
ID1019
Johan Montelius

Programming II (ID1019) 2018-03-13
08:00-12:00

Name:

Instructions

• All answers should be written in these pages, use the space allocated
after each question to write down your answer.

• Answers should be written in English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grade

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star [p*], and will give
you points for the higher grades. The exam is thus divided into basic points
and points for higher grades. First of all make sure that you pass the basic
points before engaging with the higher points.

• E: 12 basic points

• D: 15 basic points

• C: 18 basic points

• B: 20 basic points and 8 higher points

• A: 20 basic points and 10 higher points

The limits could be adjusted to lower values but not raised.

1

Namn: Persnr:

1 Lambda calculus [2p]

Evaluate the following lambda expressions:

• (λx→ x+ 5)4 Answer: 9

• (λx→ (λy → x+ 2 ∗ y)3)5 Answer: 11

• (λx→ (x)5)(λz → z + z) Answer: 10

2 Operational semantics [2p]

Given the rules for the operational semantics in the appendix, show step by
step wich rules are used and evaluate the following expressions:

Answer:
y/a ∈ {y/a}
E{y/a}(y)→ a

E{}(:a)→ a S({y/b}, y)→ {} P{}(y, a)→ {y/a} E{y/a}(y)→ a

E{y/b}(y = :a; y)→ a

E{}(:b)→ b S({}, y)→ {} P{}(y, b)→ {y/b} E{y/b}(y = :a; y)→ a

E{}(y = :b; y = :a; y)→ a

y/a in {y/a} a 6≡ b
P{y/a}(y, b)→ fail

P{}(y, a)→ {y/a} P{y/a}(y, b)→ fail

P{}({y,y}, {a, b})→ fail

E{}({:a, :b})→ {a, b} S({}, {y,y})→ {} P{}({y,y}, {a, b})→ fail

E{}({y,y} = {:a, :b}; y)→⊥

2

Namn: Persnr:

3 Pattern matching [2 p]

Given the expressions below, what is the resulting environment in the cases
where it succeeds?

a: [x, y | z] = [1, 2, 3] Answer: x = 1, y = 2, z = [3]

b: [x, y | z] = [1, [2, 3]] Answer: x = 1, y = [2,3] z = []

c: [x, y | z] = [1 | [2, 3]] Answer: x = 1, y = 2, z = [3]

d: [x, y | z] = [1 | [2, 3] | [4]] Answer: syntax error

e: [x, y | z] = [1, 2, 3, 4] Answer: x = 1, y = 2, z = [3, 4]

Answer: The syntax error in the fourth example was not intended so the
question is removed.

3

Namn: Persnr:

4 Recursion

a binary tree [2 p]

Implement a function, sum/1, that takes a binary tree and returns the sum
of all values in the tree. The tree is represented as follows:

@type tree :: {:node, integer(), tree(), tree()} | nil

Answer:

def sum(nil) do 0 end

def sum({:node, v, left, right}) do

v + sum(left) + sum(right)

end

tail recursion [2 p*]

The regular de�nition of append/2 is not tail recursive. Implement the fun-
ction reverse/1 as a tail recursive function and use this to implement
append/2 in a tail recursive way.

Answer:

def reverse(a) do reverse(a, []) end

def reverse([], b) do b end

def reverse([h|t], b) do

reverse(t, [h|b])

end

def append(a, b) do reverse(reverse(a), b) end

5 Time complexity

mirror a tree [2 p]

If we have the below de�nition of a function that mirrors a tree, what is the
assymptoptic time complexity of teh function?

def mirror(nil) do nil end

def mirror({:node, left, right}) do

{:node, mirror(right), mirror(left)}

end

4

Namn: Persnr:

Answer: The time complexity is O(n) where n is the number of nodes in
the tree.

a queue [2 p*]

Assume that we represent a queue with the help of two lists and have the
below implementation of enqueue/2 and dequeue/1. What is the amortized
time complexity for adding and then removing an element from a queue?

def enqueue({:queue, head, tail}, elem) do

{:queue, head, [elem|tail]}

end

def dequeue({:queue, [], []}) do :fail end

def dequeue({:queue, [elem|head], tail}) do

{:ok, elem, {:queue, head, tail}

end

def dequeue({:queue, [], tail}) do

dequeue({:queue, reverse(tail), []})

end

Answer: The amortized time complexity isO(1) since we can add an element
in constant time, move it to the front list in constant time (reverese/1 is
O(n) but we can amortize this cost over the n elements) and constant time
to remove the element from the front list.

