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1. Introduction

As witnessed by the book of Garey & Johnson. (1979), already in the late
1970’s most optimization problem were classified as either being NP-hard or
solvable in polynomial time. Many interesting and important problems are NP-
hard and given that we cannot solve them optimally and efficiently we turn to
heuristics and/or approximation algorithms.

For a maximization problem, we say that we have a C-approximation algo-
rithm if the algorithm always, or in expectation over its own internal random
choices, returns a solution whose value is at least C times the value of the
optimal solution. Determining, for central optimization problems, the best ap-
proximation ratio achievable in polynomial time seemed at first a daunting task
but progress has been relatively rapid. For many problems it is the case that
early approximation algorithms can, by the use of inapproximability techniques
originating from the PCP-theorem of Arora et al. (1998), be proved to be es-
sentially optimal, see for instance Feige (1998); Feige & Kilian (1998); H̊astad
(1999, 2001); Khot (2001).
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One class of problems containing many interesting and widely studied prob-
lems is the set of constraint satisfaction problems, abbreviated as CSPs. We
have a set of n variables and we are given a set of constraints each related
to only a constant number of the variables and the goal is to find an assign-
ment that satisfies all constraints, or, more generally, the maximal number of
constraints. The most basic CSP is 3-Sat, the question of given a Boolean
formula in conjunctive normal form with three literals in each clause to find an
assignment that satisfies all the clauses. This problem was on the original list
of NP-complete problems given by Cook (1971) and has remained a favorite
problem to use in reductions.

Let us consider Max-3-Sat, the optimization version of 3-Sat, where we
try to satisfy the maximum number of clauses, and let us assume that each
clause contains exactly 3 literals. A random assignment satisfies each clause
with probability 7/8 and hence just picking a random assignment gives an 7/8-
approximation algorithm. One could have thought that there should exist more
sophisticated techniques to approximate this problem, but, maybe surprisingly,
as proved by H̊astad (2001), it is the case that for any ε > 0 it is NP-hard to
approximate Max-3-Sat within 7/8 + ε. Furthermore, there are also a num-
ber of other CSPs such that the random assignment algorithm is essentially
the best we can do and some some examples can be found in H̊astad (2001);
Samorodnitsky & Trevisan (2000).

At about the same time as we have been able to prove better and better
lower bounds on the approximability of some NP-hard optimization problems,
progress has also been made on the positive side. An often used tool for de-
signing efficient approximation algorithms has been semi-definite programming
introduced in this context by Goemans & Williamson (1995) in the celebrated
paper which obtains the ≈ .878-approximation algorithm for Max-cut as well
as strong bounds for the approximability of Max-2-Sat and directed Max-cut.
The ratio obtained for Max-cut is still the largest known and recently Khot
et al. (2007) have given support for the possibility that it might be the largest
ratio achievable in polynomial time.

CSPs have been classified in various ways. The classic result by Schae-
fer (1978) characterized exactly for which Boolean CSPs satisfiability can be
decided in polynomial time. Creignou (1995) (see also Khanna et al. (2000)
and the book Creignou et al. (2001)) extended this to the Max-CSP-problems
by classifying the optimization problems as either lying in P or being Max-
SNP-hard. In the latter case, as a consequence of the PCP-theorem, for each
problem there is some constant c < 1 such that it is NP-hard to approximate
the problem within c. As a curiosity one might note that there are CSPs where
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the satisfiability problem is easy while the optimization problem is hard. A
prime example would be sets of linear equations modulo 2. If all equations
can be simultaneously satisfied then it is easy to find a solution by Gaussian
elimination, but once the system is inconsistent it is hard to find the optimal
solution, and in general one cannot even do much better than finding a random
solution, see H̊astad (2001).

In either of the two cases mentioned above, the class of problems that is
solvable in polynomial time is highly limited. We believe that a more interesting
classification of CSPs is given by approximation resistance. We say that a
predicate is approximation resistant if the trivial algorithm that picks a random
assignment is essentially the best possible polynomial time algorithm. We
believe that this is a fundamental property as approximation resistance is a
very strong indication that nothing useful can be said about this optimization
problem in polynomial time. Problems that are NP-hard but not approximation
resistant can at least be said to be slightly tractable.

