
ID1019
Johan Montelius

Programming II (ID1019)
2019-03-08

Instructions

• All answers should be written in these pages, use the space allocated

after each question to write down your answer (not on the back side).

• Answers should be written in English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grade

The exam consists of two parts. The �rst �ve questions are about basic func-

tional programming: pattern matching, recursion, immutable data structures

etc. The �rst part is the basic requirement to pass the course:

• FX: 7 points

• E: 8 points

The second part, questions 6-9, are about: semantics, higher-order functions,

complexity, processes etc. The higher grades are based only on these ques-

tions but is only given (and only corrected) if the basic part has been an-

swered satisfyingly (8 out of 10 point).

• D: one question correctly answered

• C: two questions correctly answered

• B: three questions correctly answered

• A: all questions correctly answered

1



Namn: Persnr:

1 expand a coded sequence [2p]

Implement a function, decode/1, that takes a coded sequence and returns

the decoded sequence. A coded sequence is represented by a list of tuples

{char, n} where char is an element in the decoded sequence and n the

number of consecutive occurrences.

Example: decode([{:a, 2}, {:c, 1}, {:b, 3}, {:a, 1}]) should give

the answer [:a, :a, :c, :b, :b, :b, :a].

2 zip/2 [2p]

Implement a function zip/2 that takes two lists, x and y, of the same length

and returns a list where the i'th element is a tuple {xi, yi}, of the i'th

elements of the two lists.

Example: zip([:a,:b,:c], [1,2,3]) returns [{:a,1}, {:b,2}, {:c,3}].

2



Namn: Persnr:

3 the balance in a tree [2p]

Implement a function, balance/1, that takes a tree and returns a tuple,

{depth, imbalance}, where depth is the depth of the tree (the empty tree

has depth 0) and imbalance is the largest imbalance in the tree.

The imbalance of a tree is max of:

• the imbalance of the right branch,

• the imbalance of the left branch, and

• the di�erence in depth of the branches.

The imbalance of an empty tree is 0.

Example: a tree with branches of depth 2 and 4 with imbalance 0 and 1 has

a depth of 5 and imbalance of 2 since the two branches di�er by depth 2.

Example: a tree with branches of depth 3 and 4 with imbalance 1 and 3 has

a depth of 5 but a imbalance of 3 since the one branch has a imbalance of 3.

You can use the function max/2 and abs/1 to take the maximum of two

numbers and the absolute value of a number.

Trees are represented as follows:

@spec tree() :: :nil | {:node, any(), tree(), tree()}

3



Namn: Persnr:

4 Evaluate expressions [2p]

Implement a function eval/1 that takes an arithmetic expression and returns

its value. Arithmetic expressions are represented as follows (with the natural

interpretation):

@spec expr() :: integer() |

{:add, expr(), expr()} |

{:mul, expr(), expr()} |

{:neg, expr()}

Example eval({:add, {:mul, 2, 3}, {:neg, 2}}) should return 4 since

2 ∗ 3 +−2 = 4.

4



Namn: Persnr:

5 Gray coding [2p]

Implement a function gray/1 that takes one argument n, a number greater

than zero, and generates a list of so called Gray codes for the bit sequences

of length n.

Example: gray(3) should return:

[[0, 0, 0],

[0, 0, 1],

[0, 1, 1],

[0, 1, 0],

[1, 1, 0],

[1, 1, 1],

[1, 0, 1],

[1, 0, 0]]

A list of Gray codes have the property that two sequences after each other

di�er in exactly one position. The regular way of encoding binary numbers

does not ful�ll the requirement since two numbers after each other can di�er

in many positions (binary 3 and 4 is �011� and �100�). This sounds compli-

cated but there is a simple solution - we do it recursively.

The list of Gray codes for sequences of length zero is the list that only

contains the empty sequence [[]].

To generate a list with Gray codes of length n then:

• generate the list of Gray codes of length n-1

• reverse the list to obtain a reversed copy

• update the original to a list where we have added 0 to the beginning

of all codes

• update the copy to a list where we have added 1 to the beginning of

all codes

• create the resulting list by appending the two lists

You can use the builtin function reverse/1 to reverse a list and append/2

to append two lists.

You might want to implement a function update/2 that takes a list of codes

and a value (0 or 1) and returns a list of the updated codes.

Write your answer on the next page.

5



Namn: Persnr:

Answer to question 5.

6



Namn: Persnr:

6 Formal semantics [P/F]

lambda calculus

Assume that we have a simple functional language that is very similar to

the one that we have been working on in the course. The di�erence is that

the only literals that we have are Roman numerals, we have no compound

structures but have builtin operations that can add numbers.

