
ID1019
Johan Montelius

Programming II (ID1019) 2017-03-13
08:00-12:00

Name:

Instructions

• You are not allowed to have any material besides pen and paper. Mo-
biles etc, should be left to the guards.

• All answers should be written in these pages, use the space allocated
after each question to write down your answer.

• Answers should be written in English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grade

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star points*, and will
give you points for the higher grades. The exam is thus divided into basic
points and points for higher grades. First of all make sure that you pass the
basic points before engaging with the higher points.

Note that, of the 40 basic points only at most 34 are counted, the points for
higher grades will not make up for lack of basic points. The limits for the
grads are as follows:

1

• E: 24 basic points

• D: 30 basic points

• C: 34 basic points

• B: 34 basic points and 14 higher points

• A: 34 basic points and 20 higher points

The limits could be adjusted to lower values but not raised.

Gained points

Don't write anything here.

Question 1 2 3 4 5 6 Σ

Max B/H 4/- 10/2 2/6 4/2 4/4 16/10 40/24

B/H

Total number of points: Grade:

2

Namn:

1 Data structures and pattern matching

1.1 what is Y [2 point]

What is the binding of Y in the following pattern matching expressions (each
by it self) in the case where the matching succeeds:

• [X,_,Y] = [1,2,3] Answer: Y = 3

• [X,Y,Z] = [1|[2,3]] Answer: Y = 2

• [Y|_] = [] Answer: fails

• Z = 42, X = {Z, foo}, {Y, _} = X Answer: Y = 42

• X = 32, Z = [52], Y = [X|Y] Answer: fails

1.2 A phone number [2 points]

We can represent a phone number by a number, a string or as list of individual
numbers. For each of the alternatives, what is the advantage?

• 737652065 Answer: simpe to compare, works as a key

• �737652063� Answer: simple to print, can use numbers with charac-

ters �+46..�

• [7,3,7,6,5,2,0,6,5] Answer: good if we need to know the indivi-

dual numbers

Answer: The di�erence between the last two is not really large, both are
lists of integers.

2 Functional programming

2.1 increment a frequency [2 points]

Write a function freq(Key, Freq) that takes a key (an atom) and a list
of frequencies represented by tuples {Key, F} of keys and their frequencies.

3

Namn:

The function should return an updated list where the frequency for the given
key has been incremented by one.

Answer:

freq(Key, []) -> [{Key, 1}];

freq(Key, [{Key, F}|Rest]) -> [{Key, F+1}|Rest];

freq(Key, [{K, F}|Rest]) -> [{K, F}| freq(Key, Rest)];

2.2 create a frequency table [2 points]

Use the function freq/2 and implement a function fraq(Keys) that takes
a list of keys and returns a list of frequencies on the form above. You must
only traverse the list once and can not use any built-in or library functions.

Answer:

fraq([]) -> [];

fraq([K|Rest]) ->

freq(Key, fraq(Rest)).

Answer: We can write it tail-recursive but why.

2.3 an e�cient queue [2 points]

Assume we want to implement a queue in Erlang. The queue should be such
that we, in most cases, can take the �rst element from the queue in constant
time and always add an element to the end of the queue in constant time.
The trick we will use is to represent the queue by a tuple of two lists {queue,
First, Last}. A queue with the elements 1 to 6 would then look like follows:

{queue, [1,2], [6,5,4,3]}

We have the �rst elements in the �rst list and teh rest of the element - in
reveresed order - in the second list. If we now remove the �rst element from
the queue we will get the queue:

{queue, [2], [6,5,4,3]}

If we then add 7 to the end of the queue, we get:

{queue, [2], [7,6,5,4,3]}

The problem of course arise when we try to remove an element from the
queue but the �rst lists is empty. We then take the second list, reverse it,
and places it �rst. This means that it sometimes takes longer time to take
an element from the queue.

