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Abstract: We give improved lower bounds for the size of small depth circuits computing several
functions. In particular we prove almost optimal lower bounds for the size of parity circuits.
Further we show that there are functions computable in polynomial size and depth k but requires
exponential size when the depth is restricted to k � 1. Our Main Lemma which is of independent
interest states that by using a random restriction we can convert an AND of small ORs to an OR
of small ANDs and conversely.
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1. Introduction

Proving lower bounds for the resources needed to compute certain functions is one of the most
interesting branches of theoretical computer science. One of the ultimate goals of this branch is
of course to show that P 6= NP . However, it seems that we are yet quite far from achieving
this goal and that new techniques have to be developed before we can make signi�cant progress
towards resolving this question. To gain understanding of the problem of proving lower bounds and
develop techniques, several restricted models of computation have been studied. Recently there has
been signi�cant progress in proving lower bounds in two circuit models. The �rst example is the
the case of monotone circuits, i.e., circuits just containing AND and OR gates and no negations.
Superpolynomial lower bounds were proved for the clique function by Razborov [R] and these were
improved to exponential lower bounds by Alon and Boppana [AB]. Andreev [An] independently
obtained exponential lower bounds for other NP-functions.

The second model where interesting lower bounds have been proved is the model of small depth

circuits. These circuits have the full instruction set of AND, OR, and negations and furthermore
each AND and OR gate can have an arbitrary number of inputs. However the depth (the longest
path from input to output) is restricted to be small, e.g., constant. The unrestricted size of the
AND gates is needed to make it possible to compute circuits depending on all inputs. In this paper
we will prove exponential lower bounds for this model. Our technique enables us to prove lower
bounds for several di�erent functions. Thus we have at least partial understanding of what causes
a function to be di�cult to compute in this model of computation.

Finally let us remark that even though the P 6= NP question is one of the motivations to
studying the problem of small depth circuits, we do not think that the techniques of this paper will
help in resolving that question. The results for small depth circuits and monotone circuits only
show that it is possible to prove exponential lower bounds in nontrivial cases. This might be taken
as a promising sign and encourage us to look for new techniques with renewed optimism.

1.1 Lower bounds for small depth circuits; A crucial Lemma.

The problem of proving lower bounds for small depth circuits has attracted the attention of
several researchers in the �eld. Functions considered have been simple functions like parity and
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majority. The �rst superpolynomial lower bounds for the circuits computing parity was obtained
by Furst, Saxe and Sipser [FSS]. Ajtai [Aj] independently gave slightly stronger bounds and Yao
[Y] proved the �rst exponential lower bounds. (The case of monotone small depth circuits has been
studied by Boppana [B], Valiant [V], and Klawe, Paul, Pippenger and Yannakakis [KPPY].)

We will in this paper give almost optimal lower bounds for the size of circuits computing parity.
However it is quite likely that the longer lasting contribution will be our main lemma. The main
lemma is the essential ingredient in the proof and it gives some insight why some problems require
large circuits when the depth is small. The lemma tells us that given a depth two circuit, say
an AND of small ORs (a gate is small if it has few inputs), then if one gives random values to a
randomly selected subset of the variables then it is possible to write the resulting induced function
as an OR of small ANDs with very high probability. Let us outline how this can be used to prove
lower bounds for circuits computing parity.

Given a circuit of constant depth k computing parity we can give random values to some
random inputs. The remaining circuit will still compute parity (or the negation of parity) of the
remaining variables. By the virtue of the lemma it is possible to interchange two adjacent levels of
ANDs and ORs, then by merging the two now adjacent levels with the same connective decrease the
depth of the circuit to k�1. This can be done without increasing the size of the circuit signi�cantly.
An easy induction now gives the result.

The idea of giving random values to some of the variables was �rst introduced in [FSS] and
weaker versions of our main lemma were used in [FSS] and [Y]. In [FSS] the probability of the
size not increasing too much was not proved to be exponentially small. Yao only proved that the
resulting OR of small ANDs was in a technical sense a good approximation of the original function.
This fact gave signi�cant complications to the rest of the proof. Also, Yao did not obtain the sharp
estimates for the probability of failure. Since we get almost optimal lower bounds for the size of
parity circuits our estimates are sharp up to a constant.

1.2 Results.

Our nearly optimal results for the size of parity circuits imply that a polynomial size circuit
computing parity has to have depth essentially log n

log logn . The best previous lower bounds for the

depth of polynomial size parity circuits was
p
logn by Ajtai [Aj]. Here as everywhere else in the

paper log n denotes logarithms to base 2.
By similar methods it is possible to prove that there is a family of functions fnk of n inputs

which have linear size circuits of depth k but require exponential size circuits when restricted to
depth k � 1. These functions fnk were introduced by Sipser in [S]. Sipser proved superpolynomial
lower bounds for the size of the circuits when the depth was restricted to be k � 1. Yao claimed
exponential lower bounds for the same situation.

1.3 Small depth circuits and Relativized Complexity.

Lower bounds for small depth circuits have some interesting applications to relativized com-
plexity. Furst, Saxe and Sipser proved in [FSS] that subexponential lower bounds (more precisely


(2(log n)
i

) for all i) for any constant depth k for the parity function would imply the existence
of an oracle separating PSPACE from the polynomial time hierarchy. Yao [Y] was the �rst to
prove su�ciently good lower bounds to obtain the separation for an oracle A. Cai [C] extended his
methods to prove that a random oracle separated the two complexity classes with probability 1.

