GSM Network and Services

Nodes and protocols
- or a lot of three letter acronyms
A GSM network

- **MS**: mobile station
- **BTS**: base transceiver station
- **BSC**: base station controller
- **MSC**: mobile switching center
- **HLR**: home location register
- **VLR**: visitor location register
- **AUC**: authentication center
- **PSTN**: public switched telephony network
- **PLMN**: public land mobile network
The mobile station

- Mobile station (MS) consist of
 - Mobile Equipment
 - Subscriber Identity Module (SIM)
- The operator owns the SIM
 - Subscriber identity
 - Secret keys for encryption
 - Allowed networks
 - User information
 - Operator specific applications
Mobile station addresses - IMSI

- IMSI - International Mobile Subscriber Identity
 - 240071234567890
 - Mobile Country Code (MCC), 3 digits ex 240
 - Mobile Network Code (MNC), 2 digits ex 07
 - Mobile Subscriber Id Number (MSIN), up to 10 digits
 - Identifies the SIM card
Mobile station addresses - IMEI

- IMEI – International Mobile Equipment Identity
 - fifteen digits written on the back of your mobile
 - has changes format in phase 2 and 2+
 - Type Allocation (8), Serial number (6), Check (1)
 - Used for stolen/malfunctioning terminals
Address of a user - MSISDN

• Mobile Subscriber ISDN Number - E.164
 – Integrated Services Digital Networks, the services of digital telephony networks
 – this is your phone number

• Structure
 – Country Code (CC), 1 – 3 digits (46 for Sweden)
 – National Destination Code (NDC), 2-3 digits (709 for Vodafone)
 – Subscriber Number (SN), max 10 digits (757812 for me)

• Mobile networks thus distinguish the address to you from the address to the station. This is something that PSTN also would benefit from.
A GSM network
BTS – Base Transceiver Station

- A BTS handles 2 to 6 transceivers connected to one to three antennas.
- Each transceiver handles a carrier.
- Antenna configuration
 - 1 omni-directional or sector
 - 2 to 3, each in a 180 or 120 degree sectors
- The transceivers of an antenna can be grouped in one or more cells covering the same area.
- Normally what you see is only the antenna, the actual BTS could be quite large.
BTS Identity Code - BSIC

- To be able to quickly tell the difference between base stations, or rather broadcasting channels operating in the same frequency, each base station is given a color code.

- The color code is not unique:
 - Network Color Code – NCC – 3 bits
 - BTS Color Code – BCC – 3 bits

- A PLMN has to internally assign BCC and agree with neighbouring PLMS on the NCC.
BSC – Base Station Controller

- The BSC handles everything that is related to the wireless network.
- An important role of the BSC is to configure the base stations, allocate resources to them and monitor their load.
- The functionality of the BSC could be distributed to the base stations but the base stations would be more complex and handover between base stations would be harder.
TRAU – transcoding and rate adapter unit

- The TRAU is often co-located with the BSC but could be a stand alone unit.
- Converts GSM coded voice (13/6.5 kbps) to regular ISDN code voice (64kbps).
- Why have a TRAU in the BSC and not in each BTS?
- Why have a TRAU at all?
A GSM network

MSS – Mobile Switching Subsystem

MSC

BTS

MS

PSTN

EIR

HLR

VLR

AUC
MSS – Mobile Switching Subsystem

Gateway

MSC

PSTN

HLR

AUC

EIR

MSC

VLR

VLR
The databases

- **HLR - Home Location register**
 - maps phone numbers MSISDN, to subscribers IMSI
 - keeps the current VLR
- **VLR - Visited Location Register**
 - knows in which location area the subscriber can be found
- **EIR - Equipment Identity Register**
 - stolen phones (IMEI)
- **Authentication Center**
 - encryption keys for each SIM
Location area
Location area

LA3

MSC

BSC

BTS

VLR

MSC

HLR

VLR
Location area
Location Area Identity

- MCC-MNC-LAC
 - Mobile Country Code, 3 digits
 - Mobile Network code, 2 digits
 - Location Area Code, 5 digits
- LAI is broadcasted by the BTS so a mobile station can determine if it has entered a new location area.
- If a new location area is entered the MSC is informed and the VLR (and HLR) is updated.
Cell Identifier

- Each cell in a location area is allocated a Cell Identity, CI, consisting of 16 bits.
- The CI and LAI form a globally unique identifier of a cell.
Authentication Center - AUC

- The AUC holds the secret key that is shared between the SIM and the network.
- The key never leaves the SIM nor the AUC.
- Network nodes can request the encryption of a set of challenges from the AUC. A challenge is then sent to the mobile station and if the respond matches the subscriber is authenticated.
- The authentication process also controls encryption for privacy.
Equipment Identity Register - EIR

- The EIR keeps a black list of stolen phones that should be barred from access.
- Stolen phones can be re-flashed with a new IMEI and thus avoid the EIR check.
- EIR can also block phones that are malfunctioning and disturb the network.
Interfaces
Signaling systems

• Mobile Switching Subsystem
 – The signaling in the MSS is built on SS7.
 – Mobile Application Part – MAP is used between the MSC and databases.
 – BSSMAP is used between the MSC and BSC

• The Base Station Subsystem
 – uses LAPD, the signaling protocol of ISDN
Signaling

- The mobile Station communicates with:
 - The BTS for Radio Resources, RR
 - The BSC for Radio Resources, RR
 - The MSC for Call Control. CC, and Mobility Management, MM
- The BSC and BTS communicate using:
 - BTS Management, BTSM
- The MSC and BSC communicate using:
 - BSS MAP
Adding GPRS