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Abstract—Recently the spectral estimation method Iterative
Adaptive Approach (IAA) has been shown to provide higher
resolution and lower sidelobes than comparable spectral esti-
mation methods. The computational complexity is higher than
other methods such as the periodogram (matched filter). Fast
algorithms have been developed that considerably reduce the
computational complexity of IAA by utilizing Toeplitz and
Vandermonde structures. For the missing data case several of
these structures are lost, and existing fast algorithms are only
efficient when the number of available samples is small. In
this work we consider the case where the number of missing
samples is small. This allows us to use a low rank completion to
transform the problem to the structured problem. We compare
the computational speed of the algorithm with the state-of-the-art
and demonstrate the utility in a frequency notched SAR imaging
problem.

Index Terms—IAA, Missing Data, FFT, Fast Algorithm, SAR,
Spectral Estimation.

I. INTRODUCTION

A fundamental task in spectral estimation is to estimate
noisy sinusoids’ frequencies and amplitudes from a set of
measurements [1]. The common solution is to use the peri-
odogram to estimate the spectra, a method which in general
suffers from large sidelobes and poor resolution. In the case of
missing data, the sidelobe problem becomes even worse. The
sidelobes increase due to modulation in the sampling domain
by the incomplete sampling pattern relative to the uniform
sampling in the Fourier matrix. It is therefore often desirable
to interpolate the data onto a uniform sampling pattern or
estimate the missing data if patches of data are missing.

A recently developed high resolution nonparametric spectral
estimation technique, the iterative adaptive approach (IAA)
[2], can also be used in the case with missing data (MIAA)
[3]. This is a method based on iterative weighted minimization,
where the weight is updated to increase the resolution and
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suppress sidelobes. IAA provides resolution superior to the
periodogram, and has the advantage that only a single snapshot
is required. The major drawback of IAA is the computational
costs for a direct implementation. In two recent papers ([4],
[5]) implementations of IAA were developed based on FFT
operations, which considerably speeds up the algorithm and
makes it applicable for larger problems. These fast implemen-
tations utilize Topelitz and Vandermonde structures that arise
when the sampling grid is uniform and complete. When the
sampling grid is not complete the Toeplitz structure of the
covariance matrix is lost, and the fast implementations are not
efficient when the number of missing samples is small. To
resolve this, we use a low rank completion to transform the
problem to the structured problem where the covariance matrix
is Toeplitz. This leads to the main contribution of this paper,
a fast implementation of MIAA which is considerably faster
than the state-of-the-art for the case when the missing data is
small. Finally, an application to synthetic aperture radar (SAR)
imaging is examined.

In many practical SAR scenarios the set of measured data
is incomplete, due to, e.g., interference, jamming or data
dropouts [6], [7], resulting in an incomplete data set. Here we
consider the case where a proportion of the samples (< 50%)
are missing due to frequency notching being used to suppress
interference. This is a situation which is not uncommon in ultra
high frequency (UHF) or very high frequency (VHF) SAR,
where the spectrum is often crowded. Here we apply MIAA
for the recovery of lost fast time samples due to frequency
notching in the occupied bands. This is shown to significantly
improve the resulting SAR image quality.

In Section II we set up the data model, discuss the spectral
estimation problem, and introduce the algorithm IAA. Sec-
tion III describes computational complexities of the IAA algo-
rithm and how to utilize the Toeplitz/Vandermonde structures
in the problem to significantly decrease the computational
complexity. In Section IV the missing data algorithm is
discussed and we present the new fast algorithm for missing
data IAA. In Section V it is shown how to utilize the
results from Section IV in order to provide a computationally
efficient recovery of the missing data. In Section VI we present
examples that illustrate the computational benefits of the new
algorithms and then apply the algorithm to data recovery in
sparse SAR imaging in the presence of spectrum notches.

The notation used in this paper will be briefly defined. A
vector is represented by a bold face lower case letter (x)
and a matrix is represented by a bold face upper case letter
(X). The transpose of a matrix is (·)T and the conjugate
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transpose is (·)∗. The conjugate of a complex number is
given by (·). A matrix X is Hermitian if X = X∗. For
Hermitian matrices X,Y, let X > Y (X ≥ Y) denote that the
matrix X−Y is positive definite (semidefinite). A fast Fourier
transform operation (FFT) of size N is denoted by F(·)N ,
where appropriate zero padding is performed if necessary
without discussion. A subscript on a vector or matrix of g
denotes the data was measured (given) while a subscript of m
represents data that was not measured (missing). A denotation
of (·)1:K represents an indexing operation, i.e. elements 1 to
K of a vector.

II. SPECTRAL ESTIMATION AND IAA
A. Data model

Consider the problem of recovering the spectral content
from a measured signal. Let y = (y0, y1, . . . , yN−1)T denote
a sampled data sequence of length N and let

A = (a(ω0), . . . ,a(ωK−1)) (1)

be an oversampled Fourier matrix such that K > N . The
columns of A are a(ωk) =

(
1, ejωk , . . . , ej(N−1)ωk

)T
which

correspond to the frequency vectors and ωk corresponds to
the frequency grid point ωk = 2πk

K , for k = 0, . . . ,K − 1.
Let x = (x0, x1, . . . , xK−1)T where xk denotes the complex
spectral content at frequency ωk of the signal y. The data
model can then be formulated as

y = Ax + e, (2)

where the noise contribution is e. The goal of the problem is
to estimate x.