4

Namn:

Implement a function new(), enqueue(Elem, Queue) and dequeue(Queue).
The function new/0 should return an empty queue, enqueue/2 returns an
updated queue and dequeue/1 returns either {ok, Elem, Updated}, where
Updated is the rest of the queue, or fail if the queue is empty. You may use
a function reverse/1 that reverses a list.

Answer:

new() -> {queue, [], []}.

enqueue(Elem, {queue, First, Last}) -> {queue, First, [Elem|Last]};

deque({queue, [], []}) -> fail;

deque({queue, [Elem|Rest], Last}) -> {ok, Elem, {queue, Rest, Last}};

deque({queue, [], Last}) ->

[Elem|Rest] = reverse(Last),

{ok, Elem, {queue, Rest, []}}.

2.4 append to queues [2 points*]

Some what more complicated is to append two queues. All elements in the
�rst queue should be before any elements in the second queue and all elements
in the two queues should maintain their order. Implement the function app_-

queue/2 that appends two queues.

You can make use of a function append/2 that appends two lists and reverse/1
that revereses a list.

Answer:

one alternative

app_queue({queue, F1, L1}, {queue, F2, L2}) ->

{queue, append(F1, reverse(L1)), append(L2, reverse(F2))}.

2.5 a better string [2 points]

Since Erlang represents strings as lists of characters it is quite costly to
append two strings. We could make it easier if we represented strings as a
tuple in the following way:

-type str() :: {str, list(char())} | {str, str(), str()}.

A str() is either a tuple with a regular string or a tuple containing two
str(). We can now de�ne a function that appends two str() in constant time;
de�ne the function.

5

Namn:

Answer:

str_append(A, B) -> {str, A, B}.

6

Namn:

2.6 straighten me out [2 points]

If we have our own representation of strings, str(), we could make use of a
function that turns a str() into a regular string, that is a list of characters.
Write a function str_to_list/1, you can use the function append/2 that
appends two lists.

Answer:

str_to_list({str, L}) -> L;

str_to_list({str, S1, S2}) ->

append(str_to_lst(S1), str_to_lst(S2)).

3 Evaluating expressions

We have during the course worked with describing a language by formal-
ly describing the terms, expressions and data structures we have and how
we can de�nes rules that describe what should happen when we evaluate
expressions. The following questions assume that we have de�ned a small
functional language along these guidlines.

3.1 pattern matching [2 points]

Perform the pattern matching below, give that: σ = {X/a, Y/{a, b}} .

• Pσ({Z, b}, Y)→ Answer: {Z/a} ∪ σ

• Pσ(Z, {a,X})→ Answer: {Z/{a, a}} ∪ σ

• Pσ(X,Y)→ Answer: fail

3.2 plus and minus [2 points*]

It would be very nice if we in the language could use built in arithmetic
operators. To handle this we would extend the syntax of the language and
also add rules for how these new constructs should be evaluated.

To make things simple we write all arithmetic expressions with parenthesis
so that the associations are clear. We want to be able to write sequences as:

7

Namn:

((10 - Y) + (8 + 3))

Assume that the argument to a arithmetic expression either is: an arithmetic
expression, a number or a variable. How can we describe this using a BNF
grammar? Assume that we have de�ned the expressions �<interger>� that
describes the numbers and �<var>� that describes variables.

Answer:

〈arithm〉 ::= 〈integer〉 | 〈var〉 | '(' 〈arithm〉 '+' 〈arithm〉 ')' | '(' 〈arithm〉 '-'
〈arithm〉 ')'

〈expression〉 ::= ... | 〈arithm〉

We also need rules that describe what to do when evaluating an arithmetic
expression. How do we describe the new rules for the evaluation function E?

Answer:

• Eσ((e1 + e2)→ Eσ(e1) + Eσ(e2)

• Eσ((e1 − e2)→ Eσ(e1)− Eσ(e2)

3.3 destructive assignment [4 points*]

The language that we have been working with is a functional language where
we should not be able to assign new values to variables. Assume that we as an
exercise should be able to assign new values to variables and allow constructs
such as X := 4, that is we give the variable X the value 4 regardless if it has
a value before. Which additions to the language do we need to make and
how should we de�ne the evaluation rules for the new construct?

