_, []) do :no end

def member(x, [x|_]) do :yes end

def member(x, [_|h]) do member(x, h) end

This is how we de�ned a function call when the function was only allowed

to have unique variables in its head.

Eσ(e)→< v1, . . . : seq : θ > Eσ(ei)→ si E{v1/s1, . . .} ∪ θ(seq)→ s

Eσ(e.(e1, . . .))→ s

How is this changed if we allow patterns in the head (we assume there is

only one head)?

Eσ(e)→< p1, . . . : seq : θ >

Eσ(e.(e1, . . .))→ s

Reply on the next page.

6

Namn: Persnr:

Answer:

Eσ(e)→< p1, . . . pn : seq : θ > Eσ(ei)→ si γ0 = {} Pγi−1(pi, si)→ γi Eγn ∪ θ(seq)→ s

Eσ(e.(e1, . . . en))→ s

Eσ(e)→< p1, . . . pn : seq : θ > Eσ(ei)→ si γ0 = {} Pγi−1(pi, si)→ fail

Eσ(e.(e1, . . . en))→ fail

There is no need for a S-rule. We should however make sure that we accu-

mulate the variable bindings. In the example with member/2 the variable x

in the second clause the same variable.

7

Namn: Persnr:

7 Next prime number [P/F]

You should implement a function primes/0 that returns a function that

represents the endless sequence of prime numbers. The returned function

should when applied to no argumnets, return a tuple {:ok, prime, next}

where prime is the next prime number and next a function that will give us

the following prime numbers.

@type next() :: {:ok, integer(), (-> next())}

@spec primes() :: (-> next())

One way to solve this is to implement sieve of Eratosthenes. When you have

found a prime number p (the �rst one is 2) then you make sure that you do

not return any number n that is a multiple of this prime (rem(n, p) == 0
). Below is a good start of this algorithm, it is now up to you to implement

sieve/2.

def primes() do

fn() -> {:ok, 2, fn() -> sieve(2, fn() -> next(3) end) end} end

end

def next(n) do

{:ok, n, fn() -> next(n+1) end}

end

Answer:

def sieve(p, f) do

{:ok, n, f} = f.()

if rem(n, p) == 0 do

sieve(p, f)

else

{:ok, n, fn() -> sieve(n, fn() -> sieve(p, f) end) end}

end

end

8

Namn: Persnr:

8 a better �atten [P/F]

If you implement flatten/1 as simple as possible you will end up with an

algorith with less than perfect time complexity. You will append longer and

longer lists and the complexity will be quadratic to the number of elements

in the list. You shall now implement flatten/1 but make sure that the

complexity is linear with respect to the number of elements in the lists.

Answer:

def improved([]) do [] end

def improved([[] | rest]) do

improved(rest)

end

def improved([[head | tail] | rest]) do

improved([head, tail | rest])

end

def improved([elem | rest]) do

[elem | improved(rest)]

end

9

Namn: Persnr:

9 parallel map [P/F]

You should implementa funktion pmap/ that works as regular map/2 but

where each element has been computed in a separat process thus allowing

for parallel execution.

You should use the regular map/2 when you spawn the processes and collect

the result.

Example: the expression below

pmap([1,2,3,4], fn(x) -> x + 2 end)

should return:[3,4,5,6]

Answer:

def pmap(list, fun) do

refs = Enum.map(list, parallel(fun))

Enum.map(refs, collect())

end

def parallel(fun) do

me = self()

fn(x) ->

ref = make_ref()

spawn(fn() ->

res = fun.(x)

send(me, {:ok, ref, res})

end)

ref

end

end

def collect() do

fn(r) -> receive do {:ok, ^r, res} -> res end end

end

10