The most common method for solving this is the peri-
odogram (matched filter method),

xk =
a(ωk)∗y

a(ωk)∗a(ωk)
, k = 0, 1, . . . ,K − 1, (3)

which may be calculated using the FFT. This is computation-
ally efficient, but suffers from high sidelobes and poor resolu-
tion. One way to overcome these issues is to use data-adaptive
methods such as the Capon method [8], [9], Amplitude and
Phase Estimation (APES) [10], [11], or Iterative Adaptive
Approach (IAA) [2]. Here we will focus explicitly on IAA
as it has shown promise in the fields of radar imaging, sonar,
communications [2], medical diagnostics [12], information
forensics [13], and general spectral estimation [14].

B. Iterative Adaptive Approach (IAA)

IAA seeks to find a spectral estimate xk in (2) by modeling
the rest of the spectrum x`, ` 6= k, as interference [2]. The
inference refers to all the signals at frequency grid points other
than the grid point of interest ωk and is modelled as x` ∈
N(0, p`) in (2) for ` 6= k. The covariance matrix Qk of the
interference is then given by

Qk = R− pka(ωk)a(ωk)∗,

where

R =

K−1∑
`=0

p`a(ω`)a(ω`)
∗ = APA∗. (4)

Here R is the covariance matrix of the data and P = diag(p),
where p = (p0, p1, . . . , pK−1)T , and p` = |x`|2 denotes
the power estimate at the frequency grid point ω`, for ` =
0, 1, . . . ,K − 1. Maximizing the likelihood of xk then results
in minimization of the weighted quadratic cost function

(y − a(ωk)xk)∗Q−1
k (y − a(ωk)xk), (5)

where the optimal solution is given by

xk =
a(ωk)∗Q−1

k y

a(ωk)∗Q−1
k a(ωk)

, k = 0, 1, . . . ,K − 1. (6)

Using the matrix inversion lemma, (6) equals

xk =
a(ωk)∗R−1y

a(ωk)∗R−1a(ωk)
, k = 0, 1, . . . ,K − 1. (7)

This considerably speeds up the calculation since (7) does
not require the computation of the inverse of the interference
covariance matrix Qk for each frequency grid point. Note that
R depends on x, hence solving Equations (4) and (7) is a
non-trivial task. IAA handles this in an iterative manner. The
algorithm starts with an initial solution which is often taken
as the Periodogram (3). The following steps are then taken:

1) The covariance matrix R is calculated using (4),
2) xk is calculated using (7) for k = 0, 1 . . . ,K − 1.

Steps 1) and 2) are repeated until convergence, and the spectral
estimate in the point ωk is given by pk = |xk|2. From
empirical results usually 10 − 15 iterations are sufficient for
the algorithm to converge [2]. In the scenarios considered
here, the steering matrix A is an oversampled Fourier matrix.
However, IAA performs equally well for other applications
such as imaging and channel estimation in communications
where the columns of A consists of other basis functions
such as delayed or Doppler shifted versions of probing/training
signals [15].

Comparing (3) to (6) we see that the only difference
between the periodogram and IAA is the weighting matrix
Qk. Assuming that the interference covariance Qk is known,
(6) gives a better estimate of xk than (3) under quite general
conditions [14]. IAA utilizes this in order to achieve better
resolution than the periodogram. The matrices Qk and R
are typically well-conditioned if the signal contains noise.1

This is also the reason that IAA can work with as little as a
single snapshot, which is beneficial compared to existing high
resolution techniques that typically require many snapshots to
estimate the covariance matrix.

III. COMPUTATIONAL COMPLEXITIES AND FAST
CALCULATION OF IAA

IAA provides high resolution estimates with low sidelobes,
but it is also rather computationally demanding. In each iter-
ation it requires evaluation of the numerator and denominator
of the expression (7), denoted by

ΦN(ω) = a(ω)∗R−1y, (8)
ΦD(ω) = a(ω)∗R−1a(ω), (9)

1For high SNR scenarios with sparse signal spectrum the matrices Qk and
R may be ill conditioned. This may be handled by regularizing IAA [16].
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at each of the points ωk, k = 0, 1, . . . ,K − 1. Using a brute
force approach, in each iteration the matrix R would be in-
verted and then R−1a(ωk) computed for k = 0, 1, . . . ,K−1.
This takes O(N2K) which is too computationally demanding
in many applications [17]. In situations when N and K
are large, memory requirements may prevent us from even
creating the matrices A and R. However, since the matrices
have known structure (Toeplitz/Vandermonde), the matrices
can be represented by vectors and operations performed on
those vectors instead of the full matrix. Next we will review
the algorithm proposed in [4], where these structures are
used to calculate IAA several orders of magnitudes quicker
by utilizing FFT operations. In the following discussion we
frequently use fast calculations with Toeplitz matrices. These
are briefly reviewed in Appendix B.

