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Abstract—A novel forensic tool used for assessing the authen-
ticity of digital audio recordings is known as the electric network
frequency (ENF) criterion. It involves extracting the embedded
power line (utility) frequency from said recordings and matching it
to a known database to verify the time the recording was made, and
its authenticity. In this paper, a nonparametric, adaptive, and high
resolution technique, known as the time-recursive iterative adap-
tive approach, is presented as a tool for the extraction of the ENF
from digital audio recordings. A comparison is made between this
data dependent (adaptive) filter and the conventional short-time
Fourier transform (STFT). Results show that the adaptive algo-
rithm improves the ENF estimation accuracy in the presence of
interference from other signals. To further enhance the ENF esti-
mation accuracy, a frequency tracking method based on dynamic
programming will be proposed. The algorithm uses the knowledge
that the ENF is varying slowly with time to estimate with high ac-
curacy the frequency present in the recording.

Index Terms—Audio forensics, dynamic programming, electric
network frequency (ENF) criterion, iterative adaptive approach
(IAA).

I. INTRODUCTION

HE use of digital recorders has become more prevalent in
the world today due to the advancement in digital tech-
nology and the significant progress made in the field of digital
signal processing (DSP). Prior to the increased use of digital
recorders, forensic audio analysis relied on different techniques
of audio authentication. For instance, the magnetic signatures
that are left by the erase, record or play heads on the magnetic
tape of analog recorders can be used to verify the authenticity
of such recordings.
When it comes to digital recordings, alterations can be made
very easily without leaving behind such imprints, because dig-
ital recorders produce a recording by converting sound vari-
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ations to a series of numbers, making authentication of these
recordings a lot more difficult [1]. The importance of being able
to verify the authenticity of a recording can be seen in litigation
cases [2], where digital recordings are brought forward as evi-
dence in a trial. Therefore, more reliable methods of verifying
the authenticity of digital recordings need to be researched.

The electric network frequency (ENF) criterion was proposed
by Grigoras [2], [3] to address the issue of digital audio authen-
tication. The ENF criterion is based on extracting the utility fre-
quency or ENF from a digital audio recording and matching the
extracted frequency estimate to a reference database in order to
determine the authenticity and also time of the digital recording.
This process is possible because, in some cases, digital recorders
(even some battery powered recorders [4]), can pick up the au-
dible sound that is generated by the oscillation of a power grid’s
alternating current at this frequency. The frequency of oscilla-
tion is approximately 60 Hz in the U.S., whereas in Europe it os-
cillates at approximately 50 Hz. The corresponding harmonics
of this frequency might also be present in the digital recording.

The ENF criterion is based on two assumptions [5]. Firstly,
the ENF for interconnected networks is the same at all points
within the network. Secondly, the frequency varies randomly
within a given interconnection, and hence, is not repeatable over
a long period of time.

There are three known methods of extracting the ENF over
time from a digital recording [2], [3]. They are as follows.

1) Time/frequency domain analysis—This method is based on
computing the spectrogram of the signal and visually com-
paring it to the database.

2) Frequency domain analysis—This method is based on
selecting the frequency location corresponding to the
maximum amplitude of the power spectrum of segments
(frames) of the data after applying a bandpass filter.

3) Time domain analysis—This method is based on mea-
suring the zero crossings of the signal in the time domain
after a bandpass filter has been applied to the recording.

Recently in [6], a quadratic interpolation scheme was applied
to the frequency domain analysis method to estimate the spectral
peak locations (frequencies) more accurately. This reduces the
estimation error resulting from the use of a fixed grid size in the
spectral estimation process.

Besides the time-domain analysis, the mentioned methods es-
timate the ENF based on computing the fast Fourier transform
(FFT) of overlapping segments (frames) of the data known as
the short-time Fourier transform (STFT), which is limited by the
tradeoff between time resolution and frequency resolution [7].
Parametric methods such as the frequency selective ESPRIT,
which give superior resolution compared to the FFT, can also be
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TABLE 1
NOTATIONS

X a vector

X a matrix

diag(x) a diagonal matrix with elements of x on the diagonal
H conjugate transpose of a matrix or vector

T transpose of a matrix or vector

[[-ll2 £2 norm

z estimate of scalar x

JAY

definition

used successfully to extract the ENF from one frame to another.
However, in the presence of significant interference within a
given frame, the parametric methods yield poor frequency es-
timates because of their sensitivity to an assumed data model.

This paper focuses on two methods of extraction. The first
builds upon the frequency domain analysis with quadratic in-
terpolation. However, in place of the FFT, the spectrum is esti-
mated for each segment of the data using a nonparametric and
high resolution adaptive algorithm known as the iterative adap-
tive approach (IAA) [8]. In the presence of interfering signals
with frequencies within the range of values the ENF can take
on, IAA yields more accurate estimates of the ENF compared
to the FFT as a result of the improved spectral resolution and in-
terference suppression capability. The second method involves
applying a frequency tracking algorithm based on discrete dy-
namic programming [9], which takes into account the slowly
varying nature of the ENF over time. This tracking algorithm
is necessary because, in some frames of the data, the maximum
spectral peak might correspond to an interference signal rather
than the network frequency signal even within the acceptable
ENF limits. The ENF is then estimated inaccurately, which can
result in a false diagnosis that the recording in question has been
edited.