By the results mentioned above we know that Max-3-Sat is approximation
resistant while Max-Cut is not. Although our information is far from complete
we do have many partial results. We know, by Goemans & Williamson (1995),
that we have no approximation resistant constraints over Boolean variables
that are binary, i.e., which depends on exactly two Boolean variables. If we
widen the constraint to depend on three variables a complete classification was
given by Zwick (1998): a constraint is approximation resistant if and only if it
is implied by a parity constraint, i.e. if all rejected inputs have the same parity.
The classification of constraints on four variables does not seem to follow such
simple rules, but recently a systematic study has begun by Hast (2005) and over
three quarters of the predicates are already proved either to be approximation
resistant or to allow non-trivial approximation. Also, many predicates that
depend on more variables have been classified in the same paper.

The approximation algorithms for binary Boolean predicates of Goemans
& Williamson (1995) build on semi-definite programming and as the technique
is very general one should expect it to extend to other situations. If we keep
the width of each constraint at two but increase the size of the domain, other
algorithms that rely on semi-definite programming have been successfully de-
signed.

Andersson et al. (2001) showed that if we allow only two variables in each
equation then, for the problem of linear systems of equations mod m, it is
possible to construct an efficient algorithm giving a non-trivial approximation
ratio. Engebretsen & Guruswami (2004) extended the result of Andersson
et al. (2001) to establish non-trivial approximability for any binary constraint
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over any domain with the restriction that for each value of one variable we
have the same number of values of the other variable that fulfill the constraint.
Engebretsen and Guruswami also conjectured that their result would extend
to the more general situation and in fact that any binary predicate over any
domain does allow non-trivial approximability in polynomial time. We prove
this conjecture and indeed show that semi-definite programming is, in this
sense, universal for binary constraints.

Our approach is based on the approach of Engebretsen & Guruswami (2004)
and we use essentially the same formulation of the semi-definite program and
also the main procedure to obtain a solution to the CSP is the same. The
novelty that enables us to obtain the new result is simple but still powerful:
When rounding the solution for a semi-definite program to a solution to the
underlying combinatorial problem one usually relies on a completely local anal-
ysis (and this is the case also in the paper Engebretsen & Guruswami (2004)).
In a local analysis one compares the probability that a constraint is satisfied
with the contribution to the objective function of the semi-definite program.
We go a small step beyond this by looking at the linear terms in the objective
function separately, and analyzing them globally. If the linear terms give a
large contribution to the objective function, then it is simple to find a solution
that is better than a random solution. If the linear terms are small then in fact
they can, essentially, be discarded in the local analysis and this enables us to
get the result.

The approach of looking at the linear terms in a global way seems to be
useful and it is one main technique used, in a slightly different form, by Hast
(2005) to prove that many Boolean predicates on 4 or more variables are not
approximation resistant.

An outline of this paper is as follows. We start in Section 2 by giving
some preliminaries. In Section 3 we give our main result. The approximation
ratio obtained, although non-trivial, is still not that far from the trivial ratio
and thus the approximation guarantee gives something better than a random
assignment only for almost satisfiable instances. Our algorithm can be tuned
to have much stronger properties and in Section 4 we prove that whenever the
optimal solution is significantly better than a random solution we can set the
parameters to find an assignment that does significantly better than random.
We end by some final remarks in Section 5.

This is the full version of the results described in the conference paper given
by H̊astad (2005).
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2. Preliminaries

We have n variables (xi)
n
i=1 each taking values in [d] = {1, 2, . . . d} for some

integer d ≥ 2.
We have a constraint satisfaction problem given by m binary constraints

(Ci)
m
i=1. One could ask for the constraints to be of the same “kind” , e.g., to be

a linear equation, but as this is not needed for our algorithm, let us formulate
the problem in as much generality as possible.

The i’th constraint is over the variables xai
1
and xai

2
and the constraint is

satisfied iff this pair of variables does not take one of ti specified values given
as (bi,j

1 , bi,j
2 )tij=1. To write our objective function in a convenient form let us

introduce the indicator variable Ij
i which takes the value 1 if xi takes the value

j and is 0 otherwise. With this notation the number of satisfied constraints is
exactly

m−
m∑

i=1

ti∑
j=1

I
bi,j
1

ai
1
I

bi,j
2

ai
2
.(2.1)

To eliminate one index from this rather cumbersome expression let us change
notation slightly. The total number of terms in the sum is

∑m
i=1 ti and let us

write this number as tm. This is a natural notation as in many applications
each constraint rejects equally many pairs and then t = ti for 1 ≤ i ≤ m, but
in general t is a rational number in the interval [1, d2 − 1].