1) Calculate R−1: The first step in the algorithm is to
calculate the matrix R. By noting that P is diagonal and A is
a Vandermonde matrix, R = APA∗ is a Hermitean Toeplitz
matrix and it is sufficient to calculate the first column of R.
The first column of PA∗ is p = [p1, . . . , pK ]T , and since
A is the partial Fourier matrix (1), the first column of R is
obtained by taking the first N elements in the inverse Fourier
transform of p, i.e., R1:N,1 = K(F−1(p)K)1:N . Note that
R is uniquely defined by its first row since it is Toeplitz and
Hermitean.

The next step in IAA is to obtain the Gohberg-Semencul
(GS) factorization,

R−1 = L(u,D)L(u,D)∗ − L(ũ,D)L(ũ,D)∗,

which allows for expressing R−1 in terms of the lower trian-
gular Toeplitz matrices L(u,D) = (u,Du,D2u, . . .DN−1u)
and L(ũ,D) = (ũ,Dũ,D2ũ, . . .DN−1ũ). Here

D =

(
01×(N−1) 0

IN−1 0(N−1)×1

)
denote the shift matrix and the vectors u and ũ are calculated
using the Levinson-Durbin (LD) algorithm in O(N2) (see
Appendix B and [1] for details). Using the Gohberg-Semencul
factorization, we can solve the equation Rx = y for any y
in O(N logN). Next, the numerator and denominator of the
IAA estimate are examined.

2) Calculate ΦN(ω): Examining the numerator (8), the first
problem is the evaluation of R−1y. This is done using the GS
factorization and efficient Toeplitz matrix-vector multiplication
in O(N logN) time (see Appendix B). Then the estimate,
ΦN(ωk), can be computed for all k with an FFT operation on
R−1y,

φ1−N = F(R−1y)K , (10)

where φ1−N = (φN(ω0), φN(ω1), . . . , φN(ωK−1))T . Hence
the numerator can be calculated in O(K logK) time.

3) Calculate ΦD(ω): The denominator may also be cal-
culated using FFT/IFFT by considering the trigonometric
polynomial

φ(z) = α(z̄−1)∗R−1α(z) =

N−1∑
`=−N+1

c`z
`, for

where α(z) = (1, z, z2, . . . , zN−1)T , and c` is the coefficient
for z`. Since z̄−1 = z whenever |z| = 1, it follows that φ(z)
is real valued at the unit circle and c−` = c̄`. Evaluation of
the denominator φD(ω) corresponds to evaluation of φ(z) at
the unit circle

φD(ω) = φ(z)|z=eiω =

N−1∑
`=−N+1

c`e
j`ω.

Since the grid {ωk}K−1
k=0 is uniform, φD(ωk) may be computed

using FFT from the coefficients {cn}N−1
n=−N+1. This may be

expressed as
φ1−D = KF−1(c) (11)

where c = (c0, c1, . . . , cN−1,0
T
K−2N+1, c−N+1, . . . , c−1)T

and φ1−D = (φD(ω0), φD(ω1), . . . , φD(ωK−1))T . Using the
GS factorization of R−1 and noting that the elements of c
correspond to summing up the diagonals of R−1, the vector
c may be obtained from u as

c−N+1

...
c−1

c0

 =


uN−1 0 · · · 0

2uN−2 uN−1
. . .

...
...

. . . . . . 0
Nu0 · · · 2uN−2 uN−1




ū0
ū1
...
ūN−1



−


ū1 · · · · · · 0
...

. . .
...

(N − 1)ūN−1
. . . . . .

...
0 (N − 1)ūN−1 · · · ū1




0
uN−1

...
u1

 ,

which is a set of Toeplitz matrix- vector products, and hence
may be computed in O(N logN) using FFT.

TABLE I
FAST IAA

Step 0 - Initialize: Calculate x(0) = F(y)K

Step 1: Calculate R from (F−1(p)K)1:N , where p(i)k = |x(i)k |
2

Step 2: Calculate GS Factorization of R−1 via LD
Step 3: Calculate R−1y using Toeplitz matrix-vector calculations
Step 4: Calculate φ1−N = F(R−1y)K
Step 5: Calculate φ1−D = KF−1(c)K obtained from u
Step 6: Calculate x = φ1−N/φ1−D (elementwise division)
Step 7: Repeat Steps 1 − 6 until a pre-specified number of iterations is
reached or a pre-specified threshold is satisfied.

4) Summary: The steps for Fast IAA are summerized in
Table I. The overall computational cost is O(N2 +K logK).
This methodology for computing fast IAA was independently
developed in [4] and [5], and they are based on earlier fast
implementations of APES [18].

IV. MISSING DATA IAA AND FAST CALCULATIONS

In [3], IAA was applied to problems where data samples
are missing.2 In this section we treat the spectral estimation
part of missing data IAA and provide a new algorithm that is
fast when the number of missing data samples is small. In the

2This case may be seen as a problem with nonuniform data sampling, hence
IAA still applies.
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next section we utilize these results for recovering the missing
part of y.