It is worthwhile to point out that, in order for the proposed
methods to work, the ENF must be embedded in the recording,
which is not always the case especially in some battery oper-
ated recorders [4]. This is certainly a drawback of using the ENF
criterion for digital authentication. However, if the ENF is em-
bedded in a digital recording, more reliable methods of extrac-
tion need to be sought.

Extraction can also be carried out using the harmonics of the
ENF signal for the frequency estimation process. In some cases,
the harmonics may give better estimates because of a higher
signal-to-interference-and-noise ratio compared to the funda-
mental frequency.

The remaining sections of this paper are organized as fol-
lows. In Section II, the network characteristics and the network
frequency database are described. In Section III, the TAA and
TRIAA algorithms are described along with the frequency
tracking algorithm for ENF extraction. In Section IV, the ex-
perimental results based on a set of digital audio recordings are
presented. Finally, Section V contains the conclusions drawn
from the results.

Notation: Boldface uppercase and lowercase letters are used
to denote matrices and vectors, respectively. See Table I for
more details on notation.
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TABLE 11
ABBREVIATIONS

APES Amplitude and Phase Estimation

ENF Electric Network Frequency

ESPRIT  Estimation of Signal Parameters by Rotational Invariance
FDR Frequency Disturbance Recorder

FIAA Fast Iterative Adaptive Approach

TAA Iterative Adaptive Approach

QN-IAA  Quasi-Newton Iterative Adaptive Approach

STFT Short-time Fourier Transform

TRIAA Time-Recursive Iterative Adaptive Approach

Abbreviations: The abbreviations are presented for easy ref-
erence in Table II.

II. NETWORK FREQUENCY CHARACTERISTICS AND DATABASE

The frequency at which alternating current is distributed to
various customers from power stations corresponds to the utility
frequency or ENF. For European and most Asian countries the
value of this frequency is 50 Hz, while the value is 60 Hz in
North America and several countries in South America. Japan
uses both frequencies (50 and 60 Hz) for electricity distribution.
This frequency is determined by the speed of rotation of the
turbines used to drive the generators at the various power plants
[11]. Naturally, the rotation speed is not constant and varies
within a certain limit (approximately £0.05 Hz) depending
on the amount of load connected to the network and amount
of power generated at a given time. Experiments carried out
in some European countries [2], [12] have shown that this
frequency variation is random and unique within specific
geographic locations. This uniqueness in frequency variation
within a region, coupled with the fact that network frequency
is not repeatable over a long period of time, is what makes the
aforementioned ENF criterion possible.

A database of the network frequency is needed in order to
match the extracted ENF from a recording for verification. In
[2], such a database is created by connecting the sound card of
a computer to a transformer which is then connected directly
to an ac power outlet. The database currently being built in
North America involves deploying several sensors termed fre-
quency disturbance recorders (FDRs), which perform accurate
ENF measurements, up to about £0.0005 Hz. The measured
data collected by the FDRs is transmitted over the internet to
servers, where it can be analyzed and stored in a system termed
the information management system (IMS) [13]. This collection
forms the frequency monitoring network (FNET).

There are two major interconnections in North America and
three minor interconnections. These regions have unsynchro-
nized networks (frequency and phase) and are therefore con-
nected via high voltage direct current lines (HVDC) [14]. The
Eastern and Western interconnections form the major intercon-
nections, while the Quebec, Texas and Alaska interconnections
form the minor. The Alaska interconnection is isolated, in the
sense that it is not connected to any of the other interconnec-
tions. It is therefore generally not considered to be part of the
North American grid. Fig. 1 shows the distribution of the FDRs
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Fig. 1. FDR distribution in North America [10].

in Western, Eastern, Quebec and Texas Interconnections. Fre-
quency measurements collected by the FDRs in these intercon-
nections show that the frequency pattern is different at a given
time from one interconnection to another. However, the fre-
quency pattern is unique at different locations within each inter-
connection [10]. The FNET system, therefore, provides a viable
ENF database.

III. EXTRACTION ALGORITHMS

A. Frequency Domain Analysis (STFT) [2]

Due to the fact that the ENF varies with time, the extrac-
tion process involves analyzing a nonstationary data sequence.
STFT is a common method for time-frequency analysis of sig-
nals. This analysis assumes the signal of interest is stationary
within short time windows (frames); the FFT of the signal is
then computed for each frame. The frequency domain analysis
[2] method of extraction is based on this idea.

The process involves resampling the audio signal to a lower
sampling rate, to reduce the computational complexity of the
analysis. A bandpass filter with a narrow bandwidth is applied
to the signal with center frequency 50/60 Hz as a preprocessing
step. The rest of the analysis is described as follows. Let

z = [20, AR ZN_l]T (1)

denote the resampled and filtered discrete-time signal. This
signal is then split into R overlapping frames as shown in
Fig. 2, with each frame having length M and a shift from frame
to frame of length 7. Using the frequency domain analysis
method, the ENF of the rth frame is estimated by finding the
frequency that maximizes the spectrum of each frame which is
computed using the FFT-based periodogram.

In order to get a more accurate estimate of the frequency,
quadratic interpolation is used [6], [15]. This interpolation
scheme involves fitting a quadratic model of the form

log p(w) = m (w — wy,,. — A) +e¢ 2)

max
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Fig. 2. Segmentation of data for STFT.

around the frequency point that maximizes the power spectrum

= arg max ¢, {(wy) 3)
Wi

kmax

where wy, = 2wk/K,k = 0,1,...,K — 1 corresponds to
the frequency grid point of a frequency grid with size K, and
¢ (wy) is power spectrum of the rth frame.

