
ID1019
Johan Montelius

Programming II (ID1019) 2018-06-07
08:00-12:00

Name:

Instructions

• All answers should be written in these pages, use the space allocated
after each question to write down your answer.

• Answers should be written in English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grade

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star [p*], and will give
you points for the higher grades. The exam is thus divided into basic points
and points for higher grades. First of all make sure that you pass the basic
points before engaging with the higher points.

• E: 12 basic points

• D: 15 basic points

• C: 18 basic points

• B: 20 basic points and 8 higher points

• A: 20 basic points and 10 higher points

The limits could be adjusted to lower values but not raised.

1

Namn: Persnr:

1 Lambda calculus [2p]

Evaluate the following lambda expressions:

• (λx→ x+ x)4 Answer: 8

• (λx→ (λy → y + 2 ∗ x)2)4 Answer: 10

• (λx→ (λx→ x+ x)(x+ 2))4 Answer: 12

2 Operational semantics [2p]

Given the rules for the operational semantics in the appendix, show step by
step which rules are used and evaluate the following expressions:

Answer:

1.
:a ≡ a

E{y/b}(:a)→ a

2.
y/b ∈ {y/b}

E{y/b}(y)→ b

3.
from 1 from 2

E{y/b}({:a, y})→ {a, b}

4.
E{y/a, x/b}(y)→ a E{y/a, x/b}(x)→ b

E{y/a, x/b}({y, x})→ {a, b}

5.

from 3 S({y/b}, {y, x})→ {} P{}({y, x}, {a, b})→ {y/a, x/b} from 4

E{y/b}({y, x} = {:a, y}; {y,x})→ {a, b}

6.
:b ≡ b

E{}(:b)→ b

from 6 S({}, y)→ {} P{}(y, b)→ {y/b} from 5

E{}(y = :b; {y, x} = {:a, y}; {y,x})→ {a, b}

2

Namn: Persnr:

3 Pattern matching [2 p]

Given the expressions below, what is the resulting environment in the cases
where it succeeds?

a: [x, y | z] = [1, 2, 3] Answer: x = 1, y = 2, z = [3]

b: [x, y | z] = [1, [2, 3]] Answer: x = 1, y = [2,3] z = []

c: [x, y | z] = [1 | [2, 3]] Answer: x = 1, y = 2, z = [3]

d: [x, y | z] = [1 | [2, 3 | [4]]] Answer: x = 1, y = 2, z = [3,4]

e: [x, y | z] = [1, 2, 3, 4] Answer: x = 1, y = 2, z = [3, 4]

3

Namn: Persnr:

4 Recursion

Fizz-Buzz [2 p]

We should implement a function fizzbuzz/1 that given a number n ≥ 0
returns a list of the n �rst elements in the �zz-buzz series. Fizz-buzz is a
series from 1 to n where you replace all numbers that are a multiple of 3 by
:fizz, those multiple by 5 by :buzz and those a multiple of both 3 and 5
by :fizzbuzz. The �rst �ve elements is thus: [1,2,:fizz,4,:buzz].

You should implement the function fizzbuzz/4 that helps us do this. The
�rst argument is the next element in the list, the second tells us if we are
done and the third and fourth keeps track of if the number is a multiple of
3 or 5. You are only allowed to use addition, no other arithmetic operation.
You should not make the function tail recursive.

def fizzbuzz(n) do fizzbuzz(1, n+1, 1, 1) end

Answer:

def fizzbuzz(n, n, _, _) do [] end

def fizzbuzz(i, n, 3, 5) do [:fizzbuzz| fizzbuzz(i+1, n, 1, 1)] end

def fizzbuzz(i, n, 3, b) do [:fizz | fizzbuzz(i+1, n, 1, b+1)] end

def fizzbuzz(i, n, f, 5) do [:buzz | fizzbuzz(i+1, n, f+1, 1)] end

def fizzbuzz(i, n, f, b) do [i | fizzbuzz(i+1, n, f+1, b+1)] end

4

Namn: Persnr:

fairly balanced [2 p*]

De�ne a function fairly/1 that returns either {:ok, depth} if a tree is
fairly balanced and depth is the depth of the tree or :no. A tree is fairly
balanced if the two branches both are fairly balanced and the di�erence in
depth is at most one. You decide how the tree is represented and you can
apart from max/2 use a function abs/1 that returns the absolute value.

Answer:

@type tree() :: nil | {:node, any(), tree(), tree()}

def fairly(nil) do {:ok, 0} end

def fairly({:node, _, left, right}) do

case fairly(left) do

{:ok, l} ->

case fairly(right) do

{:ok, r} ->

if abs(r-l) < 2 do

{:ok, 1 + max(l,r)}

else

:no

end

:no -> :no

end

:no -> :no

end

end

5

Namn: Persnr:

5 Time complexity

sorting a list [2 p]

If we have the below de�nition of a function that sorts a list, what is the
asymptotic time complexity of the function?

def sort([]) do [] end

def sort([h|t]) do

insert(h, sort(t))

end

def insert(e, []) do [e] end

def insert(e, [h|t]=l) do

if e < h do

[e|l]

else

[h|insert(e, t)]

end

end

Answer: The time complexity is O(n2) where n is the length of the list.