Consider the problem of estimating x from a vector of
available data yg, which is a subset of the full data vector
y. The available and missing part of y may be represented as

yg = Sgy, ym = Smy,

where Sg ∈ RNg×N and Sm ∈ RNm×N are the selection
matrices corresponding to the available and missing samples,
respectively. Here Ng and Nm denote the number of available
data and missing data, and hence N = Ng +Nm.

The data model (2) is now replaced by

yg = Sgy = SgAx + Sge (12)

where SgA is the steering matrix and the vector x is sought.
Since IAA is applicable for the missing data case, each
iteration of MIAA is now to evaluate

xk =
ag(ωk)∗Rg

−1yg

ag(ωk)∗Rg
−1ag(ωk)

, (13)

where

ag(ωk) = Sga(ωk),

Rg = SgAPA∗Sg
T = SgRSg

T , (14)

and as before P = diag(pk) where pk = |xk|2, for k =
0, . . . ,K − 1. Denote the numerator and denominator of (13)
by

ΨN(ωk) = ag(ωk)∗Rg
−1yg,

ΨD(ωk) = ag(ωk)∗Rg
−1ag(ωk).

For the full data case, where Sg = IN , these polynomials
would be identical to ΦN and ΦD and may be calculated
efficiently as in Section III. In the missing data case, however,
Rg is not Toeplitz and several of the steps in the previous
section required for fast computations breaks down, including
the GS factorization. A brute force solution would include
a matrix inversion of Rg and evaluations of Rg

−1ag(ωk) for
all k, which have computational complexity O(Ng

2K). A fast
approach was proposed reducing the number of operations to
O(Ng

3 +K logK) [5]. The main burden here is the inversion
of the matrix Rg . If the number of available samples Ng is
small, then this is not a problem. However, if the number of
available samples Ng is large, then this inversion will be the
bottleneck.

Next we consider the case where the number of missing data
points is small compared to the total set of data. In this case
inversion of Rg is the bottleneck and could even be infeasible.
Instead, we will show that a low rank completion can be used
to transform the problem to the full data case. Using this, ΨN

and ΨD in MIAA may be calculated by adjusting ΦN and ΦD

from the full data case by terms with low rank structures.

A. Fast calculation of missing data IAA

Consider the case where the number of missing samples Nm

is small compared to all samples N . The problem is how to
utilize the structure of Rg and Sg for evaluating the trigono-
metric polynomials ΨN(ω) and ΨD(ω). The calculations rely

on the following key proposition, which allows us to express
the matrix product Sg

TRg
−1Sg as a sum of a low rank matrix

and the inverse of a Toeplitz matrix.
Proposition 1: Let R > 0 and Rg be defined by (14) where

A is the steering matrix defined in (1). Then

Sg
TRg

−1Sg = R−1 − Γ

where Γ is given by

Γ := R−1Sm
T (SmR−1Sm

T )−1SmR−1.

Proof: Let S denote the permutation matrix partitioning
all samples into the available and the missing samples

S =

(
Sg

Sm

)
(15)

and note that the selection matrices satisfy

STS = Sg
TSg + Sm

TSm = IN , (16)
SgS

T = (SgSg
T ,SgSm

T ) = (INg
, 0Ng×Nm

). (17)

From (16), (17) and then by inserting (15) it follows that

(INg
, 0Ng×Nm

) = (SgRST )(SR−1ST ) (18)

= (Rg,Rgm)

(
SgR

−1Sg
T SgR

−1Sm
T

SmR−1Sg
T SmR−1Sm

T

)
,

where Rgm := SgRSm
T . By first using the first block and

then the second block of (18), we get3

Rg
−1 = SgR

−1Sg
T + Rg

−1RgmSmR−1Sg
T

= SgR
−1Sg

T − SgR
−1Sm

T (SmR−1Sm
T )−1SmR−1Sg

T

= Sg(R−1 − Γ)Sg
T .

Finally note that

ΓSm
T = R−1Sm

T (SmR−1Sm
T )−1SmR−1Sm

T

= R−1Sm
T ,

and hence

Sg
TRg

−1Sg = Sg
TSg(R−1 − Γ)Sg

TSg

= (IN − Sm
TSm)(R−1 − Γ)(IN − Sm

TSm)

= R−1 − Γ. (19)

Denote by yf = Sg
Tyg, the vector y with the missing

samples zeroed out. Using Proposition 1, we see that ΨN and
ΨD may be written as

ΨN(ω) = ag(ω)∗Rg
−1yg

= a(ω)∗Sg
TRg

−1Sgyf

= a(ω)∗(R−1 − Γ)yf

= ΦN(ω)− a(ω)∗Γyf (20)

3Alternatively, use (0.12) in [19] with SR−1ST in the place of G, in
which case Rg

−1 corresponds to A× on page 4 in [19].
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and

ΨD(ω) = ag(ω)∗Rg
−1ag(ω)

= a(ω)∗Sg
TRg

−1Sga(ω)

= a(ω)∗(R−1 − Γ)a(ω)

= ΦD(ω)− a(ω)∗Γa(ω). (21)

Here ΦN and ΦD may be evaluated efficiently as in Section III
where yf replaces y, using the Toeplitz structure of R. The
rank of Γ is equal to Nm, a fact which may be used for
calculating the remaining parts of ΨN and ΨD. Next we
will utilize this structure in order to evaluate (20) and (21)
efficiently.