In [S] Sipser proved the corresponding theorem that the same lower bounds for the functions
fnk would imply the existence of oracles separating the di�erent levels in the polynomial hierarchy.
The lower bounds claimed by Yao gives the �rst oracle achieving this separation. Our bounds are of
course also su�cient. The question whether a random oracle achieves this separation is still open.
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1.4 Relations to PRAMs

The model of small depth circuits has relations to computation by parallel random access
machines (PRAM). In particular, Stockmeyer and Vishkin [SV] proved that any function that can
be computed on a slightly limited PRAM with a polynomial number of processors in time T can
also be computed by polynomial size unbounded fanin circuits of depth O(T ). The limitations on
the PRAM was a limitation of the instructionset to only contain relatively simple operations like
addition, comparison, indirect addressing multiplication by logn size numbers, etc.

Thus our results imply among other things that parity requires time 
( logn
log logn ) to compute

on such a PRAM. Interestingly enough the same bounds can be proved for more powerful PRAMs
using extensions of the present techniques [BeH].

1.5 Outline of paper.

In section 3 we prove the main lemma. The necessary background and some motivation are
given in section 2. The application to parity circuits is in section 4 and in section 5 we prove the
lower bounds for the functions fnk and in section 6 we brie
y mention some more details of the
implications for relativized complexity. An earlier version of this paper appeared in [H1]. The
paper is also part of my thesis [H2].

2. Background

2.1 Computational Model

We will be working with unbounded fanin circuits of small depth. A typical example looks like
this.

Figure 1

We can assume that the only negations occur as negated input variables. In general if there are
negations higher up in the circuit we can move them down to the inputs using DeMorgan's laws.
This procedure at most doubles the size of the circuit. Observe that we have alternating levels of
AND and OR gates since two adjacent gates of the same type can be collapsed into one gate.

The crucial parameters for a circuit are the depth and the size. Depth is de�ned as the length
of the longest path from an input to the output and can also be thought of as the number of levels
of gates. For instance the depth of the circuit in �gure 1 is. Size is de�ned to be the total number
of AND/OR gates and the circuit in �gure 1 is of size 11. The fanin of a gate is de�ned as the
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number of inputs to it. We put no restriction on the fanin of the gates in our circuits. However we
will be interested in the bottom fanin which is de�ned as the maximum fanin for any gate on the
lowest level, i.e., having variables as inputs.

2.2 Outline of Proof

Several of the cited lower bounds proofs ( [FSS],[Y] and the present paper) have the same
outline. The proofs are by induction which proceeds as follows.

(1) Prove that parity circuits of depth 2 are large.
(2) Prove that small depth k parity circuits can be converted to small depth k� 1 parity circuits.

Of these two steps the �rst step is easy and tailored for the parity function. It is easily seen
that depth 2 parity circuits require size 2n�1 [FSS]. The second step is much more di�cult and
contains the di�erence between the papers. The basic idea for doing this lies in the fact that every
function can be written either as an AND of ORs or as an OR and ANDs. To give an idea of (2)
assume that k = 3 and we have the following depth 3 circuit.

Figure 2
Take any gate at distance two from the inputs. It represents a subcircuit of depth 2. In this case
this circuit will be an AND of ORs. Now observe that any function can be written either as an
AND of ORs or as an OR of ANDs. Thus we can change this depth 2 circuit to and OR of ANDs
which computes the same function, as below.

Figure 3
Observe that we have two adjacent levels consisting of OR gates.
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These two levels can be merged to one level and we get the following circuit of depth 2.

Figure 4

However, doing this we run into one problem. When we convert and AND of ORs to an OR of
ANDs the size of the circuit will in general increase considerably. Thus we have converted a small

depth k circuit to a large depth k � 1 circuit and hence we fail to achieve (2).

2.3 Restrictions

The way around this problem was introduced in [FSS] and works as follows. If we assign values
to some of the variables we can simplify the circuit. In particular if we assign the value 1 to one of
the inputs of an OR gate we know that the output of that OR gate will be 1 no matter what the
other inputs are. In the same way we only need to know that one of the inputs to an AND gate
is 0 to decide that it outputs 0. This means that for any speci�c gate on the bottom level we can
force it by assigning a suitable value to one of its inputs. However there are many more gates than
inputs and so we have to do something more e�cient than forcing one gate per variable. Let us
�rst make formal what we mean by �xing some variables.

De�nition: A restriction � is a mapping of the variables to the set f0; 1; �g.
�(xi) = 0 means that we substitute the value 0 for xi
�(xi) = 1 means that we substitute 1
�(xi) = � means that xi remains a variable.

Given a function F we will denote by F d� the function we get by making the substitutions
prescribed by �. F d� will be a function of the variables which were given the value �.
Example: Let F (x1; x2; x3; x4; x5) = majority of the variables and let �(x1) = 1; �(x2) = �; �(x3) =
�; �(x4) = 1 and �(x5) = �. Then F d�(x2; x3; x5) = \at least one of x2; x3 and x5 is 1".

A simple observation which is important to the proof of the result for parity is:

Observation: Parityd�= Parity or the negation of Parity.

We are looking for restrictions which simplify circuits e�ciently. It seems hard to do this
explicitly and we will use a probabilistic method. We will be working with random restrictions
with distributions parameterized by a real number p which will usually be small.

De�nition: A random restriction � 2 Rp satis�es

�(xi) = 0 with probability 1
2 � p

2

�(xi) = 1 with probability 1
2 � p

2

�(xi) = � with probability p.
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independently for di�erent xi.