It is not important for us whether the same pair of variables appear together
in many constraints and hence by a redefinition of the a and b-variables it is
possible to write (2.1) in the form

m−
tm∑
k=1

I
bk
1

ak
1
I

bk
2

ak
2

(2.2)

and this is the formulation that we use. Note that from this formulation it is
clear that if we can give a non-trivial approximation ratio for the case ti = 1 for
1 ≤ i ≤ m then we can get a non-trivial approximation ratio for any other case.
This fact has been observed many times and is stated explicitly by Engebretsen
& Guruswami (2004).

For an instance ϕ of this problem let OPT (ϕ) denote the number of con-
straints satisfied by the optimal assignment. Furthermore for an assignment α
let V al(ϕ, α) be the number of constraints of ϕ satisfied by α. We have the
following basic definition.



6 Johan H̊astad

Definition 2.3. A probabilistic algorithm A is a C-approximation algorithm
if for any ϕ, we have

E[V al(ϕ,A(ϕ))] ≥ C ·OPT (ϕ)

We remark that the expectation is only over the internal random choices
of A. The simplistic A just giving random independent value to the variables
satisfy

E[V al(ϕ,A(ϕ))] = m− tm

d2
≥ (1− t

d2
) ·OPT (ϕ),

and our goal is to design an algorithm with a better approximation ratio.

2.1. Semi-definite programming. We need very little from semi-definite
programming and refer to the paper by Goemans & Williamson (1995) for more
information. In a semi-definite program we have, for some integer s, variables
(Yi,j)

s
i,j=1 to be thought of as an s× s matrix. Apart from linear conditions on

these variables we have the constraint that the matrix Y is symmetric and pos-
itive semi-definite. Under these constraints we can, by the ellipsoid algorithm
of Grötschel et al. (1981) or by the result of Alizadeh (1995), find the optimum
of any linear function in the Y -variables to any desired accuracy.

For notational convenience we assume that we actually find the exact opti-
mum. This “cheating” only results in an arbitrarily small factor gain in the ap-
proximation ratios obtained, and can be absorbed by changing the non-explicit
constant c in each of Theorem 3.1 and Theorem 4.1 below.

As Y is symmetric and positive semi-definite there are vectors (vi)
s
i=1 such

that the elements of Y are the pairwise inner products of these vectors, i.e.
Yi,j = (vi, vj). We use this point of view and formulate our semi-definite pro-
gram in terms of the vectors vi and their inner products.

3. The main result

We are now ready for our main result.

Theorem 3.1. There is an absolute constant c > 0 such that for any d the
following is true: There is a probabilistic polynomial time algorithm A such
that for an instance ϕ of the constraint satisfaction problem over [d] formalized
as (2.2)

E[V al(ϕ,A(ϕ))] ≥ (1− t

d2
+

ct

d4 log d
) ·OPT (ϕ).
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Remark: The exact quantitative statement of this theorem improves over
the results of Engebretsen & Guruswami (2004) for their class of problems.
That paper obtained results when t = d and derived an approximation ratio of
1− 1

d
+Ω(d−4) while we get 1− 1

d
+Ω(d−3(log d)−1). This minor improvement

is due to a slightly more streamlined analysis rather than any real difference in
the algorithms when applied in this special case.

We now turn to the proof of the theorem.

Proof. We model each variable xi as a set of d vectors (vj
i )

d
j=1. We also

have a special vector v0. Consider the following semi-definite program.

(v0, v0) = 1(3.2)

(v0, v
j
i ) ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ d(3.3)

d∑
j=1

(v0, v
j
i ) = 1, 1 ≤ i ≤ n(3.4)

d∑
j=1

(vj
i , v

j
i ) ≤ 1, 1 ≤ i ≤ n(3.5)

∑
j1,j2

(vj1
i1
, vj2

i2
) = 1, 1 ≤ i1, i2 ≤ n(3.6)

where the objective function is to maximize

m−
tm∑
k=1

(v
bk
1

ak
1
, v

bk
2

ak
2
).(3.7)

Our semi-definite program is very close to the corresponding program of Enge-
bretsen & Guruswami (2004). One slight difference is that we have an inequality
in (3.5). This little detail is however of no real importance and is only there to
allow us to more easily construct a feasible solution in the proof of Lemma 3.13
below.