1) Get R, the GS factorization of R−1, and evaluate ΦN(ω)
and ΦD(ω): This is done exactly as in Section III where yf

is used instead of y.
2) Get L = (SmR−1Sm

T )−1/2 and X = Γ1/2: As
a first step to get L we calculate the matrix R−1. Let
R−1 =: [rinv1 , . . . , rinvN ] and recursively calculate rinvk using
the displacement structure ∇(R−1) (see Appendix B, c.f.,
(18)-(20) in [20])

rinvk =

{
uu(1)− ũũ(1) k = 1

Drinvk−1 + uu(k)− ũũ(k) k > 1,
(22)

in O(N2). Then get SmR−1Sm
T by selecting the rows and

columns corresponding to the missing data. Let L ∈ CNm×Nm

be the inverse of the Cholesky factor of SmR−1Sm
T (calcu-

lated in O(Nm
3)), i.e.,

LL∗ = (SmR−1Sm
T )−1.

Finally, get X ∈ CN×Nm satisfying XX∗ = Γ, by multipli-
cation X = R−1(Sm

TL) using4 the GS factorization of R−1,
in O(NmN logN).

3) Evaluate a(ω)∗Γyf : The remaining part of the numer-
ator ΨN , i.e., a(ω)∗Γyf , may be calculated by noting that

a(ω)∗Γyf = a(ω)∗XL∗SmR−1yf . (23)

In this expression first the R−1yf multiplication is car-
ried out using the GS-factorization, Sm(R−1yf) by select-
ing the rows corresponding to the missing data, and then
XL∗(SmR−1yf) by standard matrix-vector calculations (in
O(NmN + N logN)). Finally (23) is evaluated at ωk for
k = 0, 1, . . . ,K − 1 in O(K logK) by noting that

a(ω0)∗Γyf

a(ω1)∗Γyf

. . .
a(ωK−1)∗Γyf

 = F(XL∗SmR−1yf)K . (24)

4) Evaluate a(ω)∗Γa(ω): The remaining part of the nu-
merator, i.e., a(ω)∗Γa(ω) may be calculated by noting that

a(ω)∗Γa(ω) = a(ω)∗XX∗a(ω) =

N−1∑
`=−N+1

d`e
j`ω

is a trigonometric polynomial. Here the coefficient d` is the
`th diagonal of XX∗ (d` = d̄−`), and may be calculated

4For small data sizes, multiplication (R−1Sm
T )L is faster O(N2

mN).

in O(NmN logN) using Toeplitz matrices (c.f., Appendix B
[21]) dN−1

...
d0

 =

Nm∑
`=1

 X(1, `)
...

. . .
X(N, `) · · · X(1, `)


 X(N, `)

...
X(1, `)

 .

Since the grid {ωk}K−1
k=0 is uniform, a(ωk)∗Γa(ωk) may be

computed using FFT from the coefficients {dn}N−1
n=−N+1. This

may be expressed as

φΓ = KF−1(d) (25)

where d = [d0, d1, . . . , dN−1,0
T
K−2N+1, d−N+1, . . . , d−1]T

and φΓ = [a(ω0)∗Γa(ω0), . . . ,a(ωK−1)∗Γa(ωK−1)]T ,
which is evaluated in O(K logK).

5) Get ΨN(ω) and ΨD(ω): Get the evaluations of ΨN(ω)
and ΨD(ω) from (20) and (21) using (23) and (25). Note
that ΨN(ω) is independent of the missing samples ym since
(R−1 − Γ)Sm

T = 0.

TABLE II
FAST MIAA

Step 0 - Initialize: Calculate x(0) = F(yf)K

Step 1: Calculate R from (F−1(p)K)1:N , where p(i)k = |x(i)k |
2

Step 2: Calculate GS Factorization of R−1 via LD
Step 3: Calculate R−1yf using Toeplitz matrix-vector calculations
Step 4: Calculate φ1−N = F(R−1yf)K
Step 5: Calculate φ1−D = KF−1(c)K obtained from u

Step 6: Calculate L = (SmR−1Sm
T )−1/2 and X = Γ1/2

Step 7: Calculate a(ω)∗Γyf from (24)
Step 8: Calculate a(ω)∗Γa(ω) from (25)
Step 9: Calculate xk = ΨN(ωk)/ΨD(ωk)
Step 10: Repeat Steps 1− 9 until a pre-specified number of iterations is
reached or a pre-specified threshold is satisfied.

6) Summary: The steps for fast MIAA are shown in Ta-
ble II. Each iteration is calculated in O(Nm

3 +NmN logN +
N2+K log(K)). The proposed algorithm can handle the cases
where the number of missing data is small (Nm < N/2).
In this situation the inversion of a large Ng × Ng matrix
is replaced by the inversion of a smaller Nm × Nm ma-
trix. Compare this to the results in [5] which requires an
inversion of an Ng × Ng matrix in each iteration and takes
O(Ng

3 +K log(K)).