Observe that we have probability p of keeping a variable. Thus the expected number of
variables remaining is pn. Obviously the smaller p is the more we can simplify our circuits but on
the other hand we have fewer remaining variables. We have to optimize this trade o� when we
make a choice of p.

The main improvement of the present paper over previous papers is that we analyze in a better
way how much a restriction simpli�es a circuit. We will prove a lemma which basically tells us that
if we hit a depth two circuit with a random restriction then we can change an AND of ORs to an
OR of ANDs without increasing the size. We prove that this fails with only exponentially small
probability.

We will need some notation. A minterm is a minimal way to make a function 1. We will think
of a minterm � for a function F as a partial assignment with the following two properties.

(1) � forces F to be true.

(2) No subassignment of � forces F to be true.

Thus (2) says that � is minimal satisfying (1).

Example Let F (x1; x2; x3) be the majority function. Then the minterms are �1; �2 and �3 where

�1(x1) = 1; �1(x2) = 1; �1(x3) = �
�2(x1) = 1; �2(x2) = �; �2(x3) = 1
�3(x1) = �; �3(x2) = 1; �3(x3) = 1

The size of a minterm is de�ned as the number of variables to which it gives either the value
0 or the value 1. All three of the above minterms are of size 2. Observe that it is possible to write
a function as an OR of ANDs where the ANDs precisely correspond to its minterms. The size of
the ANDs will be the size of the minterms since xi will be input precisely when �(xi) = 1 and �xi
will be input precisely when �(xi) = 0.

3. Main Lemma

Our Main Lemma will tell us that if we apply a restriction we can with high probability convert
an AND of ORs to an OR of ANDs. This will provide the tool for us to carry through the outline
of the proof described in section 2.

Main Lemma: Let G be an AND of ORs all of size � t and � a random restriction from Rp.

Then the probability that Gd� cannot be written as an OR of ANDs all of size < s is bounded by

�s where � is the unique positive root to the equation.

(1 +
4p

1 + p

1

�
)t = (1 +

2p

1 + p

1

�
)t + 1

Remark 1 An elementary argument shows that � = 2pt
ln� + O(p2t) < 5pt, for su�ciently small p,

where � is the golden ratio.
Remark 2 By looking at :G one can see that it is possible to convert an OR of ANDs to an AND
or ORs with the same probability.

Remark 3 There are two versions of the proof of the Main Lemma which are identical except for
notation. Our original proof was in terms of a labeling algorithm as in those used by Yao [Y] in
his proof. The present version of the proof, avoiding the use of such an algorithm, was proposed
by Ravi Boppana.
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It turns out that it is easier to prove a slightly stronger version of the Main Lemma. First we
will require all minterms of Gd� to be small. By the remark above above this implies that Gd� can
be written as an OR of small ANDs. A more signi�cant di�erence between the Main Lemma and
the stronger lemma we will prove is that we will estimate the probability conditioned upon any
function being forced to be 1. The reason for this is that it facilitates induction.

For notational convenience let min(G) � s denote the event that Gd� has a minterm of size at least
s.

Stronger Main Lemma: Let G = ^wi=1Gi, where Gi are OR's of fanin � t. Let F be an arbitrary

function. Let � be a random restriction in Rp. Then we have

Pr[min(G) � s j F d�� 1] � �s

Remark 4 The Stronger Main Lemma implies the Main Lemma by choosing F � 1 and the fact
that a function has a circuit which is an OR of ANDs corresponding to its minterms.

Remark 5 If there is no restriction � satisfying the condition F d�� 1 we will use the convention
that the conditional probability in question is 0.

Proof: We will prove the Stronger Main Lemma by induction on w, the number of ORs in our
depth 2 circuit. A picture of G which is good to keep in mind is the following.

Figure 5
If w = 0 the lemma is obvious (G � 1). Suppose now that the statement is true for all values

less than w. We will show that it is true for w. We will �rst study what happens to G1, the �rst
OR in our circuit. We have two possibilities, either it is forced to be 1 or it is not. We will estimate
these two probabilities separately. We have

Pr[min(G) � s j F d�� 1] �

max (Pr[min(G) � s j F d�� 1 ^G1d�� 1]; P r[min(G) � s j F d�� 1 ^G1d� 6� 1])

The �rst term is

Pr[min(G) � s j (F ^G1)d�� 1]

However in this case Gd�= ^wi=1Gid�= ^wi=2Gid� since we are only concerned about �'s which force
G1 to be 1. Thus min(G) � s is equivalent to saying that ^wi=2Gid� has a minterm of size at least
s. But this probability is � �s by the inductive hypothesis since we are talking about a product of
size w�1. We are conditioning upon another function being 1 but this is OK since we are assuming
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that the induction hypothesis is true for all F . It is precisely the fact that the conditioning keeps
changing that \forced" us to introduce the stronger version of the Main Lemma.

Now consider the second term (Pr[min(G) � s j F d�� 1 ^G1d� 6� 1]). For notational conve-
nience we will assume that G1 is an OR of only positive literals, i.e.

G1 = _i2Txi

where jT j � t. We do not lose generality by this since � is symmetric with respect to 0 and 1 and
hence we can interchange xi and �xi if necessary. Let � = �1�2, where �1 is the restriction of the
variables in T and �2 is the restriction of the other variables. Thus the condition that G1d� 6� 1 is
equivalent to that �1 does not take the value 1,and we write the condition as G1d�1 6� 1. Since we
are now conditioning upon the fact that G1 is not made true by the restriction, we know that G1

has to be made true by every minterm of Gd� i.e. for every minterm � there must be an i 2 T
such that �(xi) = 1. Observe that � might give values to some other variables in T and that these
values might be both 0 and 1. We will partition the minterms of Gd� according to what variables
in T they give values to. We will call a typical such subset Y .