6

Namn: Persnr:

a graph [2 p*]

Assume that we represent a directed acyclic graph and a function that sear-
ches the graph as described below. What is the time complexity to determine
if an element is found in the graph? Assume that the nodes of the graph has
at most k edges.

@type graph :: {:node, any(), [graph()]} | nil

def search(_, nil) do :fail end

def search(e, {:node, e, _}) do :found end

def search(e, {:node, _, paths}) do

List.foldl(paths,

:fail,

fn(p,a) ->

case a do

:found -> :found

:fail ->

search(e, p)

end

end)

end

Answer: The time complexity is O(kn) where n is the number of vertices
in the graph and k the branching factor.

7

Namn: Persnr:

6 Process description

A knnife, a fork ... [2 p]

Below you see a simple state diagram for a process. Each time the process
enters the state nyc it should print �Hey Jim!� on stdout (using a call to
IO.puts("Hey Jim!")). Messages that are not shown should remain in the
message queue until they can be handled.

Implement the process and a function dillinger/0 that starts the process.

NYCstart

knife

fork

bottle

:knife

:fork

:bottle:cork

Answer:

def dillinger() do

spawn(fn() -> nyc() end)

end

def nyc() do

IO.puts("Hey Jim!")

receive do

:knife -> knife()

end

end

def knife() do

receive do

:fork -> fork()

end

end

def fork() do

receive do

:bottle -> bottle()

end

end

def bottle() do

receive do

:cork -> nyc()

end

end

8

Namn: Persnr:

tic-tac-toe [2 p]

Assume that we have the following de�nition of first/1, second/1 and
third/1.

def first(p) do

receive do

:tic ->

second(p, [:tic])

:tac ->

second(p, [:tac])

end

end

def second(p,all) do

receive do

:tic -> third(p, [:tic|all])

:toe -> third(p, [:toe|all])

end

end

def third(p, all) do

receive do

x -> send(p, {:ok, [x|all]})

end

end

What is the result when we evaluate the call test/0?

def test() do

self = self()

p = spawn(fn()-> first(self) end)

send(p, :tic)

send(p, :tac)

send(p, :toe)

receive do

{:ok, res} -> res

end

end

Answer: [:tac, :toe, :tic]

9

Namn: Persnr:

parallel foldp/2 [2 p*]

We should do �fold� on the elements in a list but instead of doing it from the
right or left we should do it in parallel. Given a list we should divide it in
two equal parts, do parallel fold on each of the sub-lists and then apply our
function on the result of the recursive calls. The challenge is that the two
recursive calls should be in done in separate processes to utilize parallelism.

We do not have an initial value for our operation so we require that the list
contain at least one element. To do foldp on a list of one element simply
returns the element it self.

Answer:

def foldp([x], _) do x end

def foldp(list, f) do

{l1, l2} = split(list, [], [])

me = self()

spawn(fn() -> res = foldp(l1, f); send(me, {:res, res}) end)

spawn(fn() -> res = foldp(l2, f); send(me, {:res, res}) end)

receive do

{:res, r1} ->

receive do

{:res, r2} ->

f.(r1,r2)

end

end

end

def split([], l1, l2) do {l1, l2} end

def split([h|t], l1, l2) do

split(t, l2, [h|l1])

end

10

Namn: Persnr:

Figur 1: A bitonic sort network of size 16.

7 Programming

In this task we should build a network for sorting. You use similar networks
when you want to parallel sorting or have several streams of messages that
should be sorted to several outgoing streams. The method we should use is
called bitonic sorter and has recursive pattern.

In �g 1 you see a sorting network of size 16, it has 16 in-going streams to
the left and 16 outgoing streams to the right. The idea is that 16 numbers
go through the network so that the smallest number always exits at the
uppermost stream and the largest number on the lowermost stream.

Where two streams are connected by a vertical line a comparison is perfor-
med. The smaller of the two values is forwarded on the upper stream and
the larger on the lower.

We see that we have a recursive pattern. A network for two streams is of
course trivial and only requires one comparison. To sort four streams we
1/ �rst do a recursive sorting of two streams, then 2/ an operation that in
the picture is a brown area and the we will call cross followed by 3/ two
operations marked in red that we will call merge.

The merge operation actually consist of a recursive repetition of a operation
that we call zipc. If you look at how the network is sorting eight streams you
see the two merge operations (one for the upper four streams and one for
the lower four streams) internally consist of a zipc operation followed by two
zipc operations on two streams each.