Let us start with an observation.

Lemma 3.8. The optimal value of the semi-definite program defined by (3.2)
to (3.7) is at least OPT (ϕ).

Proof. Take any assignment α to the variables of ϕ. Set vj
i = v0 if αi = j

and vj
i = 0 otherwise. It is a feasible solution to the semi-definite program

and the value of (3.7) is V al(ϕ, α). The optimum over a wider class of possible
vectors can only make the optimum larger. �
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We turn to the question of given a good solution to the semidefinite program
how to construct a good solution to the constraint satisfaction problem.

In the semidefinite program it is not difficult to see that for any feasible
solution

d∑
j=1

vj
i = v0(3.9)

for any i. Indeed, by (3.6) with i1 = i2 = i we know that
∑d

j=1 v
j
i is a unit

vector and by (3.2) and (3.4) it must equal v0. Conversely, note that (3.9)
clearly implies (3.6) and hence it is sufficient to check this condition.

Our algorithm starts by finding an (almost) optimal solution to the semi-
definite program and suppose the solution is given by

vj
i = (αj

i +
1

d
)v0 + wj

i

where

d∑
j=1

αj
i = 0(3.10)

and (v0, w
j
i ) = 0, and furthermore, by (3.9), it follows that

d∑
j=1

wj
i = 0.

Suppose the obtained maximum is m(1 − δ). If δ ≥ t
4d2 then we proceed by

picking a random solution, ignoring the solution to the semi-definite program,
obtaining an assignment with expected objective value

(1− t

d2
)m ≥ (1− t

d2 )

(1− t
4d2 )

·OPT (ϕ).(3.11)

Using
1− x

1− x
4

≥ 1− 3x

4
− x2

4

which is valid for any 0 ≤ x ≤ 1 we see that the bound (3.11) is at least

(1− 3t

4d2
− t2

4d4
) ·OPT (ϕ) ≥ (1− t

d2
+

t

4d4
) ·OPT (ϕ)



Every 2-CSP Allows Nontrivial Approximation 9

establishing the theorem in this case. In view of this we may from now on
assume that δ ≤ t

4d2 .

We proceed to find a good solution to the variables of ϕ.
In the sum (2.2) we say that bk

j is a non-desired value for xak
j
, and we let

f j
i be the number of times that j is a non-desired value for xi and consider the

quantity

∑
i,j

f j
i α

j
i .(3.12)

Note first that if the non-desired values for xi are uniformly distributed,
i.e. if f j

i only depends on i, then in fact (3.12) equals 0 due to the fact that∑
j α

j
i = 0. It is not difficult to see that if the non-desired values are not

uniformly distributed then one can find values of xi that satisfy more than
a fraction (1 − t

d2 ) of the constraints and the larger distance from uniformity
the better assignment is possible. This is essentially the basis for the first
approximation algorithm. Let us first make a minor observation.

Lemma 3.13. We have

tm∑
k=1

α
bk
1

ak
1
α

bk
2

ak
2
≤ −1

d

∑
i,j

f j
i α

j
i .

Proof. The sum,
∑tm

k=1(v
bk
1

ak
1
, v

bk
2

ak
2
), in the objective function, (3.7), equals

tm

d2
+

1

d

∑
f j

i α
j
i +

tm∑
k=1

α
bk
1

ak
1
α

bk
2

ak
2
+

tm∑
k=1

(w
bk
1

ak
1
, w

bk
2

ak
2
).(3.14)

Now consider the set of vectors ṽj
i defined by

ṽj
i =

1

d
v0 + wj

i .