The value of w that maximizes the model (2) is taken as
the estimated peak of the spectrum. This value is determined
by fitting the model to the highest sample of the power spec-
trum and the two adjacent points with corresponding frequen-
cies (wg, .. Wk, +1)- This value of w that maximizes
the model is

—1, Wk

max ’

W = Wk + A (4)

Ymax

where

1 pfa1-p
= (W, — Wi 5
2 671 _ 2ﬁ0 + ﬁl ( kmax—+1 anx) ( )

Be £10g ¢, (W), £=—1,0,1. (6)

The corresponding frequency estimate of the rth frame in Hz is
given by

F(r) = 2m (Why + A) F ™)

where F is the sampling frequency (in Hertz) of the signal.
The use of STFT will result in a tradeoff between frequency
resolution and time resolution. For a given frame length, this
tradeoff can be optimized by applying a rectangular window to
each frame, which will provide the best spectral resolution at a
cost of higher side lobes compared to other spectral windows.
In order to get improved spectral resolution over FFT, one has
to resort to using parametric methods or data-dependent (adap-
tive) nonparametric methods for spectral estimation. Parametric
methods, on the one hand, are not robust against data model er-
rors. On the other hand, nonparametric adaptive methods are
more robust, since they do not assume a specific parametric
data model. Well-known adaptive methods include the Capon
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algorithm and the amplitude and phase estimation (APES) al-
gorithm. These algorithms also provide higher resolution and
lower side lobes than the periodogram. However, these methods
are inadequate because they require multiple realizations (snap-
shots) of the random signal, which is not the case with the cur-
rent data, as only one snapshot is available for frequency esti-
mation. Spatial smoothing (segmenting and spectral averaging
of the data) can be used to improve the spectral estimates of
the Capon and APES algorithms in the one-snapshot case; but
the cost of doing this will be a degradation in the spectral res-
olution, which is not desirable. The wavelet transform is also
a common tool for time-frequency analysis. Contrary to the
STFT, which uses a fixed window size, the wavelet transform
uses short windows at high frequencies and longer windows at
low frequencies. The wavelet transform is therefore not suitable
for our problem because we are interested only in a small range
of frequencies.

IAA is a nonparametric data-dependent algorithm based
on weighted least squares (WLS), originally presented in [8]
for direction of arrival (DOA) estimation in array processing.
The TAA algorithm is capable of yielding high resolution and
low side lobes even in the case of a single snapshot [8], hence
making it suitable for estimating the ENF in the presence of
interferences.

B. 144 and TRIAA

The ENF can be extracted with high accuracy in the presence
of interference using the IAA algorithm for a given frame. The
proposed ENF extraction process follows (2)—(7), with the FFT
spectral estimate ¢, replaced by the IAA spectral estimate. The
IAA and TRIAA [16] used for spectral estimation of nonsta-
tionary data will be discussed in this section.

The spectral estimation problem can be setup as follows. Let
Y = [vo,y1---yar—1]T denote a uniformly sampled stationary
data sequence and A = [a(wp),alw;)...alwx_1)], where
a(wg) = [1,e/%, ... M DT corresponds to a steering
(frequency) vector, and wy, = 27k/K. k =0,1,..., K — 1 cor-
responds to a frequency grid point of a frequency grid with size
K. Also let @ = [a(wp), a(wr), - .., alwr —1)]F, with a(wy)

denoting the complex spectral estimates of ¥ at wy. The fol-
lowing data model can be formulated:

y = Aa ®

where the noise contributions of y are taken into account im-
plicitly [8].

The TAA algorithm solves for the spectral estimates a by
minimizing the following quadratic cost function in (9) using
weighted least squares (WLS):

Iy — a(wi)alwi)llg_, (@) ©

xHQ H(wy)x

Q(wr) =R — pka(wk)aH(wk)
R = APAH

where ||x\|a,l(wk) =

(10)
(11)

andP £ diag[po. p1, ... pr—1], withp, fork =0,..., K —1,

denoting the power estimate at each frequency grid point, given
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by |a(ws)|®. R is the covariance matrix of the data and Q(ws)
is the covariance matrix of the interference and noise, where in-
terference refers to all the signals at frequency grid points other
than the current grid point of interest wy. Minimizing the cost
function in (9) with respect to the «(wy,) fork =0,..., K — 1
gives the following solution:

a (w)Q~ (wi)y
af (wp)Q~Hwr)a(wr)’

é((wk) =

The solution in (12) can be rewritten as
afl(w, )Ry
aH(wk)Rfla(wk)?
E=0,1,...., K -1 (13)

&(wk) =

using the Woodbury matrix identity? and (10). This prevents the
computation of the interference covariance matrix Q ~* (wy,) for
each frequency grid point. Note that the computation of R !
requires the knowledge of «(wy) and vice versa. Hence this
algorithm is solved in an iterative manner, with the estimate
of « initialized using the FFT. This iterative algorithm takes
about 10 to 15 iterations to converge based on experimental and
numerical results.

Note also that without accounting for the interference from
other frequency grid points (without weighting), minimizing the
cost function in (9) for K = M gives the discrete Fourier trans-
form (DFT) of the signal

a’l (wi)y
M :
k=0,1,....M - 1.