V. CALCULATING THE MISSING DATA, MIAA-t

The spectral estimate can be utilized for estimating the
missing samples. This was studied in [3], where the missing
data vector of the form

ŷm = Tyg

is sought which minimizes the mean squared error of ŷm−ym.
This is referred to as MIAA-t, and the minimizing T is (see
[3])

T = SmRSg(SgRSg)−1.

Also here the computational burden of calculating
(SgRSg)−1yg would be considerable when Ng is large.
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However, using Proposition 1, we see that ŷm can be written
as

ŷm = SmRSg(SgRSg)−1yg

= Sm(IN −RΓ)yf . (26)

Therefore the estimated data vector ŷ can be written as

ŷ = Sg
Tyg + Sm

T ŷm

= (IN − Sm
TSm)yf + Sm

TSm(IN −RΓ)yf

= yf − Sm
TSmRΓyf

= yf − Sm
TLL∗SmR−1yf ,

which may be evaluated in O(Nm
2 + N logN). Note that

the matrix IN − RΓ is a projection along span(Sm) onto
span(RSg

T ). That is, it takes any values from missing data
to 0, and any vector in span(RSg

T ) is unaltered. Then ŷm in
(26) (and consequently ŷ) only depend on the available data
yg, and hence yf could be any vector whose available data
coincides with yg, i.e., yg = Sgyf .

VI. APPLICATIONS

A. Computational complexity

A detailed study of the proposed algorithm shows that the
leading terms of the computational cost are (see Appendix A)

2

3
Nm

3 + 8NmN log2N +
3

2
N2 +

3

2
K log(K). (27)

This should be compared to (2/3)Ng
3+(3/2)K log(K) in [5].

The asymptotic improvement in the computational complexity,
as the number of samples N go to infinity while the proportion
Nm/N is fixed, is given by(

N

Nm
− 1

)3

The improvement for N ranging from 500 to 8000 is depicted
in Figure 1. Here K = 8N is used. Note however that the
choice of K is irrelevant for the plot since the last term of
(27) is negligible for relevant cases (K < 15N ).

B. 1D sinusoid identification

Consider an example of identification of 1−D sinusoids in
noise and recovery of the missing data. Let the signal yn be

yn =

6∑
`=1

2 sin(nω̂` + v`) +wn, n = 0, 1, . . . .N − 1, (28)

where wn is Gaussian white noise with variance 1, v` is a
random variable with uniform distribution on [0, 2π], and ω̂`
denote the frequencies (0.8, 1.2, 1.4, 1.5, 1.55, 1.575) of the
real sinusoids. In the first example, let the number of samples
be N = 200 and the number of frequency points be K =
8N = 1600. Furthermore, let 10% (= 20) of the samples be
missing in two gaps consisting of the samples [101, 110] and
[121, 130]. Spectral estimates are based on the missing data
IAA and the periodogram.

Figure 2 shows the data sequence (upper plot) and a close up
on the region with the missing samples (lower plot). Here we
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Fig. 1. The speed up (measured by comparing the number of flops)
for the missing data IAA algorithm compared to inverting Rg, for N =
(500, 1000, 2000, 4000, 8000,∞). The asymptotic speed up (N = ∞) is
depicted with bold line.

can see that the recovery is quite good– actually the estimate
of the missing data is closer to the original signal (without
noise = yn − wn) than the signal yn itself. Figure 3 shows
the spectral estimates, where it can be seen that MIAA has
considerably lower sidelobes and better resolution than the
periodogram. Since the main focus in this work is on the
computational complexity of MIAA, we refer to [17] and [3]
for a comprehensive comparison of MIAA with other methods
such as MAPES, GAPES [22], CoSaMP [23], and SLIM
[24]. Instead we compare the computational complexity of the
proposed implementation of MIAA with the ones proposed in
[5] and [17].

To compare the computational complexity of the proposed
implementation with the ones in [5] and [17], note that the
computational bottleneck in [5] and [17] are the inversion of
the matrix Rg. To avoid discussions regarding specifics in
their implementation, we will simply compare the proposed
algorithm with the inversion of the matrix Rg. Consider the
signal y defined by (28) for the cases N ∈ {2000, 4000, 8000}
and K = 8N . For each of those cases we compare the average
time to perform a MIAA iteration over 10 total iterations of
the proposed algorithm with the average time to invert Rg in
each iteration.This is done for the missing data ratio going
from 5% to 50%. The results are shown in Figure 4.

The times for the proposed algorithm are considerably
shorter than the time required to perform the matrix inversion
of Rg when the proportion of missing data is low. At missing
data ratio of 10%, the proposed algorithm is 9, 15, and 30
times faster5 than the matrix inversion of Rg, for the respective
data sizes 2000, 4000, and 8000. The proposed algorithm is

5Note that these running times based on Matlab differ from the theoretical
speed up from Subsection VI-A. This is because running times in Matlab
depend heavily on programming details. For example, many intrinsic Matlab
functions are very efficient and are capable of taking advantage of multi-core
processors. More involved algorithms implemented using Matlab scripts, on
the other hand, are not always capable of making use of all the cores available.
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Fig. 2. The upper graph shows the full time series y. The lower graph is
an enlargement on the part where data is missing. Here the punctuated line
shows the estimate ŷ.