Answer:

We need a syntax for assignment and we only allow these in sequences.

〈assignment〉 ::= 〈var〉 ':=' 〈expression〉

〈sequence〉 ::= ... | 〈assignment〉 ',' 〈sequence〉

Then we need to modify our evaluation of sequences so that it can handle as-
signment. We can do this by describing that the environment that we should
continue with, θ, is an environment where we have removed any previous
bindings for the variable, {v/u}, and then added the new binding {v/t}.

Eσ(e)→ t θ = {v/t} ∪ (σ \ {v/u}) Eθ(sequence)→ s

Eσ(v := e, sequence)→ s

8

Namn:

4 Complexity

In the answers to the questions below make sure to describe what n is and
motivate why your answer is correct.

4.1 A regular queueu [2 points]

Assume that we implement a queue as a list where the �rst element in the
list is the �rst element in the queue. We can then implement enqueue/2 as
follows:

enqueue(Elem, []) -> [Elem];

enqueue(Elem, [H|T]) -> [H|enqueue(Elem, T)].

Which is the asymptotic time complexity of the function?

Answer: The function has the asymptotic time complexity O(n) where n is
the length of the queue. We need to traverse the whole queue when adding
an element.

4.2 a bit better [2 points]

The function in the previous question is not tail recursive but we can �x this
using an accumulating parameter and the function reverse/1.

enqueue(Elem, Queue) -> enqueue(Elem, Queue, []).

enqueue(Elem, [], Sofar) -> reverse([Elem|Sofar]).

enqueue(Elem, [H|T], Sofar) -> enqueue(Elem, T, [H|Sofar]).

Given that reverse/1 has the time complexity O(n) then what is the time
complexity of enqueue/1?

Answer: No di�erence, the complexity is still O(n). We do traverse the lists
twice but the complexity is the same.

4.3 �atten this and that [2 points*]

Assume that we have a list of lists that also can contain lists and we want to
create a lists of all of the elements. We want to have the following behavior:

> flatten([[1,2], [[3], [4,5,6]]])

[1,2,3,4,5,6]

9

Namn:

We can easily do this by �rst call flatten/1 recursively and then use
append/2 to append the results.

flatten([]) -> [];

flatten([H|T]) ->

append(flatten(H), flatten(T));

flatten(E) -> [E].

This is not tail recursive so we might want to implement it in the following
way.

flatten(L) -> flatten(L, []).

flatten([], Done) -> Done;

flatten([H|T], Sofar) ->

flatten(T, append(Sofar, flatten(H, [])));

flatten(E, Sofar) -> [E|Sofar].

A bit more complicated but now it is tail recursive. What is the down-side
of doing like this?

Answer: The �rst solution has time complexity O(n), if we don't have a
pathological list. If we have n elements and they are evenly distributed among
l list in the outermost list then each inner list will have n/l elements. We
will then do l calls to append and do O(n/l) work in each call. The total
amount of work is then O(n). If we have a pathological list of lists where
the �rst list holds n− 1 elements, then the append will take n− 1 steps. If
the �rst list now has n− 2 element in its �rst list then that append required
n− 2 steps etc. Then we will have a complexity of O(n2).

The second solution has the complexity O(n2) since we there even in the
general case grow Sofar to contain more and more elements. Every time we
do a recursive step Sofar grows longer and the length is O(n). We will do
O(n) number of calls to append so the total complexity is O(n2)

5 Concurrency

5.1 Sesame open [2 points]

Implement a process that works as a combination lock. The process should
start in a closed state and then receive messages one by one. If it receives a
sequence �s e s a m� it should die (which does not make much sense but this
is an exam).

