
Inverse Problems in Analytic Interpolation
for Robust Control and Spectral Estimation

JOHAN KARLSSON

Doctoral Thesis
Stockholm, Sweden 2008



TRITA MAT 08/OS/09
ISSN 1401-2294
ISRN KTH/OPT SYST/DA-08/09-SE
ISBN 978-91-7415-125-1

Optimization and Systems Theory
Department of Mathematics

Royal Institute of Technology
SE-100 44 Stockholm, SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska Högskolan framlägges till of-
fentlig granskning för avläggande av teknologie doktorsexamen, fredagen den 31 oktober
2008 klockan 13.00 i rum F3, Lindstedtsvägen 26, Kungl Tekniska Högskolan, Stockholm.

© Johan Karlsson, October 2008

Print: Kista Snabbtryck AB
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Abstract

This thesis is divided into two parts. The first part deals with the Nevanlinna-Pick interpolation
problem, a problem which occurs naturally in several applications such as robust control, signal
processing and circuit theory. We consider the problem of shaping and approximating solutions to
the Nevanlinna-Pick problem in a systematic way. In the second part, we study distance measures
between power spectra for spectral estimation. We postulate a situation where we want to quantify
robustness based on a finite set of covariances, and this leads naturally to considering the weak∗-
topology. Several weak∗-continuous metrics are proposed and studied in this context.

In the first paper we consider the correspondence between weighted entropy functionals and
minimizing interpolants in order to find appropriate interpolants for, e.g., control synthesis. There are
two basic issues that we address: we first characterize admissible shapes of minimizers by studying
the corresponding inverse problem, and then we develop effective ways of shaping minimizers via
suitable choices of weights. These results are used in orderto systematize feedback control synthesis
to obtain frequency dependent robustness bounds with a constraint on the controller degree.

The second paper studies contractive interpolants obtained as minimizers of a weighted entropy
functional and analyzes the role of weights and interpolation conditions as design parameters for
shaping the interpolants. We first show that, if, for a sequence of interpolants, the values of the
corresponding entropy gains converge to the optimum, then the interpolants converge inH2, but not
necessarily inH∞. This result is then used to describe the asymptotic behaviour of the interpolant
as an interpolation point approaches the boundary of the domain of analyticity.

A quite comprehensive theory of analytic interpolation with degree constraint, dealing with ra-
tional analytic interpolants with an a priori bound, has been developed in recent years. In the third
paper, we consider the limit case when this bound is removed,and only stable interpolants with a
prescribed maximum degree are sought. This leads to weighted H2 minimization, where the inter-
polants are parameterized by the weights. The inverse problem of determining the weight given a
desired interpolant profile is considered, and a rational approximation procedure based on the theory
is proposed. This provides a tool for tuning the solution forattaining design specifications.

The purpose of the fourth paper is to study the topology and develop metrics that allow for lo-
calization of power spectra, based on second-order statistics. We show that the appropriate topology
is the weak∗-topology and give several examples on how to construct suchmetrics. This allows us
to quantify uncertainty of spectra in a natural way and to calculate a priori bounds on spectral un-
certainty, based on second-order statistics. Finally, we study identification of spectral densities and
relate this to the trade-off between resolution and variance of spectral estimates.

In the fifth paper, we present an axiomatic framework for seeking distances between power spec-
tra. The axioms require that the sought metric respects the effects of additive and multiplicative noise
in reducing our ability to discriminate spectra. They also require continuity of statistical quantities
with respect to perturbations measured in the metric. We then present a particular metric which abides
by these requirements. The metric is based on the Monge-Kantorovich transportation problem and is
contrasted to an earlier Riemannian metric based on the minimum-variance prediction geometry of
the underlying time-series. It is also being compared with the more traditional Itakura-Saito distance
measure, as well as the aforementioned prediction metric, on two representative examples.

Keywords: Nevanlinna-Pick Interpolation, Approximation, Model reduction, Robust Control, Gap-
robustness, Sensitivity Shaping, Entropy functional, Spectral Estimation, Weak∗-topology, Monge-
Kantorovic Transportation Problem.
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Introduction
Mathematical modelling and approximation theory has been at the core of applied mathe-
matics for several centuries. Classical examples of this are Gauss’ least square approxima-
tion where noisy measurements can be used for approximatinga trajectory and Newton’s
laws which gives a model for movements of masses under gravitational forces. The essence
is to obtain representations which provide a simple but yet meaningful description of the
real world.