When we implement these networks the comparisons will be processes and
the network de�ned by the route messages are sent. A comparison process
will wait for two incoming messages, compare the the values and forward the
messages in the graph.

11

Namn: Persnr:

a comparing process [2 p]

The �rst you should do is to de�ne a process that receives two messages,
compares the values and forwards the smaller to one process and the larger
to another. We must keep track of the messages and make sure that they
belong to the same group so we keep track of which epoch that should be
handled and only accept messages of the current epoch.

The messages to the process will have the following structure:

• {:epoch, n, x} : x is a value of two in epoch n

• {:done, n} : the process should terminate

When the process is started it expects two messages from epoch 0, two
messages in epoch 1 etc. It will forward the messages in the same format
and same epoch number. A �done-message� is forwarded to both processes
to terminate the whole network.

Implement a function comp/2 that takes two arguments, identi�ers to the
two processes to which the sorted values should be sent, starts a compa-
ring process and returns the process identi�er. The process should expect
messages starting with epoch 0.

Answer:

def comp(low, high) do spawn(fn() -> comp(0, low, high) end) end

def comp(n, low, high) do

receive do

{:done, ^n} ->

send(low, {:done, n})

send(high, {:done, n})

{:epoc, ^n, x1} ->

receive do

{:epoc, ^n, x2} ->

if x1 < x2 do

send(low, {:epoc, n, x1})

send(high, {:epoc, n, x2})

else

send(low, {:epoc, n, x2})

send(high,{:epoc, n, x1})

end

comp(n+1, low, high)

end

end

end

12

Namn: Persnr:

sorter/1 [2 p]

Assume that we have a function setup/1 that takes a list of process identi�ers
and starts all processes needed for the sorting network. The list of process
identi�ers are the processes, in order, that the network should deliver the
sorted values to. The function returns a list of process identi�ers that the
values in each epoch should be sent to.

If we build a sorting network of size 4, the function will start six processes
and return a list [i1,i1,i2,i2] where i1 and i2 are the identi�ers of the
two �rst processes in the network. You should not implement setup/1 now,
we assume that it works.

Implement a function sorter/1 that takes a list of process identi�ers, the
processes to which we shall send the sorted epochs,. The function should ac-
cept two messages: a request to sort a number of values and one to terminate
the execution.

• {:sort, epoch} : Where epoch is a list of values to be sorted. We
assume that there are the same number of values as we have a sor-
ting network for i.e. the values are sent to the in-going streams in the
network (order does not matter). Don't forget to set the epoch number
and increment a counter so that the next request is marked as the next
epoch.

• :done : terminate the network, forward to both processes

To your help you can use the following functions:

• each(list, fun) Apply a function to each element in the list.

• zip(list1, list2) Return a list of tuples that consist of elements
from the two lists. A call to Ett anrop till zip([1,2],[:a,:b]) would
return [{1,:a},{2,::b}].

Use next page for answer.

13

Namn: Persnr:

Answer:

def start(sinks) do

spawn(fn() -> init(sinks) end)

end

def init(sinks) do

netw = setup(sinks)

sorter(0, netw)

end

def sorter(n, netw) do

receive do

{:sort, this} ->

each(zip(netw, this),

fn({cmp, x}) -> send(cmp,{:epoc, n, x}) end)

sorter(n+1, netw)

:done ->

each(netw, fn(cmp) -> send(cmp, {:done, n}) end)

end

end

14

Namn: Persnr:

setup for n = 2 [2 p]

Time for the tougher part but we start with something simple. You should
now implement the function setup/2 that takes two arguments, a number
n and a list of n process identi�ers. The process identi�ers are the outgoing
streams of the network, the function should start and connect all required
processes in the network and return a list of entry points to the network. The
function is then used to implement setup/1 that is given below. We assume
that n is an even multiple of 2 i.e. 2, 4, 8, ...

def setup(sinks) do

n = length(sinks)

setup(n, sinks)

end

Since we're starting simple, you should in this question only handle the case
when n is equal to 2 (which means that the list only has two elements). You
should of course use a function that you have de�ned in a previous question
to start a comparison process.

Answer:

def setup(2, [s1, s2]) do

cmp = comp(s1, s2)

[cmp, cmp]

end

15

Namn: Persnr:

merge for n = 2 [2 p]

You now have all you need to start a network of size 2 but this is of course
close to ridiculous so we should extend it to size of 4. You start by imple-
menting a function that will set up a network to do a merge operation i.e.
the red part in the Fig 1. The function merge/2 takes a vale n and a list of
n process identi�ers. The function returns a list of process identi�ers that
make up the entry points of the merging network.

We start with something simple, you should implement merge/2 so that it
works for n = 2.