10

Namn:

We should be able to send it any sequence of messages but should only open
(die) if it receives the secret sequence. Below is the beginning of a state
diagram that describes the process. Finish this diagram and also implement
the process. Also implement a procedure sesame/0 that starts the process.

Note that the process should reach its open state after a sequence �f o o s e
s e s a m�.

Answer:

closedstart s se ses sesa done
s

6= s

e

s

6= e,s

s

6= s

a

s

e

6= s,a
6= m

s

m

Answer:

semsam() -> spawn(fun() -> closed() end).

closed() ->

receive

s -> s();

_ -> closed();

end.

s() ->

receive

e -> se();

s -> s();

_ -> closed();

end.

se() ->

receive

s -> ses();

_ -> closed();

end.

ses() ->

receive

a -> sesa();

e -> se();

s -> s();

_ -> closed();

end.

sesa() ->

receive

m -> open();

s -> s();

_ -> closed();

end.

open() -> done.

11

Namn:

5.2 Baba [2 points]

Assume that our safe, that is protected by the mechanism in the previous
question, should enter a state open when one has sent the right sequence. In
the open state it should be possible to send a message and receive a message
in a reply. One should also be able to send a message that makes the process
return to its locked state. How would the open state be implemented, what
could messages look like and how should replies be delivered?

Answer: One suggestion:

open() ->

receive

{ali, From} ->

From ! baba,

open();

close ->

closed()

_ ->

open()

end

5.3 parallell matrix multiplication [4 points*]

Assume that we have implemented matrix multiplications by the function
mult/2 below. How can we rewrite the function so that it will perform the
multiplication in parallel. You may use built-in and library functions such
for example lists:map/2, make_ref/0 etc.

mult(A,B) ->

rows(A, transpose(B)).

rows([], _) -> [];

rows([Row|Rows], Cols) ->

[cols(Row, Cols) | rows(Rows, Cols)].

cols(R, Cols) -> lists:map(fun(C) -> dot(R,C) end, Cols).

dot([], []) -> 0;

dot([A|R], [B|C]) -> A*B + dot(R,C).

transpose([]) -> [];

transpose([[]|_]) -> [];

transpose(M) ->

12

Namn:

[[H || [H |_] <- M] | transpose([T || [_| T] <- M])].

Answer:

rows(Rows, Cols) ->

Self = self(),

Calc = fun(R) ->

Ref = make_ref(),

spawn(fun() -> C = cols(R, Cols), Self ! {Ref, C}, Ref end),

Ref

end,

Refs = lists:map(Calc, Rows),

Collect = fun(Ref) ->

receive

{Ref, C} -> C

end

end,

lists:map(Collect, Refs).

6 Programming

6.1 Hu�man

6.1.1 Some what better than a list [6 points]

If we implement a decoder for a Hu�man coded sequence, we can of course
have a list with the mapping from sequences to characters. This is not very
e�cient and there is a much better way of representing the mapping. How
can we represent the table to make the decoding more e�cient. Explain in
words and draw a picture, you do not have to write any code.

Answer: One can represent the table as a tree where leafs are the characters
and the paths are the code sequences of the characters.

6.1.2 Is there a di�erence? [2 points*]

Assume that we should implement a program that decodes a Hu�man coded
�le. The decoding is not a problem but we have two alternatives of how to
implement the �le handling. One solution looks like follows:

one(Encoded, Result, Table) ->

{ok, Seq} = file:read_file(Encoded),

Decoded = decode(Seq, Table),

13

Namn:

{ok, Out} = file:open(Result, [write]),

file:write(Out, Decoded).

decode([], _Table) ->

[];

decode(Seq, Table) ->

{Char, Rest} = decode_char(Seq, 1, Table),

[Char|decode(Rest, Table)].

The second solutions looks similar:

two(Encoded, Result, Table) ->

{ok, Seq} = file:read_file(Encoded),

{ok, Out} = file:open(Result, [write]),

decode(Sequence, Out, Table).

decode([], _Out, _Table) ->

ok;

decode(Seq, Out, Table) ->

{Char, Rest} = decode_char(Seq, 1, Table),

file:write(Out, [Char]),

decode(Rest, Table).