We claim that these are feasible vectors for the semi-definite program. Note
first that conditions (3.2) and (3.3) are obvious. Furthermore, since

d∑
j=1

ṽj
i =

d∑
j=1

vj
i = v0
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conditions (3.4) and (3.9) (which as noted implies (3.6)) are also true and the
condition that remains to be checked is (3.5). Because of (3.10) we have

1 ≥
d∑

j=1

(vj
i , v

j
i ) =(3.15)

d∑
j=1

((αj
i )

2 +
1

d2
+ (wj

i , w
j
i )) =(3.16)

d∑
j=1

((αj
i )

2 + (ṽj
i , ṽ

j
i )) ≥(3.17)

d∑
j=1

(ṽj
i , ṽ

j
i )(3.18)

and thus also (3.5) holds for the vectors ṽj
i . The sum in the objective function

(3.7) is, for this set of vectors,

tm

d2
+

tm∑
k=1

(w
bk
1

ak
1
, w

bk
2

ak
2
)(3.19)

and as the vj
i give an optimal solution this value must be larger than (3.14)

and we conclude that the lemma holds. �

We now turn to finding a good assignment and we have two cases depending
on whether

∑
i,j

f j
i α

j
i ≤ −tm

2d
.(3.20)

Let us denote by Case 1 when this inequality holds and by Case 2 when it does
not. In Case 1 we have the the following strategy for obtaining a good solution.

Set xi to the value j with probability pj
i = 1

d
+ 1

2
αj

i .

By (3.10) if follows that
∑

j p
j
i = 1 for any i and by (3.3) we have pj

i ≥ 0
for any i and j and hence we have a correct set of probabilities.
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The expected number of falsified constraints under this strategy is∑
k

(
1

d
+

1

2
α

bk
1

ak
1

) (
1

d
+

1

2
α

bk
2

ak
2

)
=

tm

d2
+

1

2d

∑
i,j

f j
i α

j
i +

1

4

∑
k

α
bk
1

ak
1
α

bk
2

ak
2

≤

tm

d2
+

1

4d

∑
i,j

f j
i α

j
i ≤

tm

d2
− tm

8d2
,(3.21)

where the first inequality follows from Lemma 3.13 and the second inequal-
ity is a consequence of the assumption (3.20). We conclude that under the
assumption (3.20) we have an

(1 +
t

8d2
− t

d2
)

approximation ratio, independently of δ. This establishes the theorem in Case
1 and we now turn to Case 2 when (3.20) is not true.

Let us define

uj
i = vj

i −
1

d
v0 = αj

iv0 + wj
i

to be shifted variants of the vectors. Note that as vj
i are at most unit length

and αj
i ≥ −1

d
we have

‖uj
i‖2 ≤ 1 +

1

d2
.(3.22)

Let r be a random vector where each coordinate is picked independently from
the normal distribution with mean 0 and standard deviation 1, a distribution
we call N(0, 1). It is well known, and important for us, that the distribution
of r is spherically symmetric and in fact the inner product of r with any unit
length vector has the normal distribution with mean 0 and standard deviation
1. Define

sj
i = (uj

i , r).

Note intuitively as the uj
i are vectors of length at most marginally larger than

one we would expect most sj
i to be bounded by a constant in size. Let D =

Θ(
√
log d) be such that

4√
π
De−D2/4 =

1

8d3
.(3.23)
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and proceed as follows. If |sj
i | ≤ D for 1 ≤ j ≤ d then set tji = sj

i for all j and
otherwise set tji = 0 for all j. Note that in either case we have∑

j

tji = 0(3.24)

as
∑

j u
j
i is the zero vector. Consider the following strategy.

Set xi = j with probability qj
i = 1

d
(1 + tji/D).

Because of (3.24) we have
∑

j q
j
i = 1 and since |tji | ≤ D the defined proba-

bilities are non-negative.
We get that the expected number of falsified constraints under this strategy

is

1

d2

tm∑
k=1

(1 + t
bk
1

ak
1
/D)(1 + t

bk
2

ak
2
/D) =

tm

d2
+

1

d2D

tm∑
k=1

(t
bk
1

ak
1
+ t

bk
2

ak
2
) +

1

d2D2

tm∑
k=1

t
bk
1

ak
1
t
bk
2

ak
2
.(3.25)

As r and −r are equally likely we see that E[tji ] = 0 for any i and j and thus
we only need to consider the second sum. It is easier to analyze the s-values
and the following lemma is useful.

Lemma 3.26. For any i1, i2, j1, j2 we have

|E[tj1i1 t
j2
i2
]− E[sj1

i1
sj2

i2
]| ≤ 1

8d2
.

Proof. Because of (3.22) each sj
i is normally distributed with mean 0 and

standard deviation at most
√
2. Let

s = max
i∈i1,i2,j∈[d]

(|sj
i |).