Answer:

def merge(2, [s1,s2]) do

cmp1 = comp(s1,s2)

[cmp1, cmp1]

end

16

Namn: Persnr:

cross/2 [2 p]

Now for something slightly more complicated, the operation we call cross i.e.
the brown operation in Fig 1. You should implement the function cross/2

that takes two lists of process identi�ers. The lists represent the n/2 upper
and n/2 lower outgoing streams. The function should return a tuple consi-
sting of two lists, the n/2 upper and n/2 lower entry points. The function
should work for any n.

You can use the function reverse/1 that reverses a list.

Answer:

def cross(low, high) do

cross(low, reverse(high), [])

end

def cross([], [], crossed) do

{reverse(crossed), crossed}

end

def cross([l|low], [h|high], crossed) do

cmp = comp(l, h)

cross(low, high, [cmp | crossed])

end

17

Namn: Persnr:

setup for n = 4 [2*]

We now assume that the functions setup/2, merge/2 and cross/2 works
when n = 2, you should use these and extend setup/2 to work if n = 4.

Answer:

def setup(4, [s1,s2,s3,s4]) do

[m1, m2] = merge(2, [s1,s2])

[m3, m4] = merge(2, [s3,s4])

{[c1, c2], [c3, c4]} = cross([m1, m2], [m3, m4])

[i1, i2] = setup(2, [c1, c2])

[i3, i4] = setup(2, [c3, c4])

[i1, i2, i3, i4]

end

18

Namn: Persnr:

merge/2 [2*]

Time to extend merge/2 to be able to handle any value of n (2, 4, 8, ...).
The function now becomes a recursive function where you in each recursion
perform what we called a zipc operation. The zipc operation is the trans-
formation marked with red in Fig 1 so start by de�ning a function zipc/2

that performs this operation on two set of lists of length n/2 and returns the
entry points that you need.

You can use the arithmetic operation div/2 that performs integer division
and the library function split/2 that takes list and a number n and returns
a tuple of two sub-lists, the n �rst elements and the rest.

Answer:

def merge(n, sinks) do

n = div(n,2)

{sink_low, sink_high} = split(sinks, n)

merged_low = merge(n, sink_low)

merged_high = merge(n, sink_high)

zipced = zipc(merged_low, merged_high)

zipced ++ zipced

end

def zipc([], []) do [] end

def zipc([l|low], [h|high]) do

cmp = comp(l,h)

[cmp | zipc(low, high)]

end

19

Namn: Persnr:

a network for 2k [4*]

Now it is time to extend setup/2 to handle arbitrary values of n (2, 4, 8, ...).
Extend the function with the general case, use div/2, split/2 and of course
the functions merge/2 and cross/2 that we now assume works for all n.

Answer:

def setup(n, sinks) do

n = div(n,2)

{sink_low, sink_high} = split(sinks, n)

merge_low = merge(n, sink_low)

merge_high = merge(n, sink_high)

{cross_low, cross_high} = cross(merge_low, merge_high)

in_low = setup(n, cross_low)

in_high = setup(n, cross_high)

in_low ++ in_high

20

Namn: Persnr:

Appendix - operational semantics

pattern matching

a ≡ s
Pσ(a, s)→ σ

v/t 6∈ σ
Pσ(v, s)→ {v/s} ∪ σ

v/s ∈ σ
Pσ(v, s)→ σ

a 6≡ s
Pσ(a, s)→ fail

v/t ∈ σ t 6≡ s
Pσ(v, s)→ fail

Pσ(_, s)→ σ

Pσ(p1, s1)→ σ′ ∧ Pσ′(p2, s2)→ θ

Pσ({p1, p2}, {s1, s2})→ θ

Pσ(p1, s1)→ fail

Pσ({p1, p2}, {s1, s2})→ fail

Pσ(p1, s1)→ σ′ ∧ Pσ′(p2, s2)→ fail

Pσ({p1, p2}, {s1, s2})→ fail

scoping

σ′ = σ \ {v/t | v/t ∈ σ ∧ v in p}
S(σ, p)→ σ′

expressions

a ≡ s
Eσ(a)→ s

v/s ∈ σ
Eσ(v)→ s

v/s 6∈ σ
Eσ(v)→⊥

Eσ(e1)→ s1 Eσ(e2)→ s2
Eσ({e1, e2})→ {s1, s2}

Eσ(ei)→⊥
Eσ({e1, e2})→⊥

Eσ(e)→ t S(σ, p)→ σ′ Pσ′(p, t)→ θ Eθ(sequence)→ s

Eσ(p = e; sequence)→ s

Eσ(e)→ t S(σ, p)→ σ′ Pσ′(p, t)→ fail

Eσ(p = e; sequence)→⊥

Eσ(e)→⊥
Eσ(p = e; sequence)→⊥

21