5

Namn: Persnr:

6 Process description

TRB: two-four-six ... [2 p]

Given the below state diagram, implement a process with the speci�ed be-
haviour.

closedstart

two

four

six

2

6= 2

2

4

6= 4, 6= 2

2

6

6= 6, 6= 2

2

6= 2

Answer:

def start() do

spawn(fn() -> closed() end)

end

def closed() do

receive do

2 -> two()

_ -> closed()

end

end

def two() do

receive do

2 -> two()

4 -> four()

_ -> closed()

end

end

def four() do

receive do

2 -> two()

6 -> six()

_ -> closed()

end

end

def six() do

receive do

2 -> two()

_ -> closed()

end

end

6

Namn: Persnr:

tic-tac-toe [2 p]

Assume that we have the following de�nition of first/1, second/1 and
third/1.

def first(p) do

receive do

:tic ->

second(p, [:tic])

:tac ->

second(p, [:tac])

end

end

def second(p,all) do

receive do

:tic -> third(p, [:tic|all])

:tac -> third(p, [:tac|all])

:toe -> third(p, [:toe|all])

end

end

def third(p, all) do

receive do

x -> send(p, {:ok, [x|all]})

end

end

What is the result when we evaluate the call test/0?

def test() do

self = self()

p = spawn(fn()-> first(self) end)

send(p, :toe)

send(p, :tac)

send(p, :tic)

receive do

{:ok, res} -> res

end

end

Answer: [:tic, :toe, :tac]

7

Namn: Persnr:

parallel sum [2 p*]

Implement a �nction sum/1 that takes a binary tree with numbers in the
leafs, and sums all numbers of the tree in parallel.

Answer:

def sum({:leaf, n}) do n end

def sum({:node, left, right}) do

self = self()

spawn(fn() -> n = sum(left); send(self, n) end)

spawn(fn() -> n = sum(right); send(self, n) end)

receive do

n1 ->

receive do

n2 ->

n1 + n2

end

end

end

8

Namn: Persnr:

7 Programming

A heap is a tree structure where the largest element is in the root of the tree
and where the left and right branch are heaps.

a heap [2 p]

De�ne a data structure that is suitable to represent a heap and implement
a function new/0 that returns a heap. Assume that we only should handle
integers.

• @spec new() :: heap()

Answer:

@type heap() :: nil | {:heap, integer(), heap(), heap()}

def new() do

nil

end

add/2 [2 p]

Implement the function add/2 that adds an integer to a heap.

• @spec add(heap(), integer()) :: heap()

To keep the heap balanced you should swith the left and right branches that
is, when yiu add an element to a branch you add it to teh right branch but
make the result the left branch of the heap.

Answer:

def add(nil, v) do

{:heap, v, nil, nil}

end

def add({:heap, k, left, right}, v) when k > v do

{:heap, k, add(right, v), left}

end

def add({:heap, k, left, right}, v) do

{:heap, v, add(right, k), left}

end

9

Namn: Persnr:

pop/1 [2 p]

Implement the function pop/1 that removes the highest elemet in an he-
ap and returns either :fail, if the heap is empty, or {:ok, integer(),

heap()}

• @spec pop(heap()) :fail | {:ok, integer(), heap()}

Answer:

def pop(nil) do :fail end

def pop({:heap, k, left, nil}) do

{:ok, k, left}

end

def pop({:heap, k, nil, right}) do

{:ok, k, right}

end

def pop({:heap, k, left, right}) do

{:heap, l, _, _} = left

{:heap, r, _, _} = right

if l < r do

{:ok, _, rest} = pop(right)

{:ok, k, {:heap, r, left, rest}}

else

{:ok, _, rest} = pop(left)

{:ok, k, {:heap, l, rest, right}}

end

end

swap/2 [2 p]

Implement the function swap/2 that takes a heap and a number and returns
{:ok, integer(), heap()} where the number is the highest number and
the heap the remaining heap. The function should have the same meaning
as �rst add/2 a number to a heap and then pop/1 the higest but we should
do this in one fuction, not call the two functions.

• @spec swap(heap(), integer()) {:ok, integer(), heap()}

Answer:

def swap(nil, v) do

{:ok, v, nil}

end

10

Namn: Persnr:

def swap({:heap, k, left, right}, v) when k > v do

{:ok, v, left} = swap(left, v)

{:ok, v, right} = swap(right, v)

{:ok, k, {:heap, v, left, right}}

end

def swap(heap, v) do

{:ok, v, heap}

end

a generall heap [2 p]

The heap we now have will have the largest element in the root and be
limited to integers (or what is comparable with <). Implement a function
add/3 that takes a heap, an element and a function that can be used to
compare two elements. The function add/3 should as before add an element
to a heap but now used the provided function when doing the comparison.

• @type cmp() :: (any(), any()) -> bool())

• @spec add(heap(), any(), cmp()) :: heap()

Answer:

def add(nil, v, _) do

{:heap, v, nil, nil}

end

def add({:heap, k, left, right}, v, cmp) do

if cmp.(v, k) do

{:heap, k, add(right, v, cmp), left}

else

{:heap, v, add(right, k, cmp), left}

end

end

Specify a type cheap() that holds a function for comparision and a heap.
Implement a function new/1 that takes a funktion and returns a structure
of the type cheap().