0.5 1 1.5 2
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

ω

dB

MIAA

0.5 1 1.5 2
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

ω

dB

Periodogram

Fig. 3. The upper graph shows the missing data IAA spectral estimate. The
lower graph shows the periodogram based on the available data.

about as fast as the matrix inversion when the proportion
of missing data is around 40% − 47%, depending on N .
This is consistent with the claim that the proposed algorithm
is asymptotically faster than the state-of-the-art [5] and [17]
when the proportion of missing data is less than 50%.

C. Application: Sparse 2D SAR imaging

SAR imaging comes down to a 2D spectral estimation
problem in the fast time and slow time domains after all of
the preliminary steps [25]. If a SAR platform is working in
a congested spectrum such as the UHF or VHF bands, radio
frequency interference (RFI) comes from relatively narrow-
band sources such as FM radio (commercial and amateur)

and television broadcasts [26]. When RFI interference is
suppressed by frequency notching, missing data is introduced
into the fast time phase history data resulting in increased
sidelobe energy [27].

We use the GOTCHA volumetric SAR data in this example
from the U.S. Airforce Sensor Data Managament System
(SDMS)6. The flight pattern was a circular SAR imaging
pattern, and the sensor data available had a bandwidth of
approximately 600 MHz.7 We simulate frequency notching,
to prevent interference from narrowband sources, by removing
three 20 MHz bands (approximately 10% of total bandwidth)
from each fast time pulse. This results in three annuli of data to
be missing from the polar annulus (c.f., [28]). This represents a
scenario where the transmit signal is a chirp and the reference
signal is a notched chirp.

The images are formed using standard SAR techniques.
The data is reformatted using polar reformatting techniques,
and an image is formed (via FFT or SLIM-1) using the data
from four degrees of azimuth data across all 360 degrees with
no overlapping look angles. The images are then rotated into
alignment and each image is fused together. The fusion is done
by taking the maximum of each pixel from the set of all the
images created. The first subfigure is formed from the full data
and is used as a benchmark. The second image is formed from
frequency notched data, i.e., the missing data is zeroed out.
The third image is formed from frequency notched data where
the missing data is estimated for each fast-time pulse.

In the simulations where MIAA was used to recover missing
data, it was applied to every fast time pulse (in the slant range)
before polar reformatting.8 For each four degree aperture (90
total apertures), this results in 469 fast time pulses and a MIAA
problem of size N = 424 and K = 900. For this data size,
the computational time is approximately half compared to the
state of the art, resulting in a considerable reduction in the
image generation time.

In the first set of images shown in Figure 5 the images are
formed by applying 2D FFTs to the data on the rectangular
grid. The full data set produces a baseline image in Figure
5(a). The missing data case occurs when frequency notching
is utilized and the sidelobes in the image increase as shown
in Figure 5(b). When MIAA is applied to the data before the
imaging, the reconstruction is nearly as good as the full data
set as demonstrated in Figure 5(c) compared to Figure 5(a).

Next, we illustrate the effectiveness of MIAA when applied
as a preprocessing step to a sparsity promoting imaging
method. In particular, we use MIAA to estimate missing
frequency samples, and the sparsity promoting method to
reconstruct an underlying SAR image. The sparsity promoting
imaging method used in this example was Sparse Learning via
Iterative Minimization with `1 norm (SLIM-1) [24]. SLIM-1
is a maximum a posteriori method that is based off a Bayesian

6This data is publicly available by request.
7The GOTCHA data is X-band, but the frequency notched simulated

scenario could equally well represent low frequency interference for UHF
and VHF data.

8We do not consider any joint 2-D estimation of missing data. In a 2-D
data recovery scenario, the missing data should be estimated on the rectangular
grid rather than the polar grid since the sinusoids should decouple between
the spatial domains.
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Fig. 4. Average time per iteration for running the missing data IAA compared to inverting Rg. N denotes the total number of data points and K represents
the number of frequency points. Left: N = 2000,K = 16000. Middle: N = 4000,K = 32000. Right: N = 8000,K = 64000.

hierarcheal model. It has been shown to be an effective method
for SAR imaging in full data [24] and missing data scenarios
[17]. The SLIM imaging algorithm here is the 2D extension
[24] where the missing data is zeroed out (not the missing
data SLIM as shown in [17]).

Figure 6(a) shows the output from SLIM-1 when full
data is available. The speckle noise and any sidelobes are
significantly suppressed compared to Figure 5(a). The use
of frequency notching to the bad bands reduces the sparse
methods effectiveness at suppressing sidelobes as shown in
Figure 6(b). When the missing data was estimated with MIAA
before utilizing the SLIM-1 imaging algorithm, this results in
the image shown in Figure 6(c) which is nearly identical to
the original full data image. This example was not designed
to compare different missing data algorithms, but to illustrate
that reconstruction using sparsity promoting methods can be
improved by first estimating missing data, e.g., by MIAA.