This thesis is divided into two parts. In the first part, we study approximation of systems
while preserving specific properties of the system, such as stability, contractiveness, and
interpolation values. The underlying mathematical problem appears in many applications,
from control synthesis to model reduction of systems. In thesecond part of the thesis,
we study distances and identification of stochastic processes. In particular we explore a
topology which allows for robust identification and quantitative descriptions of uncertainty
sets.

In this introduction, we describe some of the definitions andconcepts that are used in
the thesis. First, we consider linear systems, Hardy spaces, and how these can be used
in robust control. Then, a brief overview of stochastic processes and spectral estimation
follows, and some connections with speech processing are illustrated. Finally, the main
contributions of this thesis are presented and the five papers are summarized.

1.1 Linear systems

A class of systems widely used in the literature is the class of linear systems. A discrete-
time linear time-invariant (LTI) systemh can be represented by an input-output mapping,
h : U → Y which takes an input sequence{uk}k∈Z ∈ U to an output sequence{yk}k∈Z ∈
Y,

yk =
∑

ℓ∈Z

hℓuk−ℓ,

whereZ denotes the set of integers, and{hk}k∈Z is specified byh. The input sequence
{uk}k∈Z, the output sequence{yk}k∈Z, and the input-output mapping induced byh can
be represented by the formal power series

u(z) =
∑

k

ukz
k, y(z) =

∑

k

ykz
k, h(z) =

∑

k

hkz
k

in which case
y(z) = h(z)u(z).

1



2 INVERSE PROBLEMS INROBUST CONTROL AND SPECTRAL ESTIMATION

Herez represents a unit delay of the signal (the shift-operator).The functionh(z) is called
the transfer function of the systemh, and is represented by a block diagram

input
uk−→ h(z)

yk−→ output.

In this thesis we mainly deal with single-input single-output (SISO) systems, in which case
{uk}k∈Z ∈ U, {yk}k∈Z ∈ Y, and{hk}k∈Z are sequences of complex numbers. A common
requirement on physical systems is causality, i.e., that anoutputyk only depends on input
um form ≤ k, and hencehk = 0 for k < 0.

A fundamental problem in system identification and model reduction is to find approx-
imate models of physical systems that can be implemented in an efficient way. Due to
memory constraints we require the system to be rational, i.e., representable in the form

yk + a1yk−1 + · · · + anyk−n = σ0uk + σ1uk−1 + · · · + σmuk−m

in which case the transfer function is given by

h(z) =
σ0 + σ1z + · · · + σmz

m

1 + a1z + · · · + anzn
=
σ(z)

a(z)
.

The McMillan degree (or simply degree) of a system representable in this form, withσ
anda coprime, ismax(n,m). The part of the system specified bya is called the Auto-
Regressive (AR) part and the part specified byσ the Moving-Average (MA) part. Therefore
we will call a system of the form

h(z) = σ(z), h(z) =
σ0

a(z)
, h(z) =

σ(z)

a(z)

a MA-system, an AR-system, and an ARMA-system, respectively. One of the main topics
of this thesis is to find ARMA-models of low degree which approximate a given system in
a suitable sense.

1.1.1 Norms and Hardy spaces

We consider Hardy spacesHp which are Banach spaces of analytic functions in the unit
discD = {z : |z| < 1}. For1 ≤ p < ∞, denote byHp the space of analytic functionsf
in D for which the norm

‖f‖Hp
=

(

sup
0≤r<1

1

2π

∫ π

−π

|f(reiθ)|pdθ

)
1

p

is finite. The spaceH∞ is the set of bounded analytic functions inD with norm

‖f‖Hp
= sup

z∈D

|f(z)|.

ClearlyH∞ ⊂ Hp ⊂ Hq ⊂ H1 when1 < q < p <∞.
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Let the input spaceU and the output spaceY of a systemh be theℓ2(Z) space, i.e.,
both contains sequences{xk}k∈Z for which the norm

‖{xk}k∈Z‖2 =

(

∑

k∈Z

|xk|
2

)
1

2

is finite. By Parsevals equality, the norm of{xk}k∈Z in ℓ2 equals theL2-norm ofx(z) =
∑

k∈Z xkz
k on the unit circleT

‖{xk∈Z}‖
2
2 = ‖x(z)‖2

2 :=
1

2π

∫ π

−π

|x(eiθ)|2dθ,

as it can be shown thatx(z) has boundary limits a.e. onT [34]. Consider the norm which
is induced by the input-output behaviour of the systemh,

‖h‖ := sup
u(z) 6=0

‖y(z)‖2

‖u(z)‖2
= ‖h(z)‖L∞(T).