Assume that we have the sequence x = III; y = x + x; y + II show:

• how the expression could be written using the lambda calculus (change

the Roman numerals to Arabic numbers) and

• how the lambda expression could be reduced, step by step, to a value.

operational semantics

The rules of the operational semantic of the language is given in the Appen-

dix. Show, step by step, how the given sequence is evaluated to a number.

Write your answer on the next page.

7



Namn: Persnr:

Answer to second part of question 6

E{}(x = III; y = x + x; y + II)→ ......

8



Namn: Persnr:

7 a strem of �bonacci values [P/F]

Implement a function fib/0 that returns an in�nite sequence of all Fibonacci

numbers. The sequence should be represented by a function that takes no

argument and returns a tuple {:ok, next, cont} where next is the next

Fibonacci number and cont is the continuation of the sequence represented

as function with the same properties.

Example:

def test() do

cont = fib()

{:ok, f1, cont} = cont.()

{:ok, f2, cont} = cont.()

{:ok, f3, cont} = cont.()

[f1,f2,f3]

end

test() should return [1,1,2]

Then implement a function take/2 that takes a function, with the abo-

ve described behaviour, and a number n, and returns {:ok, first, cont}

where first is a list of the n �rst element from the sequence and the cont

is the rest of the in�nite sequence represented as above. The function need

not be tail recursive.

Example:

{:ok, _, cont} = take(fib(), 4); take(cont,5)

returns

{:ok, [5, 8, 13, 21, 34], ...}

Write your answer on the next page.

9



Namn: Persnr:

Answer to question 7.

10



Namn: Persnr:

8 list of factorial [P/F]

The function fac/1, that returns the factorial n! of a number n, is given.
Implement a function facl/1, that takes a number n greater than zero, and

returns a list of numbers [n!,(n-1)!, ... 1]. The function should have a

linear time complexity given n.

def fac(1) do 1 end

def fac(n) do

n * fac(n-1)

end

11



Namn: Persnr:

9 parallel processing [P/F]

Assume we have a process that is de�ned as given below. Rewrite the code

so that we can utilize a parallel hardware. Other processes that are using

this process should see no di�erence, the only di�erence should be that it

(hopefully) runs faster.

The function doit/1 is deterministic and does not have any side e�ects. It

is a heave computation that will take di�erent time depending on the task.

Think about the order of messages.

defmodule Proc do

def start(user) do

{:ok, spawn(fn() -> proc(user) end)}

end

def proc(user) do

receive do

{:process, task} ->

done = doit(task)

send(user, done)

proc(user)

:quit ->

:ok

end

end

end

Write your answer on the next page.

12



Namn: Persnr:

Answer to question 9.

13



Namn: Persnr:

Appendix -operational semantics

Roman numerals and addition

Our languages only literals are numbers written in Roman numerals: I,

II, III, IV, ..., to describe the natural numbers: 1, 2, 3, 4.... We have a

relation, ≡, that describes the mapping from Roman numerals to natural

numbers. In the rules below we use the letter r for a Roman numeral and n
and m for a natural numbers

We also have a �built-in� addition and can add any two natural numbers to

obtain their sum.

pattern matching

r ≡ n
Pσ(r, n)→ σ

v/n 6∈ σ
Pσ(v,m)→ {v/m} ∪ σ

v/n ∈ σ
Pσ(v, n)→ σ

r 6≡ n
Pσ(r, n)→ fail

v/n ∈ σ n 6≡ m
Pσ(v,m)→ fail

Pσ(_, s)→ σ

scoping

σ′ = σ \ {v/n | v/n ∈ σ ∧ v in p}
S(σ, p)→ σ′

expressions

r ≡ n
Eσ(r)→ n

v/n ∈ σ
Eσ(v)→ n

v/n 6∈ σ
Eσ(v)→⊥

Eσ(e1)→ n1 Eσ(e2)→ n2 n1 + n2 = n

Eσ(e1 + e2)→ n

Eσ(ei)→⊥
Eσ(e1 + e2)→⊥

Eσ(e)→ n S(σ, p)→ σ′ Pσ′(p, n)→ θ Eθ(sequence)→ m

Eσ(p = e; sequence)→ m

Eσ(e)→ n S(σ, p)→ σ′ Pσ′(p, n)→ fail

Eσ(p = e; sequence)→⊥
Eσ(e)→⊥

Eσ(p = e; sequence)→⊥

14