These empirical results show that using MIAA to estimate
missing data in notched bands can be quite effective. The fast
implementation allows for this method to be more practical
for real world applications such as SAR imaging. In this
application we have shown that fast MIAA may be utilized
successfully to improve image quality in the case where
frequency notching has been used to suppress interference.

VII. CONCLUSIONS

In this paper a new approach for fast missing data IAA is
designed for cases where the amount of missing data is small.
This method utilizes structures in the MIAA algorithm and
replaces a nonstructured problem with a structured problem
by a low rank completion. This allows for reducing the com-
putational complexity from O((N−Nm)3+K logK) (see [5],

[17]) to O(Nm
3 +NmN logN +N2 +K log(K)). This is an

improvement of the asymptotic computational complexity of
(N/Nm− 1)3, which is an increase in performance whenever
the proportion of missing data is less than 50%. We have also
numerically observed that the improvement in performance is
significant compared to the state-of-the art.

The method is applied to SAR imaging with frequency
notching for interference suppression. Frequency notching
causes missing data resulting in increased sidelobes which
decreases image quality. We demonstrated that the use of
missing data IAA can improve the image quality significantly.

APPENDIX

A. Computational complexity of MIAA algorithm

The computational cost for one iteration of the proposed
algorithm is

2

3
Nm

3 + 8NmN log2N +
3

2
N2 +

3

2
K log(K)

in addition to lower order terms. The first term comes from cal-
culating L, the inverse of the Cholesky factor of SmR−1Sm

T .
The second term is for calculating X = R−1(Sm

TL) which
takes 6Nm FFT’s of size 2N and for calculating d from X
which takes 2Nm FFT’s of size 2N . The third term results
from Levinson-Durbin (N2, see [1]) and the computation of
R−1 from (22) (N2/2, also utilizing that R−1 is Hermitian
and persymmetric9). The final terms is (3/2)K logK and
results from the three FFT/IFFT calculations of size K: 1)

9In this case (22) reduces to the Trenchs algorithm for the estimation of the
inverse of Toeplitz matrices [29, p. 132], noting however that Trenchs method
requires O(N2) memory storage while (21) only O(N), at the expense of
(3/2)N2 extra computations.
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R1:N,1 = K(F−1(p))1:N , 2) ΨN by synchronizing (10) and
(24), 3) ΨD by synchronizing (10) and (25).

B. Toeplitz matrices and fast calculations

The celebrated fast Fourier transform has been widely used
for decreasing the computational complexity of algorithms
with structure. In particular, this can be used when the matrices
involved are cyclic or Toeplitz. Here we summarize some of
the concepts relevant to this paper. For a more comprehensive
review on this, see [30].

Multiplication between a Toeplitz matrix R ∈ CN×N and
any vector y ∈ CN may be computed by embedding the
Toeplitz matrix into a circulant matrix(

R U
U R

)
.

Since the Fourier matrix diagonalizes any cyclic matrix, Ry
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Fig. 5. FFT Imaging: (a) The image formed with full data. (b) The image
formed with notched (missing) data. (c) The image formed when the notched
data is estimated via MIAA.
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Fig. 6. SLIM1 Imaging: (a) The image formed with full data. (b) The image
formed with notched (missing) data. (c) The image formed when the notched
data is estimated via MIAA.

may be obtained from(
R U
U R

)(
y

0N×1

)
=

(
Ry
Uy

)
,

which is computed efficiently using FFT in O(N logN) [30].
Toeplitz systems may be solved efficiently using the dis-

placement structures [31]. More specifically, let

D =

(
01×(N−1) 0

IN−1 0(N−1)×1

)
denote the shift matrix and define the displacement of a
Hermitean matrix R as ∇(R) = R − DRDT . If R is
a nonsingular Toeplitz matrix, then the displacements of R
and its inverse R−1 both have rank bounded by 2. The
displacement of R−1 may be expressed as

∇(R−1) = uu∗ − ũũ∗, (29)
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where

u =
1

σ

(
1
θ

)
, ũ =

1

σ

(
0

θ̃

)
,

θ = (θ1, . . . , θN−1)T are the vector of AR coefficients
consistent with R, and σ2 is the corresponding prediction
error, i.e.,

R

(
1
θ

)
=

(
σ2

0

)
,

and θ̃ = (θ̄N−1, . . . , θ̄1)T (see, e.g., [1]). Levinson-Durbin’s
algorithm may be used to find θ and σ, and consequently u and
ũ, in O(N2) [1], [29]. This may be used for solving Toeplitz
systems efficiently using the so called Gohberg-Semencul (GS)
factorization

R−1 = L(u,D)L(u,D)∗ − L(ũ,D)L(ũ,D)∗,

where L(u,D) = (u,Du,D2u, . . .DN−1u) is a lower trian-
gular Toeplitz matrix. Since L(u,D) and L(ũ,D) are Toeplitz
matrizes, any number of systems Rxj = yj may be solved
by four Toeplitz-matrix vector multiplications.
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