
ID1019

Johan Montelius

Programming II (ID1019)
2019-06-05

Instructions

• All answers should be written in these pages, use the space allocated

after each question to write down your answer (not on the back side).

• Answers should be written in English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grade

The exam consists of two parts. The �rst �ve questions are about basic func-

tional programming: pattern matching, recursion, immutable data structures

etc. The �rst part is the basic requirement to pass the course:

• FX: 7 points

• E: 8 points

The second part, questions 6-9, are about: semantics, higher-order functions,

complexity, processes etc. The higher grades are based only on these ques-

tions but is only given (and only corrected) if the basic part has been an-

swered satisfyingly (8 out of 10 point).

• D: one question correctly answered

• C: two questions correctly answered

• B: three questions correctly answered

• A: all questions correctly answered

1

Namn: Persnr:

1 drop every n'th [2p]

Implement a function, drop/2, that takes a list and a number n > 0 and

returns a list where every n'th element has been removed.

Example: drop([:a,:b,:c,:d,:e,:f,:g,:h,:i,:j], 3) should give the an-

swer [:a,:b,:d,:e,:g,:h,:j].

Answer:

def drop(list, n) do drop(list, n, n) end

def drop([], _, _) do [] end

def drop([_|rest], 1, n) do

drop(rest, n, n)

end

def drop([elem|rest], i, n) do

[elem | drop(rest, i-1, n)]

end

2 rotate a list [2p]

Implement a function rotate/2 that takes a list, of length l, and a number

n, where 0 ≤ n ≤ l, and returns a list where the elements have been rotated

n steps.

You can use two library functions append/2 and reverse/1 (not ++). Your

solution can only call these functions ones each during an evaluation.

Example: rotate([:a,:b,:c,:d,:e], 2) returns [:c,:d,:e,:a,:b].

Answer:

def rotate(list, n) do rotate(list, n, []) end

def rotate(rest, 0, first) do

append(rest, reverse(first))

end

def rotate([elem|rest], n, first) do

rotate(rest, n-1, [elem|first])

end

2

Namn: Persnr:

3 n'th leaf [2p]

Implement a function nth/2 that �nds the value of the n'th leaf in a binary

tree traversed depth �rst left to right. The function shall take a number

n > 0 and a tree and return either:

• {:found, val} if the n'th leaf is found and has the value val or

• {:cont, k} if only n− k leafs were found i.e. you would need k more

leafs to �nd the n'th leaf.

You should not transform the tree to a list and then �nd the n'th leaf. You

should �nd the leaf by traversing the tree and stop as soon as you have found

the n'th leaf.

Trees are represented as follows, note that there is no empty tree and that

only the leaves have values:

@type tree() :: {:leaf, any()} | {:node, tree(), tree()}

Example:

nth(3, {:node, {:node, {:leaf, :a}

{:leaf, :b}}

{:leaf, :c}})

should return {:found, :c}

Answer:

def nth(1, {:leaf, val}) do {:found, val} end

def nth(n, {:leaf, _}) do {:cont, n-1} end

def nth(n, {:node, left, right}) do

case nth(n, left) of

{:found, val} ->

{:found, val}

{:cont, k} ->

nth(k, right)

end

end

3

Namn: Persnr:

4 HP35 and reversed Polish notation [2p]

The worlds best calculator is of course the HP35 that uses reversed polish

notation. You will not press 2 + 3 = but 2 3 + and imediately receives the

result 5. Each time a number was netered it was added to the stack. If you

entered a binary operator the two uppermost elements on the stack was

replaced by the result of the operation. If you entered 3 4 + 2 - the answer

was 5 and 3 4 + 2 1 + - of course gave 4 as the result.

Implement a function hp35/1 that takes a sequence of instructions and re-

turns the result. The instructions consist of either numbers of operators and

could of course be of arbitrary length. You don not have to handle illegal

sequences, we assume all sequences represent valid expressions.

@type op() :: :add | :sub

@type instr() :: integer() | op()

@type seq() :: [instr()]

@spec hp35(seq()) :: integer()

Example hp35([3, 4, :add, 2, :sub]) should return 5 since (3+4)−2 =
5.

Answer:

def hp35(seq) do hp(seq, []) end

def hp35([], [res| _]) do res end

def hp35([:add|rest], [a, b | stack]) do

hp35(rest, [a+b|stack])

end

def hp35([:sub|rest], [a, b | stack]) do

hp35(rest, [b-a|stack])

end

def hp35([val|rest], stack) do

hp35(rest, [val|stack])

end

4

Namn: Persnr:

5 Pascal's triangel [2p]

Implement a function pascal/1 that takes a number n (> 0) and returns the

n'th row in Pascals triangle. Below you see how the triangle is constructed:

the �rst row is [1] and the �fth row is [1, 4, 6, 4, 1]. The function

should of course be able to generate any row not just the ones shown.

Think recursively.

[1]

[1 , 1]

[1, 2, 1]

[1, 3 , 3, 1]

[1, 4, 6, 4, 1]

[1, ... 1]

Example: pascal(5) returns [1,4,6,4,1].