&(wk) =
(14)

The TAA algorithm described is used for spectral estimation of
stationary data. Analogous to the STFT, the spectral content of a
nonstationary data sequence, such as (1), can be estimated using
the TRIAA [16]. The signal is split into overlapping frames sim-
ilar to Fig. 2 and the IAA spectral estimate is computed for each
frame. However, to reduce the computational complexity, each
subsequent frame after the first frame is initialized with the spec-
tral estimate of the previous frame instead of the FFT-based pe-
riodogram as described in the IAA algorithm. The resulting al-
gorithm yields better spectral resolution and lower side lobes
than the STFT.

There is still a significant increase in the computational com-
plexity when using the TRIAA algorithm compared to using
STFT for spectral estimation. This computational complexity
is reduced slightly by reducing the number of iterations in sub-
sequent frames for the TRIAA. This is because convergence of
the estimated spectrum will occur in fewer iterations given the
current frame is initialized by the spectral estimate of the pre-
vious frame. When the dataset is significantly large, the use of
this algorithm is still impractical. The bottleneck of the TRIAA
algorithm is in the computation of the denominator in (13) for
each frame.

In [18] and [19] the Toeplitz structure of the covariance ma-
trix R is exploited and the computation of R~! is performed

IR = APA# + oI for ill-conditioned matrices [17].

2Matrix inversion lemma.
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using the Gohberg-Semencul (GS) factorization of this matrix
[7]. Moreover, the denominator is obtained via evaluating a
polynomial. This reduces the computational complexity of the
denominator in (13) (which is the bottleneck of the TAA al-
gorithm) from O(M?K) to O(M?) floating point operations
(flops) [18] for a given frame, without a loss in performance.
The algorithm is termed the Fast IAA (FIAA), which is a signif-
icant improvement but still computationally expensive for large
datasets. The computational complexity of IAA and FIAA are
O(M?K) and O(M? + K log K ), respectively, where M is the
data length and K is the grid size, with K > M.

An approximate algorithm to the IAA algorithm with signif-
icantly faster computational time is described in [20] and re-
ferred to as the Quasi-Newton IAA (QN-IAA). The QN-IAA
algorithm estimates the covariance matrix as if it were from
a low-order (L) autoregressive (AR) process, where L < M
with M being the data (frame) length. The inversion of the
lower order covariance matrix Q € CL*! is carried out in
place of R € CM*M  yielding an approximate solution to
the TAA spectral estimate (13) with significant reduction in the
computational complexity and just a slight degradation in the
resolution. The computational complexity of this algorithm is
O(L? + K log K).

The FIAA or QN-IAA can be used in a time-recursive manner
for nonstationary data as is the case with the ENF signal. This
algorithm reduces the tradeoff between frequency resolution
and time-resolution for a given frame length compared to the
FFT-based periodogram during the ENF extraction process. The
extraction process is the same as the frequency domain anal-
ysis (2)—(7) with ¢, replaced by either of the aforementioned
algorithms.

However, even if a good algorithm is used for frequency es-
timation based on (7), specific frames might be corrupted by in-
terference signals with frequency components within the ENF
limits. This could lead to errors in frequency estimation, if the
frequency location corresponding to the maximum value of the
estimated spectra belongs to an interference signal. A robust
method of tracking the ENF that exploits the slowly varying na-
ture of this frequency is needed. The next section describes the
proposed frequency tracking algorithm.

C. Frequency Tracking

A method of estimating the ENF by tracking it from one
frame to another is formulated here from a mathematical
point of view. The proposed method uses discrete dynamic
programming [9] to find a minimum cost path. A cost function
as shown in this section is selected which takes into account
the slowly varying nature of the actual network frequency. This
cost function penalizes significant jumps in frequency from
frame to frame and the corresponding path is used to estimate
the ENF.

This algorithm involves finding the peak locations from the
spectrum of each frame and assigning costs based on the differ-
ence between a peak location in one frame and a peak location
in another frame. The magnitude of the assigned cost is related
to the difference in the frequency from one frame to another.
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The minimum cost path from the first frame to the last frame is
computed to estimate the ENF.

To estimate the number of relevant peaks (sinusoids) in a
given frame, a model order selection tool known as the Bayesian
Information Criterion (BIC) is used. The BIC for complex si-
nusoids in noise is given by (refer to [7] and [21] for a full

derivation)
27, 2

y - Z a(wg )& (wr)

k=1

BIC(n,) = M In

+5(2n,.) InM. (15)
The number of peaks (real sinusoids) 7, is estimated as the min-
imizing argument of the above BIC criterion. The first term in
(15) is a least squares data fitting term, which decreases as the
number of estimated peaks ., increases, where the second term
is a penalty term that prevents “overfitting” of the data model.
Once the 7, largest peaks and corresponding locations are de-
termined in each frame, the frequency tracking problem is for-
mulated and solved as follows.