The fact that the minterm give values to the variables in Y implies in particular that the
variables in Y were left as variables and hence were given the value � by �1. We will denote this
fact by the shorthand notation �1(Y ) = �. Further let min(G)Y � s denote the event that Gd�
has a minterm of size at least s whose restriction to the variables in T assigns values to precisely
those variables in Y . Using this notation we get

Pr[min(G) � s j F d�� 1 ^G1d�1 6� 1] �
X

Y�T;Y 6=;
Pr[min(G)Y � s j F d�� 1 ^G1d�1 6� 1] =

X
Y�T;Y 6=;

Pr[min(G)Y � s ^ �1(Y ) = � j F d�� 1 ^G1d�1 6� 1] =

X
Y�T;Y 6=;

Pr[�1(Y ) = � j F d�� 1^G1d�1 6� 1]�Pr[min(G)Y � s j F d�� 1^G1d�1 6� 1^ �1(Y ) = �]

The inequality and the �rst equality follows by the reasoning above and the last equality follows
by the de�nition of conditional probability. Now we will estimate each of the two factors in each
term of the above sum. Let us start with the the �rst factor (i.e. Pr[�1(Y ) = �j : : :]).

To make life simpler we will start by ignoring the condition F d�� 1.

Lemma 1: Pr[�1(Y ) = � j G1d�1 6� 1] = ( 2p
1+p )

jY j

Proof: As remarked above the condition G1d�1 6� 1 is precisely equivalent to �1(xi) 2 f0; �g for
i 2 T . The induced probabilities are Pr[�(xi) = 0] = 1�p

1+p and Pr[�(xi) = �] = 2p
1+p . The lemma

follows since the probabilities are independent.

Now we have to take the condition F d�� 1 into account. The intuition for doing this works as
follows. The fact that something is determined to be 1 cannot make stars more likely since having
a lot of stars is in a vague sense equivalent to making things undetermined. During a presentation
of this material Mike Saks found a nice way to make this formal without looking at probabilities
of individual restrictions. We �rst need an elementary fact from probability theory. Let A;B and
C be three arbitrary events

8



Lemma 2: Pr[A j B ^ C] � Pr[A j C] is equivalent to Pr[B j A ^ C] � Pr[B j C].
This lemma follows from use of de�nition of conditional probability and trivial algebra. Our �nal
estimate will be

Lemma 3: Pr[�1(Y ) = � j F d�� 1 ^G1d� 6� 1] � ( 2p
1+p )

jY j

Proof: Let A = (�1(Y ) = �); B = (F d�� 1) and C = (G1d�1 6� 1). By the above lemmas we only
have to verify that

Pr[F d�� 1 j �1(Y ) = � ^G1d�1 6� 1] � Pr[F d�� 1 j G1d�1 6� 1]

This is clear from inspection since requiring that some variables are � cannot increase the probability
that a function is determined.

Next we try to estimate the other factor. Namely

Pr[min(G)Y � s j F d�� 1 ^G1d�1 6� 1 ^ �1(Y ) = �]

To do this think of the minterm as consisting of two parts

(1) A part �1 which assigns values to the variables of Y .
(2) A part �2 which assigns values to some variables in the complement �T of T .

This partition of the minterm is possible since we are assuming that it assign no values to
variables in T � Y . Observe that �2 is a minterm of the function Gd��1 . This obviously suggests
that we can use the induction hypothesis. We only have to get rid of the unpleasant condition that
G1d�1 6� 1. This we do by maximizing over all �1 satisfying this condition. We have

Pr[min(G)Y � s j F d�� 1 ^G1d�1 6� 1 ^ �1(Y ) = �] �
X

�12f0;1gjY j �1 6=0jY j

�
max

�1(Y )=�; �1(T )2f0;�gjT j
Pr�2 [min(G)Y;�1 � s j (F d�1�1)d�1� 1]

�

The two last conditions have disappeared because they involve only �1 and we are now inter-
ested in a probability over �2. By (2) above we know that min(G)Y;�1 � s implies that (Gd�1�1)d�2
has a minterm of size at least s� jY j on the variables in �T . Thus we can estimate the probability
by �s�jY j using the induction hypothesis.

We have to be slightly careful when we use the induction hypothesis since Gd�1�1 might depend
on variables in T � Y . These variables cannot, by the de�nition of Y , be in the minterm we are
looking for. This implies that we can instead look at the formula ^�TGd�1�1�T where �T ranges
over all ways to give values to the remaining variables in T .

To sum up each term in the sum is estimated by �s�jY j and we have 2jY j � 1 possible �1.
This is because �1 must make G1 true and hence cannot be all 0. Thus we get the total bound
(2jY j � 1)�s�jY j.

Finally we must evaluate the sum. Since the term corresponding to Y = ; is 0 we can include
it.

X
Y�T

(
2p

1 + p
)jY j(2jY j � 1)�s�jY j = �s

jT jX
i=0

�jT j
i

�
[(

4p

1 + p

1

�
)i � (

2p

1 + p

1

�
)i] =
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�s((1 +
4p

1 + p

1

�
)jT j � (1 +

2p

1 + p

1

�
)jT j) � �s((1 +

4p

1 + p

1

�
)t � (1 +

2p

1 + p

1

�
)t = �s

The last equality follows by the de�nition of �. This �nishes the induction step and the proof
of the Stronger Main Lemma.