The difference of tj1i1 t
j2
i2

and sj1
i1
sj2

i2
is 0 if s ≤ D and otherwise it is at most s2.

The density function of the maximum of 2d random variables is at most the
sum of the density functions of the variables and as the density of N(0, σ) at
s is increasing in σ for σ ≤ s we conclude that the difference in expectation is
at most

2d · 1√
2 · √2π

∫
|s|≥D

s2e−s2/4ds =
2d√
π

∫ ∞

D

s2e−s2/4ds.
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Integrating by parts and we see that this is bounded by

4d√
π
De−D2/4 − 4d√

π

∫ ∞

D

e−s2/4ds ≤ 4d√
π
De−D2/4.

The lemma now follows by the property (3.23) defining D. �
In view of the lemma we can now study the s-values and we have the

following lemma:

Lemma 3.27. Let x1 and x2 be any vectors and let r be a random vec-
tor in which each coordinate is picked independently from N(0, 1). Then
E[(x1, r)(x2, r)] = (x1, x2).

Proof. Suppose that (x1, x2) = β and that ‖xk‖ = γk for k = 1, 2. As the
distribution of r is spherically symmetric we can pick any coordinate system
and in particular we can assume that all vectors lie in R2 and

x1 = (γ1, 0)

and

x2 = (
β

γ1

,

√
γ2

2 −
β2

γ2
1

).

Writing r = (r0, r1), and as E[r0r1] = 0 we have

E[(x1, r)(x2, r)] = E[βr2
0] = β.

�
We conclude that

E

[∑
k

s
bk
1

ak
1
s

bk
2

ak
2

]
=

∑
k

(u
bk
1

ak
1
, u

bk
2

ak
2
) =(3.28)

∑
k

(v
bk
1

ak
1
− 1

d
v0, v

bk
2

ak
2
− 1

d
v0) =(3.29)

∑
k

(v
bk
1

ak
1
, v

bk
2

ak
2
)− 1

d

∑
k

(α
bk
1

ak
1
+ α

bk
2

ak
2
)− tm

d2
=(3.30)

δm− tm

d2
− 1

d

∑
i,j

f j
i α

j
i ≤(3.31)

δm− tm

d2
+

tm

2d2
= δm− tm

2d2
≤(3.32)

− tm

4d2
,(3.33)
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where the first inequality follows from the fact that (3.20) is false and the
second inequality follows from the assumption that δ ≤ t

4d2 . Substituting the

result of Lemma 3.26 into (3.25), and remembering that E[tji ] = 0 for any i
and j, we see that the rounding procedure falsifies on the average, over r and
the choices of xi, at most

tm

d2
+

1

d2D2

(
tm

8d2
− tm

4d2

)
=

tm

d2
− tm

8d4D2
(3.34)

constraints and hence the theorem is established also in Case 2.
�

4. Maintaining an advantage

The guaranteed approximation ratio of the algorithm described in the previous
section is useful only for instances that are almost satisfiable. In this section
we prove the stronger statement that, as long as the optimal solution beats
the random solution by a constant factor, we can efficiently find an assignment
that beats the random assignment by another, smaller constant factor. Similar
theorems for the Boolean case have previously been established by Zwick (1999)
and a similar quantitative result for the case d = 2 is established using similar
methods to ours by Charikar & Wirth (2004).

Theorem 4.1. There is a universal constant c > 0 such that the following is
true. Suppose OPT (ϕ) ≥ m(1− t

d2 +ε) then there is an probabilistic polynomial
time algorithm A such that

E[V al(ϕ,A(ϕ))] ≥ m(1− t

d2
+

εc

d2 log (dt/ε)
).

Proof. We follow the proof of Theorem 3.1 only adjusting the parameters.
In particular we start with the same semi-definite program defined by (3.2)-
(3.7). By the assumption on OPT (ϕ) we find a set of vectors vj

i with objective
value m(1− δ) where

δ ≤ t

d2
− ε.

We again split the analysis into two cases with the difference that the inequality
(3.20) is replaced by

∑
i,j

f j
i α

j
i ≤ −dεm

2
.(4.2)
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The probabilities pj
i in Case 1 are defined as in the proof of Theorem 3.1 and the

calculation for the expected number of falsified constraints is the same except
for the final step of (3.21) that uses (4.2) giving the final result

tm

d2
− εm

8
,

and this completes the analysis of Case 1.