Answer:

def pascal(1) do [1] end

def pascal(n) do

[1 | next(pascal(n-1))]

end

def next([1]) do [1] end

def next([a|rest]) do

[b|_] = rest

[a+b | next(rest)]

end

end

5

Namn: Persnr:

6 Formal semantics [P/F]

order of evaluation

Elixir is a functional language where the arguments in a function call are

evaluated before the function. This is what we call eager evaluation. Other

functional languages use so called lazy evaluation where the arguments are

evaluated only if needed.

If we stick to the functional subset of Elixir (without processes nor side-

e�ects) then this might not mean anything in practice since the result we

get is the same.

We can take the de�nition of test/2 below as an example; the call test(3+4,

fib(17)) will result in 7 independent of which evaluation order we choose.

Is it, in this case, irrelevant if choose eager or lazy evaluation? Motivate your

answer.

Give an example where the result (or lack thereof) is di�erent depending on

if we use eager or lazy evaluation. Motivate your answer.

def test(one, two) do

if one > 10 do

two

else

one

end

end

Answer:

6

Namn: Persnr:

7 Transform a tree [P/F]

Implement a function trans/2 that takes a tree and a function, and returns

an isomorphic tree where each leaf value has been transformed using the

given function.

Then implement a function remit/2 that takes a tree and a number n as

arguments and returns, by using trans/2, a tree where each leaf value x has

been replaced by the remainder when doing integer division by n (obtained

by calling rem(x,n)).

@type tree() :: {:node, any(), tree(), tree()} | :nil

@spec trans(tree(), (any() -> any()))

Answer:

def trans(:nil, _) do :nil end

def trans({:node, val, left, right}, f) do

{:node, f.(val), trans(left, f), trans(right, f)}

end

def remit(tree, n) do trans(tree, fn(v) -> rem(v, n) end) end

7

Namn: Persnr:

8 a one way ticket [P/F]

Going by train in Europe is popular right now so why not write a program

that �nds the shortest distance between two cities. We assume that we have

a map that describes all lines between cities in Europe. Given a city we can

by using the map �nd a list of all immediate neighbours and the distances

to these cities.

The skeleton below (and next page) is a program that works even if the map

contains cycles. It is also quite e�cient since it is using dynamic program-

ming. Complete the program.

@type city() :: atom()

@type dist() :: integer() | :inf

@spec shortest(city(), city(), map()) :: dist()

def shortest(from, to, map) do

.... = Map.new([{to, 0}])

.... = check (from, to, ,....)

dist

end

@spec check(city(), city(), map(), map()) :: {:fond, dist(), map()}

def check(from, to, ,) do

case do

nil ->

shortest(from, to, ,)

distance ->

....

end

end

8

Namn: Persnr:

@spec shortest(city(), city(), map(), map()) :: {:found, dist(), map()}

def shortest(from, to, ,) do

.... = Map.put(.... , , :inf)

.... = Map.get(.... , from)

.... = select(neighbours, to, updated, map)

....

{:found, dist, updated}

end

@spec select([{:city, city(), integer()}], city(), map(), map()) ::

{:found, dist(), map()}

def select([], _, ,) do end

def select([{:city, next, d1} | rest], to, ,) do

.... = check(next, to, ,)

dist = add(d1,d2)

.... = select(rest, to, ,)

if sele < dist do

{:found, sele, updated}

else

{:found, dist, updated}

end

end

@spec add(dist(), dist()) :: dist()

def add(.... ,) do end

def add(.... ,) do end

def add(.... ,) do end

9

Namn: Persnr:

9 HP35 revisited [P/F]

Since the HP35 is such a nice calculator you should implement a process that

behaves as one. The process should be able to receive a sequence of messages

that are either numbers or operations. You only have to implement addition

but we wan the result returned to us when we perform an addition.

Implement the process and then provide a test function that shows how the

process can be used to add to numbers.

Write your answer on the next page.

10

Namn: Persnr:

Answer to question 9.

Answer:

defmodule HP35 do

def start() do

spawn(fn() -> hp35([]) end)

end

def hp35(stack) do

receive do

{:add, from} ->

[x1, x2 | stack] = stack

res = x1 + x2

send(from, {:res, res})

hp35([res|stack])

{:int int} ->

hp35([int|stack])

end

end

def test() do

hp = start()

send(hp, {:int, 4})

send(hp, {:int, 3})

send(hp, {:add, self()})

receive do

{:res, res} ->

res

end

end

end

11

Namn: Persnr:

Appendix

Map

• put(map, key, value) put(map(), key(), value()) :: map() Puts the

given value under key in map.

• get(map, key, default \\nil) get(map(), key(), value()) :: value()

Gets the value for a speci�c key in map. If key is present in map

with value value, then value is returned. Otherwise, default is returned

(which is nil unless speci�ed otherwise).

• new(enumerable) new(Enumerable.t()) :: map() Creates a map from

an enumerable. Duplicated keys are removed; the latest one prevails.

12