Assume that for a given frame , a set of estimated peak lo-
cations (frequencies) is denoted by A, = {Pr1, Pra, ... Pon.}.
We would like to find a path {f.}% ; such that f. € A, and
where the difference f,. — f._1 is as small as possible for » =
1,2,..., R. This set corresponds to the estimated ENF over all
frames and can be obtained as the minimizing argument in the
following optimization problem:

R

J= min Z(}‘, —fi1)%
=2

freA,

(16)

Calculating this cost using an exhaustive search is impractical.
However, using dynamic programming [9] the path that mini-
mizes this cost can be computed recursively and efficiently by
minimizing the cost from a given frame j < R, to the last frame,
denoted by J(j, f;)

R
JG Sy = min Y (= fen)’ fi€A (D)
r=j41, R T=it1
This optimal cost satisfies the recursive equation
TG 13) = win {(Fis1 = [P+ TG+ fi)}
éfij—l
fied; (18)

which can be calculated forj = R — 1, R —2,..., 1, with the

s s

initialization, J(R, fr) = 0, fx € Ay. Note that

J = mi Jl. s JN Air 19
Juin (1, f1), fn € An (19)

is the cost from the first frame to the last frame @ and the
set {f.}I* | that minimizes this cost function corresponds to
the extracted ENF signal as mentioned previously. Dynamic
programming has a computational complexity of O(IZA?

max)’
where I? corresponds to the total number of frames and Aax
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TABLE III
PARAMETERS FOR THE EXPERIMENT

PARAMETERS 'Datal’  ’Data2’

T (Time Shift) 1s 1s
M (Length of Frame) 20s 33s
R (Number of Frames) 1800 1800

is the number of spectral peaks in the frame with the maximum
number of peaks.

D. Matching Extracted ENF to Database

Once the ENF signal has been extracted, a method of
matching the estimated signal to the database signal is required.
The goal is to find the location/time within the database that
is similar in pattern to the extracted ENF. In [6], a method
based on minimizing the squared error between the ENF
and database is used for automated matching. A method of
correlation matching proposed in [22] for short digital record-
ings (10-15 min) is used in place of this MSE method. The
process of correlation matching is described as follows. As-
sume that f = [f1, fo,..., fr] is the extracted ENF signal and
d = [di1,da,...,dL] corresponds to the database signal with

s

L > R. The matching process requires finding /,,,,x such that

Imax = argmaxc(l), 1=1,2,....L—R (20)
!

where ¢(!) is the correlation coefficient between f and the vector

(i digr,. .., disr 1]

An important point to make is that the maximum correlation
coefficient ¢({,,ax ) is used here only for matching the estimated
ENF to the database and comparing the accuracy (reliability) of
the different algorithms presented. Once a match has been made,
determining locations of edits to a recording should be based on
the differences between the ENF estimate and the database.

IV. EXPERIMENTAL RESULTS

The algorithms presented in the previous section are applied
to two different digital audio datasets referred to as “Datal”
and “Data2”. The two datasets are recorded simultaneously and,
therefore, should contain the same ENF pattern over time. The
first data set (Datal) is acquired by connecting an electric outlet
via a voltage divider directly to the internal sound card of a
desktop computer, resulting in an ENF signal with a rather high
signal-to-interference-and-noise ratio. On the other hand, the
second dataset (Data?2) is an actual speech recording played
from a speaker and picked up by the internal microphone of a
laptop computer.

Each of these recordings are originally sampled at 44.1 kHz
at a bit rate of 16 bits per sample. Each dataset is resampled to
441 Hz, hence keeping only the fundamental frequency (1st har-
monic) and the two higher harmonics of the ENF. A bandpass
filter with a narrow bandwidth around the network frequency is
applied to the data to eliminate as much interference as possible
without distorting the ENF signal. Based on Fig. 2, each data
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Fig. 3. Matching extracted ENF to database (Datal—scaled to 60 Hz).
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Fig. 4. Matching extracted ENF to database (Data2—scaled to 60 Hz).

set is split using the values shown in Table III. This setup re-
sults in an ENF estimate every second for a total of 30 min for
each dataset.

An increase in the frame length improves the signal-to-noise
ratio of the signal [6] and the spectral resolution at the cost of
lower time resolution. Therefore, a larger frame length is used
for Data2? which has a weak ENF signal compared to Datal
which has a strong ENF signal.