4. Lower bounds for small depth circuits

The �rst function we will prove lower bounds for is parity. We have

Theorem 1: There are no depth k parity circuits of size 2(
1
10

)
k

k�1 n
1

k�1
for n > nk0 for some absolute

constant n0.

Remark 6 Observe that this is quite close to optimal since it is known that parity can be computed

by depth k circuits of size n2n
1

k�1
. The best previous lower bounds were 
(2n

1
4k ) by Yao [Y].

As in the case of the Main Lemma it will be more convenient to �rst prove something that is
more suitable to induction.

Theorem 2: Parity cannot be computed by a depth k circuit containing � 2
1
10
n

1
k�1

subcircuits of

depth at least 2 and bottom fanin � 1
10n

1
k�1 for n > nk0 for some absolute constant n0.

Proof: We will prove the theorem by induction over k. The base case k = 2 follows from the well
known fact that depth 2 parity circuits must have bottom fanin n. The induction step will be done
as outlined in section 2. We can now with the help of the Main Lemma make sure that we convert
a small depth k circuit to a small depth k � 1 circuit.

Suppose without loss of generality that our depth k circuits are such that the gates at distance 2
from the inputs are AND gates and hence represent a depth 2 circuit with bottom fanin bounded by
1
10n

1
k�1 . Apply a random restriction from Rp with p = n�

1
k�1 . Then by our lemma every individual

depth 2 subcircuit can be written as an OR of ANDs of size bounded by s with probability 1��s.

By the chosen parameters � is bounded by a constant less than 1
2 . If we choose s = 1

10n
1

k�1 the

probability that any of the 2
1
10
n

1
k�1

depth 2 circuits cannot be converted into a depth 2 circuit of
the other type is bounded by (2�)s. Thus with probability at least 1 � (2�)s we can interchange
the order of AND and OR in all depth 2 subcircuits and still have bottom fanin bounded by s.
Observe that this gives us two adjacent levels of OR's which can be collapsed to decrease the depth
of the circuit to k � 1.

The number of remaining variables is expected to be n
k�2
k�1 and with probability greater than

1
3 we will get at least this number. Thus with nonzero probability we can interchange the order

of AND and OR in all depth 2 circuits and we also have at least n
k�2
k�1 remaining variables. In

particular such a restriction exists. Applying this restriction to the circuit gives a depth k � 1

circuit computing parity of at least n
k�2
k�1 = m variables. Further it has bottom fanin bounded by

1
10n

1
k�1 = 1

10m
1

k�2 and the number of gates of depth at least 2 is bounded by 2
1
10n

1
k�1 = 2

1
10m

1
k�2 .

The last fact follows because a gate of depth at least 2 in the new circuit corresponds to a gate of
depth at least three in the old depth k circuit. But this is precisely a circuit which is certi�ed not
to exist by the induction hypothesis. The proof of Theorem 2 is complete.

Let us now prove Theorem 1. Consider the circuit as a depth k + 1 circuit with bottom fanin

1. Hit it with a restriction from Rp using p =
1
10 and by using our Main Lemma with s = 1

10n
1

k�1

we see that we get a circuit which does not exist by Theorem 2.
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Since there are no constants depending on k hidden in the theorem we get the following
corollary

Corollary: Polynomial size parity circuits must have depth at least logn
c+log log n for some constant

c.

Observe that this is tight since for every constant c there are such polynomial size circuits.
Since Yao had constants in his theorems it is not clear if similar corollaries could be obtained from
[Y].

Observe that we have used very little about parity. Only the lower bound for k = 2 and the
fact that it behaves well with respect to restrictions. Thus we will be able to improve lower bounds
for sizes of small depth circuits for other functions using our Main Lemma. Let us do majority:

Theorem 3: Majority requires size 2(
1
10

)
k

k�1 n
1

k�1
depth k circuits for n > nk0 for some absolute

constant n0.

Proof: To make the proof go through we only need to make two observations. The base case
k = 2 goes through. Secondly even if we require that the restriction gives out as many 1's as 0's we
still have a nonzero probability that a random restriction satis�es all conditions. This requirement
ensures that the smaller circuit also computes majority.

In general we do not need that we get back the same function but only that we get a function
that is hard to compute. Loosely speaking we can prove the corresponding lower bounds as soon
as the function even when hit by severe restriction still have large minterms. We leave the details
to the interested reader.

5. Functions requiring depth k to have small circuits.

We prove that there are functions fmk which have linear size circuits of depth k but require
exponential size circuits when the depth is restricted to k � 1. To prove this we will introduce a
new probability space of restrictions and reprove the Main Lemma for this space of restrictions.

5.1 The Sipser Functions fmk .

In [Si], Sipser de�ned a set of functions fmk which could be computed in depth k and linear
size. He showed , however, that these functions require superpolynomial size when the depth is
restricted to k�1. We will rede�ne fmk slightly and let it denote the function de�ned by the circuit
in �gure 6. To avoid confusion we will refer to the circuit in �gure 6 as the de�ning circuit of fmk .

The de�ning circuit is thus a tree with top fanin
q

m
logm , bottom fanin

p
km logm=2, while all the

other fanouts are m. Each variable occurs at only one leaf.

11



Thus by de�nition fmk is a function of mk�1
p
k=2 variables.

Figure 6
Yao has claimed exponential lower bounds for these functions, but the proof has not yet

appeared. We have the following results for the functions fmk .

Theorem 4: Depth k � 1 circuits computing fmk are of size at least 2
1

12
p
2k

p
m

logm for m > m1,

where m1 is some absolute constant.