The assumption thath is causal imposes the condition that all negative Fourier coefficients
of h vanish. If the induced norm ofh is finite, thenh(z) is analytic in the unit discD (see
e.g., [32, p. 20]), and the induced norm equals theH∞-norm

‖h‖ = ‖h(z)‖H∞
.

Such a systemh is said to be stable.
One useful concept is that af ∈ Hp has an inner-outer factorization, which can be

thought of as a “polar form” representation. Given a function f ∈ Hp, it can be factored
into two parts, one which is specified by the zeros off , and one part which is specified by
the magnitude off on the unit circle. The function specified by the zeros off is called
inner, and sometimes referred to as an all-pass function. A functionφ is inner if it is
analytic inD and|φ(z)| = 1 for a.e. z ∈ T. Any inner function is of the formφ(z) =
B(z)S(z) whereB(z) is a Blaschke product andS(z) is a singular inner function. The
Blaschke product and the singular inner function representtwo different types of “zeros.”
A Blaschke productB(z) is of the form

B(z) = zn
∏

zα

|zα|

zα

zα − z

1 − z̄αz

wheren is a positive integer andzα are zeros inD\{0} such that
∑

zα
(1 − |zα|) < ∞,

and a singular inner functionS(z) is of the form

S(z) = exp

(

−

∫ π

−π

eiθ + z

eiθ − z
dµ(z)

)
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wheredµ is a positive bounded measure onT. The “zero-free” function specified by its
magnitude onT is called an outer function, and is sometimes referred to as aminimum
phase function. For the spaceHp an outer functionF is of the form

F (z) = eiγ exp

(

1

2π

∫ π

−π

eiθ + z

eiθ − z
log(|f(eiθ|)dθ

)

whereγ is a real number,log(|f(eiθ)|) ∈ L1, and|f(eiθ)| ∈ Lp. Now, given a function
f ∈ Hp, it has the inner-outer factorizationf(z) = F (z)φ(z), whereF (z) is outer and
φ(z) is inner. A more detailed and extensive exposition of Hardy spaces and factorizations
can be found in [34, 13].

1.1.2 Degree-constrained analytic interpolation

Givenn+ 1 complex numbersz0, z1, . . . , zn in D and complex numbersw0, w1, . . . , wn,
the classical Nevanlinna-Pick interpolation problem amounts to finding a functionf in the
Schur class

S = {f ∈ H∞(D) : ‖f‖∞ ≤ 1}

which satisfies the interpolation condition

f(zk) = wk, k = 0, 1, . . . , n, (1.1)

whereH∞ is the Hardy space of bounded analytic functions onD. Such a function exists
if and only if the Pick matrix

P =

[

1 − wkw̄ℓ
1 − zkz̄ℓ

]n

k,ℓ=0

(1.2)

is positive semidefinite (see, e.g., [16]), and the solutionis unique if and only ifP is also
singular. A complete parameterization of all solutions wasgiven by Nevanlinna (see, e.g.,
[1]). The Nevanlinna-Pick theory provides one particular solution, which is referred to
as the central solution or the maximum entropy solution, since it maximizes the entropy
functional

∫

T

log(1 − |f |2)dm

subject to (1.1), wheredm is the normalized Lebesgue measure onT. This solution is
generically of degreen. However, the parameterization given by Nevanlinna provides no
knowledge on how to parameterize solutions of low degree.

In several recent papers [6, 7] a theory for parameterizing the low-degree solutions of
this problem was developed. The parameterization is in terms of the spectral zeros, and the
low-degree solutions are obtained as minimizers of certainentropy functionals. In [8], the
problem was solved for positive real interpolants and the theory was further developed in
[6, 20]. In [7] the problem was solved for contractive interpolants.
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Before presenting this parameterization result, we will introduce some notation. Letφ
be the finite Blaschke product

φ(z) =
n
∏

k=0

zk − z

1 − z̄kz

and letU : f(z) 7→ zf(z) denote the standard shift operator onH2. ThenφH2 is a shift
invariant subspace, i.e.,f ∈ φH2 implies thatU(f) = zf ∈ φH2. Denote byK the
co-invariant subspaceH2 ⊖ φH2. ThenK is invariant underU∗, whereU∗ denotes the
adjoint ofU . Let K0 denote the set of outer functions inK that are positive at the origin.
The following result is taken from [7].

Theorem 1.1. Suppose that the Pick matrix(1.2) is positive definite, and letσ be an
arbitrary function inK0. Then there exists a unique pair of elements(a, b) ∈ K0×K such
that

(i) f = b/a ∈ H∞ with ‖f‖∞ ≤ 1,

(ii) f(zk) = wk, k = 0, 1, . . . , n, and

(iii) |a|2 − |b|2 = |σ|2 a.e. onT.