Fig. 3 shows the extracted ENF signal (shifted by 0.05 Hz
for illustration purposes) from Datal, matched with the truth
obtained from the FDRs, when the data set has not been al-
tered in any form [using STFT and (7)]. Fig. 4 shows the ex-
tracted ENF using the STFT-based method and our proposed
method (also shifted for comparison purposes). Tables IV and
VI give the maximum correlation coefficient (1,5 ) of the var-
ious methods for Datal and Data?2, respectively, also when the
signals have not been altered. The maximum correlation coeffi-
cient values are used to compare the accuracy of the algorithms
and hence determine which is more reliable for ENF estima-
tion. We have also included similar MSE (actually standard de-
viation) analysis in Tables V and VII for the datasets, where
the MSE is computed by averaging the squared difference be-
tween the True ENF and the estimated ENF. It is important to
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TABLE IV TABLE VI
CORRELATION COEFFICIENTS OF ALGORITHMS (DATAI) CORRELATION COEFFICIENTS OF ALGORITHMS (DATA2)
Algorithm Algorithm
Harmonic STFT STFT(Track) TRIAA TRIAA(Track) F-ESPRIT Harmonic STFT STFT(Track) TRIAA TRIAA(Track) F-ESPRIT
60 Hz 09912 0.9917 0.9895 0.9900 0.9800 120 Hz 0.9125  0.9857 0.9305 0.9907 0.8446
120 Hz 0.9911 0.9949 0.9902 0.9946 0.9470
180 Hz 0.9968  0.9968 0.9961 0.9961 0.9962 TABLE VII
STANDARD DEVIATION OF ERROR FOR ALGORITHMS (DAT42)
TABLE V .
STANDARD DEVIATION OF ERROR FOR ALGORITHMS (DATAI) Algorithm
Harmonic STFT STFT(Track) TRIAA TRIAA(Track) F-ESPRIT
Algorithm 120Hz | 7.948¢=3 3369c=3 7.225¢=% 29143  1.086c2
Harmonic STFT STFT(Track) TRIAA TRIAA(Track) F-ESPRIT
60 Hz 2772¢73  2.650e=3 3.032e73 2919e~3 53643 x10”
120Hz | 2774e~3 2.145¢=3 2822¢=3 2.198¢~%  6.570e~3 25 ; ' T ‘ ‘ '
3 3 3 3 3 == =FFT '\ | True Frequency (119.963 Hz)
180 Hz 1.900e7° 1.851e™° 1.999¢~ 1.999¢~ 2.830e™ ——1AA ‘I
) ,' v Freq. Estimate IAA (119.965 Hz)
[ ]
. . . ,' Freq. Estimate/FFT (119.970 Hz)
point out that the estimated ENF can sometimes have a con- g '
. . 1
stant offset [12], [22]. Therefore, the correlation is the preferred E 15F 1 ,
. I
method for accuracy measure. The datasets used for this exper- é" 1
. !
iment do not have such an offset. They have also been made =g 1
. - 1
available at http://www.sal.ufl.edu/download.html. g 17 1 ]
4 '
. 1
A. Datal Analysis os b
D I q
. N 1
Fig. 3 shows the extracted harmonic (180 Hz) of the ENF !
. . . ’ 1
signal scaled to 60 Hz and matched [using the location corre- Py . _
sponding to the maximum correlation (20)] to the actual data- flo8 11985 1199 11995 120 12005 1201 12045 1202
Frequency (Hz)

base frequency obtained from the FDRs. For each of the algo-
rithms used, the third harmonic gave the most accurate results
for this dataset as shown in Table I'V. This is because for a fixed
grid size, the estimation error when using the third harmonic is
reduced by a factor of three compared to the fundamental fre-
quency. Harmonics with frequencies higher than 180 Hz can be
used for the estimation process at a cost of increased computa-
tional complexity due to the increased sampling rate. Also from
Table IV, it can be seen that each of the STFT and TRIAA algo-
rithms produce accurate estimates of the ENF using (7) because
of the rather strong ENF signal. The signal at the second har-
monic is weak relative to the first and third harmonics, and in a
few frames the estimate was inaccurate. However, the frequency
tracking algorithm mitigated these inaccuracies successfully by
tracking the correct spectral peaks.

The parametric method, frequency selective (F-ESPRIT) [7],
[23] also yields accurate estimates of the ENF for Datal when
the signal model assumes there is only one sinusoid per frame.
However, this method and other parametric methods are not ap-
propriate for ENF estimation in the presence of interference, be-
cause they are sensitive to model assumptions.

For this dataset, the STFT yields slightly better results, com-
pared to the adaptive method (TRIAA). This can be explained
by the fact that the periodogram is optimal for estimating spec-
tral lines (sinusoids) in the presence of white noise when they
are well resolved [7]. However, when there are interfering sig-
nals present, the poor resolution of the periodogram will yield
inaccurate estimates as is the case with Data?2, a typical digital
recording.

Fig. 5. Power spectrum of one frame (Data?2): poor resolution of FFT.

B. Data2 Analysis

For Data2, the second harmonic (120 Hz) is used to estimate
the ENF, because the first and third harmonics are too weak
to be used for estimation. Table VI shows the maximum cor-
relation coefficient values for the STFT and TRIAA using (7),
the frequency tracking algorithm using the spectral peaks of the
FFT and IAA and the parametric method (F-ESPRIT) with one
assumed sinusoid. The ENF estimation accuracy is improved
using the adaptive method (IAA) because of improved spectral
resolution for several frames. Fig. 5 shows a comparison of the
spectrum of one frame of the Data2, where the poor frequency
resolution of the FFT results in a relatively poor estimate of the
network frequency compared to the IAA algorithm.

Fig. 4 shows this extracted ENF harmonic using the STFT
and (7) matched with the database. From this figure, there are
several frames where the ENF is estimated inaccurately, due
to the fact that the frequency corresponding to the maximum
spectral peak for those frames do not correspond to the ENF.
This can occur if there is another signal present with frequency
within the limits of the acceptable range of the ENF as illustrated
in Fig. 6. This figure shows that for both spectral estimation
techniques used (IAA, FFT) the ENF harmonic estimate using
(7) will be 120 Hz, whereas the true frequency is approximately

119.95 Hz.
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Fig. 7. Extracted ENF via frequency tracking (Data2—scaled to 60 Hz).

This problem can be rectified using our dynamic program-
ming-based frequency tracking the algorithm presented.

Fig. 7 shows the spectral peak locations computed using the
TRIAA and the corresponding ENF estimate using dynamic
programming. The estimate of the network frequency using this
tracking algorithm is then matched to the database in Fig. 4,
which provides a better match when compared to using (7),
which can also be seen in this figure, Fig. 8 (absolute error) and
also from Table VI.