The analysis of Case 2 is again almost identical but we redefine D to satisfy

4√
π
De−D2/4 =

ε

4dt
.

This implies that Lemma 3.26 remains true with the constant 1
8d2 replaced

by ε/(4t). In the calculation replacing (3.28)-(3.33) we use δ ≤ t
d2 − ε and

1
d

∑
i,j f

j
i α

j
i ≥ − εm

2
giving the total bound −εm/2. This implies that the final

calculation (3.34) is now replaced by

tm

d2
+

1

d2D2
(
εm

4
− εm

2
) =

tm

d2
− εm

4d2D2

and the proof is complete, as D2 = Θ(log (dt/ε)).
�

5. Final remarks

We have proved that semi-definite programming is a universal tool for estab-
lishing non-trivial approximation results for binary predicates over any domain.
The technique has also been used with good results for other problems such as
coloring of three-colorable graphs (see Arora et al. (2006) and the references in
this paper) and approximation of Max-4-Sat instances that also contain shorter
clauses given by Halperin & Zwick (2001). We will probably see many good
uses of semi-definite programming also in the future.

We have mainly addressed the question on whether our predicates allow
non-trivial approximation ratios and the quantitative results are not very good.
Clearly this could be improved, or one could try to prove (close to) matching
lower bounds. We note that, as d increases and for t = d2 − d, by a result
of Feige & Reichman (2004) the approximation ratio must turn to 0. Looking
at the new proof of the PCP-theorem by Dinur (2006) we see that this also
applies to satisfiable instances and a slightly smaller value of t.
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G. Andersson, L. Engebretsen & J. Håstad (2001). A New Way to Use Semidef-
inite Programming with Applications to Linear Equations mod p. Journal of Algo-
rithms 39, 162–204.

S. Arora, E. Chlamtac & M. Charikar (2006). New Approximation Guarantee
for Chromatic Number. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computating, 215–224.

S. Arora, C. Lund, R. Motwani, M. Sudan & M.Szegedy (1998). Proof ver-
ification and intractability of approximation problems. Journal of the ACM 45,
501–555.

M. Charikar & A. Wirth (2004). Maximizing quadratic programs: extending
Grothendieck’s inequality. In Proceedings of 45th Annual IEEE Symposium of Foun-
dations of Computer Science, 54–60.

S. Cook (1971). The complexity of theorem proving procedures. In 3rd Annual
ACM Symposium on Theory of Computing, 151–158.

N. Creignou (1995). A dichotomy theorem for maximum generlized satisfiability
problems. Journal of Computer and System Science 52, 511–522.

N. Creignou, S. Khanna & M. Sudan (2001). Complexity Classifications of
Boolean Constraint Satisfaction Problems .

I. Dinur (2006). The PCP Theorem by gap amplification. In Proceedings of 38th
Annual ACM symposium on Theory of Computing, 241–250.



Every 2-CSP Allows Nontrivial Approximation 17

L. Engebretsen & V. Guruswami (2004). Is constraint satisfaction over two
variables always easy? Random Structures and Algorithms 25, 150–178.

U. Feige (1998). A threshold of ln n for approximating set cover. Journal of the
ACM 45, 634–652.

U. Feige & J. Kilian (1998). Zero-knowledge and the chromatic number. Journal
of Computer and System Sciences 57, 187–200.

U. Feige & D. Reichman (2004). On Systems of Linear Equations with Two Vari-
ables per Equation. In Approximation, Randomization and Combinatorial Optimiza-
tion, K. Jansen, S. Khanna, J. Rolim & D. Ron, editors, 117–127. Proceedings
of Approx 2004 and Random 2004, LNCS 3122.

M.R. Garey & D.S. Johnson. (1979). Computers and Intractability. W.H. Free-
man and Company.

M. Goemans & D. Williamson (1995). Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM 42, 1115–1145.

M. Grötschel, L. Lovász & A. Schrijver (1981). The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica 1, 169–197.

E. Halperin & Uri Zwick (2001). Approximation algorithms for Max 4-Sat and
rounding procedures for semidefinite programs. Journal of Algorithms 40, 184–211.

G. Hast (2005). Beating a random assignment. KTH, Stockholm. Ph.D Thesis.
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