As an immediate corollary we get.

Corollary: Polynomial size circuits of depth f(n) are more powerful than polynomial size circuits

of depth f(n)� 1 if f(n) < log n
3 log logn � !( logn

(log log n)2 ).

Proof: Follows from a computation using n = mk�1
p
k=2 and k = f(n).

5.2 New Random Restrictions.

One would like to prove Theorem 4 with the aid of the Main Lemma. Here, however, one runs
into problems not encountered in the case of the parity function. If a restriction from Rp is applied
to fmk the resulting function will be a constant function with very high probability. This happens
since the gates at the bottom level are quite wide and with very high probability all gates will
be forced. There is also a more philosophical reason why Rp destroys functions like fmk . Rp was
designed to destroy any small-depth circuit, and will in particular destroy the circuits de�ning fmk .
To get around this problem we will de�ne another set of restrictions are designed not to destroy
the circuits de�ning fmk .

De�nition: Let q be a real number and (Bi)
r
i=1 a partition of the variables (The Bi are disjoint

sets of variables and their union is the set of all variables). Let R+
q;B be the probability space of

restrictions which takes values as follows.

For � 2 R+
q;B and every Bi, 1 � i � r independently

1. With probability q let si = � and else si = 0.
2. For every xk 2 Bi let �(xk) = si with probability q and else �(xk) = 1.

12



Similarly a R�
q;B probability space of restrictions is de�ned by interchanging the roles played

by 0 and 1.

The idea behind these restrictions is that a block Bi will correspond to the variables leading
into one of the ANDs in the bottom level in the circuit de�ning fmk . If the bottom level gates are
ORs we use a restriction from R�

q . These restrictions will, however, not be quite su�cient for our
purposes and we need a complementary restriction.

De�nition: For a restriction � 2 R+
q;B let g(�) be a restriction de�ned as follows: For all Bi with

si = �, g(�) gives the value 1 to all variables given the value � by � except one to which it gives
the value �. To make g(�) deterministic we assume that it gives the value � to the variable with
the highest index given the value � by �. If � 2 R�

q;B , then g(�) is de�ned similarly but now takes
the values 0 and �.

These probability spaces of restrictions do not assign values to variables independently as Rp

did, but is nice enough so that the proof of our Main Lemma will go through with only minor
modi�cations. Let �g(�) denote the composition of the two restrictions. Observe that they are
compatible since g(�) assigns values to precisely the variables given the value � by �.
Lemma 4: Let G be an AND of ORs all of size � t and � a random restriction from R+

q;B . Then

the probability that Gd�g(�) cannot be written as an OR of ANDs all of size < s is bounded by �s,

where � = 4q

2
1
t�1

< 4qt
log 2 < 6qt.

Remark 7 The same is true for R�
q;B .

Remark 8 The probability of converting an OR of ANDs to an AND of ORs is the same.

As in the case of the Main Lemma, before proving Lemma 4, we prove a stronger lemma stating
that we have the same estimate of the probability even when we condition upon an arbitrary function
being forced to 1 by �. De�ne AND(Gd�g(�)) � s denote the event that Gd�g(�) cannot be written
as an OR of ANDs of size < s.

Lemma 5: Let G = ^wi=1Gi, where Gi are OR's of fanin � t. Let F be an arbitrary function. Let

� be a random restriction in R+
q;B . Then

Pr[AND(Gd�g(�)) � s j F d�� 1] � �s

where � = 4q

2
1
t�1

.

Remark 9 Recall that, if there is no restriction � satisfying the condition F d�� 1 then the
conditional probability in question is de�ned to be 0. Observe that we are only conditioning upon
F d�� 1 and not F d�g(�)� 1.

Proof: We will only use the weaker bound 6qt for � and since the lemma is trivially true if � � 1
we will assume q < 1

6t whenever convenient. The proof will be done in a similar way to the proof
of the Stronger Main Lemma. We therefore only outline the proof, and give details only where the
proofs di�er.

As before
Pr[AND(Gd�g(�)) � s j F d�� 1] �

� max
�
Pr[AND(Gd�g(�)) � s j F d�� 1 ^G1d�� 1]; P r[AND(Gd�g(�)) � s j F d�� 1 ^G1d� 6� 1]

�
The �rst term,

Pr[AND(Gd�g(�)) � s j (F ^G1)d�� 1]

13



is taken care of by the induction hypothesis.

We have to estimate the second term, Pr[AND(Gd�g(�)) � s j F d�� 1^G1d� 6� 1]. We cannot
assume that G1 is an OR of only positive literals since the restrictions employed here assign 0 and
1 nonsymmetrically.

We denote the set of variables occurring in G1 by T , and jT j � t. We do not know that
G1 must be made true by every minterm of Gd�g(�). This is because G1 might be made true by
g(�). We do know, however, that for Gd� not to be the constant 0 some of the variables of T must
be given the value � by �. Suppose the variables of T belongs to r di�erent blocks. Assume for
notational convenience that these blocks are Bi; i = 1 : : : ; r. We call a block B exposed if there is a
variable xi 2 B such that xi 2 T and �(xi) = �. By the above remark there must be some exposed
blocks for G not to be identically 0. Let Y denote the set of exposed blocks. Denote this event by
exp(Y ) and let [r] denote the set f1; 2; : : : ; rg.
We get

Pr[AND(Gd�g(�)) � s j F d�� 1 ^G1d� 6� 1] �
X

Y�[r];Y 6=;
Pr[exp(Y ) j F d�� 1 ^G1d� 6� 1]� Pr[AND(Gd�g(�)) � s j F d�� 1 ^G1d� 6� 1 ^ exp(Y )]

The factors in the above sum can be estimated separately. Let us start with the �rst factor
Pr[exp(Y ) j F d�� 1^G1d� 6� 1]. We need a little bit of extra notation. Let Pi = fj j xj 2 G1^xj 2
Big and let Ni = fj j �xj 2 G1 ^ xj 2 Big. Let us start with the simple case when Y consists of a
single block Bi.