A few important points to make are that the frequency
tracking algorithm uses the peak locations for each frame
estimated either by the adaptive algorithm (IAA) or the FFT.
The results show that the estimated ENF is more accurate
when the peak locations of IAA are used. This is as a result
of the inaccurate estimates in some frames caused by the poor
resolution of using FFT. Also, all the numbers presented can be
improved upon slightly by using the entire dataset (44.1 kHz)
for analysis. For example, the STFT maximum correlation of
0.9125 will be improved to 0.9158 without resampling, which
may not be worth the increased computational complexity.
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Fig. 8. Absolute error of algorithms (Data2): (a) STFT and (b) TRIAA
(Track).

V. CONCLUSION

When it comes to digital audio verification, the reliability
of the method used for authentication cannot be overempha-
sized. This paper demonstrates a reliable method of extracting
the network frequency from a digital recording when the ENF
cannot be extracted from some of the frames using the FFT-
based periodogram either because of poor spectral resolution or
a stronger interference signal within said frame. These problems
were solved by using an iterative adaptive method (IAA), which
provides better spectral resolution than the FFT-based approach.
Also, a frequency tracking method based on dynamic program-
ming was used for accurate extraction of the ENF even in the
presence of a strong interference signals within ENF limits.

From the results presented, the FFT gives slightly better es-
timates of the network frequency when the signal-to-interfer-
ence-plus-ratio is very high as is the case with the first dataset.
However, in most digital recordings, there will be significant
interferences from the recorded speech signals and other sur-
rounding sounds that could lead to poor estimation performance
using the FFT due to its poor resolution and high side lobe prob-
lems. As the results have shown, the adaptive techniques and
frequency tracking method should be adopted for ENF estima-
tion, especially in challenging environments.

ACKNOWLEDGMENT

The opinions, findings, and conclusions or recommendations
expressed in this publication/program/exhibition are those of
the author(s) and do not necessarily reflect those of the Depart-
ment of Justice.

REFERENCES

[1] R. C. Maher, “Audio forensic examination—Authenticity, enhanceme-
ment, and interpretation,” IEEE Signal Processing Mag., vol. 26, pp.
84-94, Mar. 2009.

[2] C. Grigoras, “Digital audio recording analysis: The electric network
Frequency criterion,” Int. J. Speech Language Law, vol. 12, no. 1, pp.
63-76, 2005.

[3] C. Grigoras, “Applications of ENF criterion in forensic audio, video
and telecommunications analysis,” Forensic Sci. Int., vol. 167, pp.
136-176, 2007.



1338

[4] E. B. Brixen, “ENF—Quantification of the magnetic field,” in Proc.
AES 33rd Conf., Audio Forensics—Theory and Practice, Denver, CO,
Jun. 2008.

[5] E.B.Brixen, “Techniques for the authentication of digital audio record-
ings,” in Proc. AES 122nd Conv., Vienna, Austria, 2007.

[6] A. J. Cooper, “The electric network frequency (ENF) as an aid to
authenticating forensic digital audio recordings—An automated
approach,” in Proc. AES 33rd Conf., Audio Forensics—Theory and
Practice, Denver, CO, Jun. 2008, pp. 1-6.

[7] P.StoicaandR. L. Moses, Spectral Analysis of Signals.
River, NJ: Prentice-Hall, 2005.

[8] T. Yardibi, J. Li, P. Stoica, M. Xue, and A. B. Baggeroer, “Source
localization and sensing: A nonparametric iterative adaptive approach
based on weighted least squares,” IEEE Trans. Aerospace Electron.
Syst., vol. 46, no. 1, pp. 425-443, Jan. 2010.

[9] U.Jonsson, C. Trygger, and P. Ogren, “Lecture Notes on Optimal Con-
trol: Optimization and system theory,” unpublished.

[10] Liu, Z. Yuan, P. N. Markham, R. Conners, and Y. Liu, “Wide-area
frequency as a criterion for digital audio recording authentication,” in
Proc. IEEE Power Energy Soc. General Meeting, Jul. 2011, pp. 1-7.

[11] D. Rodriguez, J. Apolinario, and L. Biscainho, “Audio authenticity:
Detecting ENF discontinuity with high precision phase analysis,” JEEE
Trans. Inform. Forensics Security, vol. 5, no. 9, pp. 534543, Sep.
2010.

[12] M. Kajstura, A. Trawinska, and J. Hebenstreit, “Application of the
electrical network frequency (ENF) criterion—A case of a digital
recording,” Forensic Sci. Int., vol. 155, pp. 165-171, 2005.

[13] Y. Liu, “A US-wide power systems frequency monitoring network,”
in Proc. IEEE Power Systems Conf. Expo., Atlanta, GA, Oct. 29—Nov.
12006, pp. 159-166.

[14] N. G. Hingorani, “High-voltage DC transmission—A power elec-
tronics workhorse,” IEEE Spectrum, vol. 33, pp. 63—72, Apr. 1996.

[15] J. O. Smith and X. Serra, “PARSHL an analysis/synthesis program for
non-harmonic sounds based on sinusoidal representation,” in Proc. Int.
Computer Music Conf., San Francisco, CA, 2004.

[16] G. Glentis and A. Jakobsson, “Time-recursive IAA spectral estima-
tion,” IEEE Signal Processing Lett., vol. 18, pp. 111-114, Feb. 2011.

[17] W.Roberts, P. Stoica, J. Li, T. Yardibi, and F. Sadjadi, “Iterative adap-
tive approaches to MIMO radar imaging,” IEEE J. Select. Topics Signal
Process., vol. 4, pp. 5-20, Feb. 2010.