• @spec new(cmp()) :: cheap()

Answer:

@type cheap() :: {:cheap, cmp(), heap()}

def new(f) do {:cheap, f, nil} edn

11

Namn: Persnr:

Implement a function add/2 that takes a structure of type cheap(), that
calls add/3 with the correct arguments and returns a structure of the same
form.

• @spec add(cheap(), any()) :: cheap()

Answer:

def add({:cheap, cmp, heap}, v) do

{:cheap, cmp, add(heap, v, cmp)}

end

the middle number

You should implement a process that holds a state consisting of a set of
numbers. The set is initally empty but the process should then accept the
following messages:

• {:add, integer()} : the number should be added to the set

• {:get, pid()} : The process should reply with either :fail, if the set
is empty, or {:ok, integer() } where the integer is the middle num-
ber in the set (if an even number any one of the two middle numbers)
that is also removed from the set.

To komplicate matters both operations should be done in O(lg(n)) time,
where n is the number of elements in the set. You are not allowed to use any
libraries to store the set of elements but should use the implementation of
a heap in the previous questions. The process will apart from keeping track
of the middle element have two heaps, one for smaller elements and one for
larger.

state diagram [2*]

Start by describing a state diagram. The process should have three states:
empty when the set is empty, left when we have a middle element and
possibly one more element to the �left� (that are less) then we have to the
�right� and, right when we have a middle element and possibly one more
elements to the �right� than we have to the �left�.

Answer:

no elements [2*]

Implement how we start the process and its behavior in its empty state.

12

Namn: Persnr:

Assume that we have the following functions de�ned in a module Heap.

• @spec new(cmp()) :: cheap()

Answer:

defmodule Middle do

def start() do

spawn(fn() -> empty() end)

end

def empty() do

receive do

{:add, v} ->

left = Heap.new(fn(x,y) -> x < y end)

right = Heap.new(fn(x,y) -> x > y end)

left(v, left, right)

{:get, pid} ->

send(pid, :fail)

empty()

end

end

13

Namn: Persnr:

maybe more to the left [4*]

In its �left� state the process has a middle element, a number of elements
that are less (to the left) and as many or one less that are greater (to the
right). Implement the behaviour of the process in its left state.

Assume that we have the following functions de�ned in a module Heap.

• @spec add(cheap(), any()) :: cheap()

• @spec pop(cheap()) :: :fail | {:ok, any(), cheap()}

• @spec swap(cheap(), any()) :: {:ok, any(), cheap()}

Answer:

def left(m, left, right) do

receive do

{:add, v} when v < m ->

{:ok, k, swaped} = Heap.swap(left, v)

right(k, swaped, Heap.add(right, m))

{:add, v} ->

right(m, left, Heap.add(right, v))

{:get, pid} ->

send(pid, {:ok, m})

case Heap.pop(left) do

{:ok, k, rest} ->

right(k, rest, right)

:fail

empty()

end

end

end

You don't have to implement the �right� state since this state will be identical
to the left state apart from doing the opposit.

14

Namn: Persnr:

Appendix - operational semantics

pattern matching

a ≡ s
Pσ(a, s)→ σ

v/t 6∈ σ
Pσ(v, s)→ {v/s} ∪ σ

v/s ∈ σ
Pσ(v, s)→ σ

a 6≡ s
Pσ(a, s)→ fail

v/t ∈ σ t 6≡ s
Pσ(v, s)→ fail

Pσ(_, s)→ σ

Pσ(p1, s1)→ σ′ ∧ Pσ′(p2, s2)→ θ

Pσ({p1, p2}, {s1, s2})→ θ

Pσ(p1, s1)→ fail

Pσ({p1, p2}, {s1, s2})→ fail

Pσ(p1, s1)→ σ′ ∧ Pσ′(p2, s2)→ fail

Pσ({p1, p2}, {s1, s2})→ fail

scoping

σ′ = σ \ {v/t | v/t ∈ σ ∧ v in p}
S(σ, p)→ σ′

expressions

a ≡ s
Eσ(a)→ s

v/s ∈ σ
Eσ(v)→ s

v/s 6∈ σ
Eσ(v)→⊥

Eσ(e1)→ s1 Eσ(e2)→ s2
Eσ({e1, e2})→ {s1, s2}

Eσ(ei)→⊥
Eσ({e1, e2})→⊥

Eσ(e)→ t S(σ, p)→ σ′ Pσ′(p, t)→ θ Eθ(sequence)→ s

Eσ(p = e; sequence)→ s

Eσ(e)→ t S(σ, p)→ σ′ Pσ′(p, t)→ fail

Eσ(p = e; sequence)→⊥

Eσ(e)→⊥
Eσ(p = e; sequence)→⊥

15