Lemma 6: Pr[exp(Bi) j F d�� 1 ^G1d� 6� 1] � 2q.

Proof: By the de�nition of conditional probability we want to prove

P0
exp(Bi)

Pr(�)P0
Pr(�)

� 2q

Here the 0 indicates that we are only summing over � satisfying the condition F d�� 1^G1d� 6� 1.
Remember that if this quotient takes the form 0

0 we have the convention that it takes the value 0.
Now assume that � gives a nonzero contribution to the numerator. We de�ne a restriction ~� = H(�)
which gives a larger contribution to the denominator. Let
1. ~�(xj) = �(xj) for xj 62 Bi

2. ~�(xj) = 0 for j 2 Pi
3. ~�(xj) = 1 for j 2 Ni

4. ~�(xj) = 1 for j 2 Bi �Ni � Pi and �(xj) = 1
5. ~�(xj) = 0 for j 2 Bi �Ni � Pi and �(xj) = �

To check that ~� gives a contribution to the denominator we only have to check that F d~�� 1
and G1d~� 6� 1. The �rst fact follows by noting that we only change values from � to non-� values.
To see that the second condition is ful�lled we observe that rules 2 and 3 are tailored to this.

To get an estimate for the quotient we must compute the probability of � compared to ~�. We
must also investigate what restrictions �� satisfy H(��) = ~�. Let us start with this second task.

Observe �rst that si = � in the de�nition of �� and hence that �� only gives out the values � and
1 on Bi. Obviously ��(xj) = �(xj) for all xj not in Pi or Ni. Furthermore ��(xj) = � for xj 2 Pi
since Gd�� 6� 1. Finally �� can take any combination of 1 and � on Ni provided it does not take the
value of all 1 in the case when Pi is empty. Observe that all these �� might not satisfy the condition
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F d��� 1 but we are only trying to get an upper bound. Assume that �� assigns l �'s on Ni and
jNij � l ones. Then

Pr(��) =
q

1� q

ql(1� q)jNij�l

(1� q)jNij Pr(~�):

The �rst factor comes from the fact that si = 0 for ~� while si = � for ��. The second factor comes
from the behavior on Ni. Observe that the probability that ~� gives out only 0 on Pi is equal to the
probability that �� gives out only �. Summing up we get

X
H(��)=~�

Pr(��) � q

1� q
Pr(~�)

jNijX
l=0

�jNij
l

�
(

q

1� q
)l =

q

1� q
Pr(~�)(1 � q)�jNij

since jNij � t and q < 1
6t we have (1� q)�jNij < 2. Using this we have

P0
exp(Bi)

Pr(�)P0
Pr(�)

�
P

~�

P0
�;H(�)=~�;exp(Bi)

Pr(�)P0
Pr(�)

�
P0

~�
2q
1�qPr(~�)P0

~�(1 +
2q
1�q )Pr(~�)

� 2q

and the proof is complete.

Next we have

Lemma 7: Pr[exp(Y ) j F d�� 1 ^G1d� 6� 1] � (2q)jY j.

Proof: This is proved in the same way as Lemma 6. We get restrictions contributing to the
denominator by doing the changes in � on all the blocks simultaneously.

Next we estimate the factor

Pr[AND(Gd�g(�))Y � s j F d�� 1 ^G1d� 6� 1 ^ exp(Y )]

We want to use induction and to do this we have to get rid of the condition G1d� 6� 1. In the
blocks that are not exposed we know that � only takes the values 0 or 1. This conditioning can be
incorporated in F d�� 1.

In the exposed blocks we let the corresponding variables which are still alive after �g(�) be
in the ANDs of Gd�g(�). We try all possibilities of these variables and we estimate the probability
that the remaining formula cannot be written as an OR of ANDs of size s� jY j. This probability
is taken over a restriction which does not include the blocks of Y . Thus we can use the induction
hypothesis and we get the estimate �s�jY j for each setting of the variables corresponding to Y .
Thus we get the total bound 2jY j�s�jY j.

Finally we evaluate the sum to get

X
Y�[r];Y 6=;

(2q)jY j2jY j�s�jY j = �s
rX

i=1

�
r

i

�
(
4q

�
)i �

�s((1 +
4q

�
)r � 1) = �s(2r=t � 1) � �s

This �nishes the induction step and the proof of the Lemma 5.
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An interesting question is for what probability distributions on the space of restrictions is it
possible to prove the lemma equivalent to the Main Lemma and Lemma 4. The general proof
technique uses two crucial properties of the distribution.

(1) The condition F d�� 1 for an arbitrary F does not bias the value of any variable too much
towards �. This should also remain true even if we know that a the variable is not 1(0).

(2) It is possible to eliminate the variables of G1 and use induction on a similar restriction over
the remaining variables.

Condition (1) was taken care of by Lemmas 3 and 7. Condition (2) seems easier to satisfy and
was so obviously satis�ed that no formal lemma was needed. The veri�cation was basically done
where we claimed that induction could be used after eliminating G1.