[18] M. Xue, L. Xu, and J. Li, “IAA spectral estimation: Fast implementa-
tion using the Gohberg-Semencul factorization,” IEEE Trans. Signal
Process., vol. 59, no. 7, pp. 3251-3261, Jul. 2011.

[19] G. Glentis and A. Jakobsson, “Efficient implementation of iterative
adaptive approach spectral estimation techniques,” IEEE Trans. Signal
Process., vol. 59, no. 9, pp. 4154-4167, Sep. 2011.

[20] G. Glentis and A. Jakobsson, “Superfast approximative implementa-
tion of the IAA spectral estimate,” I[EEE Trans. Signal Process., to be
published.

[21] P. Stoica, J. Li, and H. He, “Spectral analysis of nonuniformly sampled
data: A new approach versus the periodogram,” /IEEE Trans. Signal
Process., vol. 57, no. 3, pp. 843-858, Mar. 2009.

[22] M. Huijbregtse and Z. Geradts, “Using the ENF criterion for deter-
mining the time of recording for short digital audio recordings,” in
Proc. 3rd Int. Workshop Computational Forensics, IWCF’09, 2009,
vol. 1, pp. 116-124.

[23] J. Gunarsson and T. McKelvey, “High SNR performance analysis of
F-ESPRIT,” in Conf. Rec. 38th Asilomar Conf. Signals, Systems Com-
puters, Nov. 2004, vol. 1, pp. 1003—1007.

Upper Saddle

Ode Ojowu, Jr. (S’11) was born in Zaria, Nigeria,
in 1984. He received the B.Sc. and M.Sc. degrees in
electrical engineering from Washington University,
St. Louis, MO, in 2007. He is currently pursuing a
Ph.D. degree with the Department of Electrical En-
gineering at the University of Florida, Gainesville.
His primary research interests are in the areas of
spectral estimation and array signal processing.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 4, AUGUST 2012

Johan Karlsson (S°06-M’09) was born in Stock-
holm, Sweden, in 1979. He received the M.S. degree
in engineering physics and the Ph.D. degree from the
Royal Institute of Technology (KTH), Stockholm,
Sweden, in 2003 in 2008, respectively. He spent the
academic year 2000 to 2001 as an exchange student
at Washington University, Saint Louis, MO, and did
his master thesis at the University of Minnesota,
Minneapolis.

In Fall 2003, he was a graduate student at the Di-
vision of Optimization and Systems Theory, KTH.
From 2009 to 2011, he was with Sirius International, Stockholm, Sweden. He
is currently working as a Postdoctoral Research Associate in the Department of
Computer and Electrical Engineering, University of Florida, Gainesville. His
research interests includes fundamental limitations in estimation, interpolation,
and model reduction for applications in signal processing, control theory, and
risk assessment.

Jian Li (S’87-M’91-SM’97-F’05) received the
M.Sc. and Ph.D. degrees in electrical engineering
from Ohio State University, Columbus, in 1987 and
1991, respectively.

From April 1991 to June 1991, she was an Adjunct
Assistant Professor with the Department of Electrical
Engineering, Ohio State University. From July 1991
to June 1993, she was an Assistant Professor with
the Department of Electrical Engineering, University
of Kentucky, Lexington. Since August 1993, she has
been with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, where she is currently a Pro-
fessor. Her current research interests include spectral estimation, statistical and
array signal processing and their applications.

Dr. Li is a Fellow of IET. She is a member of Sigma Xi and Phi Kappa Phi.
She received the 1994 National Science Foundation Young Investigator Award
and the 1996 Office of Naval Research Young Investigator Award. She was an
Executive Committee Member of the 2002 International Conference on Acous-
tics, Speech, and Signal Processing, Orlando, FL, May 2002. She was an Asso-
ciate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING from 1999 to
2005, an Associate Editor of the /EEE Signal Processing Magazine from 2003
to 2005, and a member of the Editorial Board of Signal Processing, a publica-
tion of the European Association for Signal Processing (EURASIP), from 2005
to 2007. She has been a member of the Editorial Board of Digital Signal Pro-
cessing—A Review Journal, a publication of Elsevier, since 2006. She is a coau-
thor of the papers that have received the First and Second Place Best Student
Paper Awards at the 2005 and 2007 Annual Asilomar Conference on Signals,
Systems, and Computers in Pacific Grove, California. She is a coauthor of the
paper that has received the M. Barry Carlton Award for the best paper pub-
lished in IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS in
2005. She is also a coauthor of the paper that won the Lockheed-Martin Best
Student Paper Award at the 2009 SPIE Defense, Security, and Sensing Confer-
ence, Orlando, FL, 2009.

Yilu Liu (S’88-M’89-SM’99-F’04) received the
B.S. degree from Xian Jiaotong University and
the M.S. and Ph.D. degrees from the Ohio State
University, Columbus, in 1986 and 1989.

She is currently the Governor’s Chair at the Uni-
versity of Tennessee, Knoxville, and Oak Ridge Na-
tional Laboratory. Prior to joining UTK/ORNL, she
was a Professor at Virginia Polytechnic Institute and
State University (Virginia Tech). She led the effort to
create the North America power grid monitoring net-
work (FNET) at Virginia Tech which is now operated
at UTK and ORNL as GridEye. Her current research interests include power
system wide-area monitoring and control, large interconnection level dynamic
simulations, electromagnetic transient analysis, and power transformer mod-
eling and diagnosis.