IS there an advantage to do it the �rst or second way?

Answer: In the second solution we have a tail recursive solution that will
print the found character. If the �le is very large we do not have to store
the whole decoded �le in memory before printing it. This will save space and
possibly time. There might be an overhead of writing one character at a time
so for smaller �les the �rst solution might be quicker.

14

Namn:

6.2 Meta interpretor

6.2.1 eval_match/3 [6 points]

The code below is copied from the meta interpreter that we implemented.
Explain the di�erent parameters to the function and why we return the
values we do.

eval_match({var, Id}, Str, Env) ->

case env:lookup(Id, Env) of

false ->

{ok, env:add(Id, Str, Env)};

{Id, Str} ->

{ok, Env};

{Id, _} ->

fail

end;

6.2.2 apply [2 points*]

Assume that we extend our interpreter to also handle functions. We can
create so called closures that is represented by a sequence of variable iden-
ti�ers, a sequence and an environment that provide the bindings of the free
variables. We can then take this construct and apply it to a sequence of
arguments. The code below is the part of the interpreter that would handle
that operation.

eval_expr({apply, Expr, Args}, Env) ->

case eval_expr(Expr, Env) of

{ok, {closure, Par, Seq, Theta}} ->

case eval_args(Args, Env) of

error ->

error;

EvaluatedArgs ->

15

Namn:

< What goes here? >

end;

error ->

error

end;

If we should evaluate the expression F(X,42) we should �rst evaluate F and
hopefully obtain a closure. Then we evaluate the arguments X and 42 that
hopefully goes well. Then we should do something, describe what we should
do.

Answer: We should create a new environment given the environment Theta
and the bindings of the variable identi�ers in Par and the result of the
evaluated arguments EvaluatedArgs.

EvaluatedArgs ->

New = env:args(Par, EvaluatedArgs, Theta),

eval_seq(Seq, New)

6.3 A server

6.3.1 a server and a client [4 points]

When we are building a service that uses TCP, the server and client will
use di�erent API to create a connection. Who uses what, and how are the
following functions used:

• gen_tcp:connect(IP,Port,Opt) Answer: Used by the client when

connecting to a server. Will return a communication channel.

• gen_tcp:accept(Socket) Answer: Used by the server when it has

created a listening Socket. Will return a communication channel when
a client connects.

• gen_tcp:listen(Port, Opt) Answer: Used by the server to create

a listening socket. The server has registered as owner of a port.

16

Namn:

6.3.2 quick but maybe too quick [4 points*]

If we implement a server we have below a solution of how to parallelize the
implementation. We create an Erlang process for each incoming request and
handles in parallel while receiving the next request.

handler(Listen) ->

case gen_tcp:accept(Listen) of

{ok, Client} ->

spawn(fun() -> request(Client) end),

handler(Listen);

{error, Error} ->

io:format("rudy: error ~w~n", [Error])

end.

What is the down-side with this solution?

Answer: We risk creating more Erlang processes than we could handle. We
do not have any control over how many are created.

6.3.3 binary [2 points*]

Assume that we read a message from a datagram socket that was opened in
binary mode. We read a datagram with the following structure:

1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ID |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

|QR| Opcode |AA|TC|RD|RA| Z | RCODE |

: :

Write a function head/1, that takes a binary and returns a structure that
holds the identi�er, the �ags coded as integers and the rest of the datagram
as a binary. We should be able to do the following:

> head(<<"aabbfoobar">>).

{24929,0,12,0,1,0,0,6,2,<<"foobar">>}

Answer:

head(<<Id:16, QR:1, Op:4, AA:1, TC:1, RD:1, RA:1, Z:3, RC:4, Rest/binary>>) ->

{Id, QR, Op, AA, TC, RD, RA, Z, RC, Rest}.

17