5.3 Back to the Proof of Theorem 4

Let us continue with the present restriction space R+
q;B and prove Theorem 4. We �rst prove

a slightly stronger technical theorem.

Theorem 5: There are no depth k circuits computing fmk with bottom fanin 1
12
p
2k

q
m

logm
and

� 2
1

12
p
2k

p
m

logm gates of depth � 2 for m > m0 some absolute constant m0.

Note that Theorem 5 implies Theorem 4 since a depth k � 1 circuit can be considered as a
depth k circuit with bottom fanin 1. Theorem 5 is proved by induction over k. The base case for
k = 2 is quite easy and is left to the reader.

For the induction step we use one of the restrictions de�ned above. Assume for de�niteness
that k is odd, so that the gates on the bottom level are AND gates. De�ne the sets Bi in the
partition to be the set of variables leading into an AND gate. Recall that since the de�ning circuit

of fmk is a tree the blocks are disjoint. Set q =
q

2k logm
m and apply a random restriction from R+

q;B .

In the case of the parity function even after applying a restriction, it was trivial that the
remaining circuit still computed parity or the negation of parity. In the case of fmk , we have tol
prove that the new restrictions used transform fmk into something that is very close to fmk�1.

Lemma 8: If k is odd then the circuit that de�nes fmk d�g(�) for a random � 2 R+
q will contain the

circuit that de�nes fmk�1 with probability at least 2
3 , for all m such that m

logm � 100k, m > m1,

where m1 is some absolute constant.

Remark 10 Lemma 8 holds for even k when R+ is replaced by R�.
Proof: The fact that k is odd implies that the two lower levels look like:

Figure 7
We establish a series of facts.
Fact 1: The AND gate corresponding to block Bi takes the value si for all i, with probability at
least 5

6 for m > m0.
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The AND gate corresponding to block Bi takes the values si precisely when not only ones are

given to the block. The probability of this happening is (1 � q)jBij = (1 �
q

2k logm
m )

p
km

2 logm <

e�k logm < 1
6
m�k for m > m0. Thus the probability that this happens for any block Bi is bounded

by 1
6 for m > m0.

Fact 2 With probability at least 5
6 at least

p
(k � 1)m logm=2 inputs given the value � by �g(�)

to each OR gate at level k � 1. Again this is true only for su�ciently large m.
The expected number of such inputs is

p
2km logm and the fact follows from known estimates

using m
logm � 100k. For completeness let us include a very elementary proof.

Let pi be the probability that an OR gate has as input exactly i AND gates which take the
value �. Then

pi =

�
m

i

�
(
2k logm

m
)
i

2 (1�
r

2k logm

m
)m�i:

Then for i <
p
km logm we have pi=pi�1 �

p
2. Using pp

mk logm
< 1 we estimate

Pp
mk logm=2

i=1 pi

by

p
mk logm=2X

i=1

pi � pp
mk logm=2

1X
i=0

2�
i

2 � 4pp
mk logm=2

�

4
p
2
�(1� 1p

2
)
p
mk logm

pp
mk logm

� 4
p
2
�(1� 1p

2
)10k logm � 1

6
m�k

for m > m0.
To sum up, with probability at least 2

3 all OR gates at level k � 2 will remain undetermined,

and have at least
p
(k � 1)m logm=2 variables as inputs. This constitutes the de�ning circuit for

fmk�1. The lemma is proved.

Let us now �nish the proof Theorem 5. We need to perform the induction step. This is done
using the same argument as in the proof of Theorem 2. Apply a restriction from R+

q;B to the circuit.
Observe �rst that if m

logm < 100k the result of the theorem is trivial and hence we can assume that
the reverse inequality holds. By Lemma 8 the de�ning circuit still computes a function as di�cult
as fmk�1 and setting some of the remaining variables the circuit can be made into the de�ning circuit
of fmk�1.

On the other hand suppose that there existed a circuit of depth k, bottom fanin 1
12
p
2k

q
m

logm

and size 2
1

12
p
2k

p
m

logm which computed fmk . By using Lemma 4 and reasoning as in the proof of
Theorem 2 we can interchange the ANDs and ORs on the last two levels without increasing the
bottom fanin. Now it is possible to collapse two adjacent levels of OR gates and the resulting
circuit will be of depth k� 1. As in the proof of Theorem 2 the gates corresponding to subcircuits
of depth 2 in this new circuit corresponds to gates of depth 3 in the old circuit. Thus we have
obtained a circuit certi�ed not to exist by induction.

6. Separation of Complexity classes by Oracles

As mentioned in the introduction lower bound results for small depth circuits can be used to
construct oracles relative to which certain complexity classes are di�erent [FSS],[S]. In particular
the result for parity implies that there are oracles for which PSPACE is di�erent from the poly-
nomial time hierarchy. In the same way Theorem 4 implies that there are oracles separating the
di�erent levels within the polynomial time hierarchy. As previously remarked, Yao's bounds [Y]
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were su�cient to obtain these separations. Cai [C] proved that PSPACE was di�erent from the
polynomial time hierarchy even for a random oracle. To prove this result one needs to establish that
a small circuit makes an error when trying to compute parity on a random input with a probability
close to 1

2
. This problem and related problems are studied in [BoH].

To prove that a random oracle separates the di�erent levels within the polynomial hierarchy
one would have to strengthen Theorem 4 to say that no depth k � 1 circuit computes a function
which agrees with fmk for most inputs. This is not true in the case of fmk since if k is even(odd),
the constant function 1(0) agrees with fmk for most inputs. However, perhaps it is possible to get
around this by de�ning other functions more suited to this application.
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