Conversely, any pair(a, b) ∈ K0 × K satisfying (i) and (ii) determines, via (iii), a unique
σ ∈ K0. Moreover, settingΨ = |σ|2, the optimization problem

min−

∫

T

Ψ log(1 − |f |2)dm subject tof(zk) = wk, k = 0, . . . , n

has a unique solutionf that is precisely the uniquef ∈ S satisfying conditions (i), (ii) and
(iii).

The zeros of the functionσ ∈ K0, as in the theorem, are the zeros of the spectral outer
factorg of the nonnegative function|g|2 = 1− |f |2 on the unit circle. Thus, then zeros of
σ(z)∗ = σ(z̄−1) are often referred to asspectral zeros. We also note that the degree off
may be less thann, which happens whena, b, andσ have common roots.

1.1.3 Application to robust control

Robust stabilization is in its most basic setting the problem of finding controllers which
stabilize a given set of systems. Examples of real-world problems which can be solved
using control are all around us, from control of hard drives in computers and heat systems
for houses, to quality assessment for manufacturing plantsand technology for airplanes
and power plants.

Here we consider a plantP and a controllerC with input-output mappingsP : U → Y

andC : Y → U, and assume thatP andC are linear time-invariant discrete time systems.
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C(z)

P (z)
u0 u1

u2 y0

y1

y2

−

+

−

+

Figure 1.1: Standard feedback configuration.

Figure 1.1 shows a standard feedback configuration. Given signals(u0, y0), the inputs
(u1, y2) and outputs(y1, u2) of the plant and controller satisfies

(

u0

y0

)

=

(

u1

y1

)

+

(

u2

y2

)

(1.3)

where
y1 = Pu1

u2 = Cy2.
(1.4)

This feedback configuration is internally stable if and onlyif the mapping(u0, y0) to
(u1, u2, y1, y2) is stable and uniquely determined by (1.3) and (1.4). In particular, stability
may be expressed in terms of stability of either the mapping from (u0, y0) to (u1, u2) or
the mapping from(u0, y0) to (y1, y2). These mappings

(

u1

y1

)

= ΠP//C

(

u0

y0

)

,

(

u2

y2

)

= ΠC//P

(

u0

y0

)

,

can be expressed in terms of the plant and the controller

ΠP//C :=

(

I
P

)

(1 − CP )−1(I, −C)

ΠC//P :=

(

C
I

)

(1 − PC)−1(−P, I).

The mappingsΠP//C andΠC//P are projections which relate to the gap-robustness of the
feedback configuration. For the development and the main results of this framework, see
[39, 37, 29, 21, 38].

Stabilization of a feedback system therefore amounts to finding a controller for which
the transfer functions inΠP//C ,ΠC//P are stable. For the scalar case at hand, one can
express this by considering the sensitivity function

S(z) = (1 − PC)−1
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which is the mapping fromy0 to y2. It turns out that the transfer functionsΠP//C ,ΠC//P

are stable if and only ifS is stable and the interpolation conditions

S(zk) = 1 whenever zk is an unstable zero ofP, and
S(pk) = 0 whenever pk is an unstable pole ofP,

(1.5)

hold [11, 12]. These interpolation conditions reflect that there can not be any unstable
cancellation of poles or zeros in the productPC.

Problems of robust control address the effect of uncertainties in the nominal plant
model and the effect of external disturbances. Typical models for plant uncertainty are
taken in the form of additive or multiplicative perturbations of the nominal transfer func-
tion, perturbations of a coprime factor representation, orin a suitable metric topology such
as the one induced by the gap metric. In such cases where the description of uncertainty
is “unstructured,” i.e., non-parametric, the robustness margin and the performance of the
closed loop system can often be expressed in terms of the normor the weighted norm of
ΠP//C or its various entries [11, 37, 21]. Indeed, stabilization may be cast as an interpola-
tion problem with an analytic function [11], e.g., when the sensitivity function is required to
be stable and to satisfy (1.5) in order to ensure internal stability of the closed loop system.
The performance of the closed loop system relates to the shape of the sensitivity function
which relates to disturbance rejection and tracking at various frequency ranges. Robust-
ness to non-parametric perturbations relates again, via the small gain theorem, to the shape
of the sensitivity function or other suitable closed-loop mappings depending on the un-
certainty description. In either case, such problems amount to seeking a small (weighted)
norm for an analytic function that abides by given interpolation constraints. The solution
in the form of an analytic interpolant, e.g., a suitable sensitivity function, allows recovering
the corresponding stabilizing controllerC.

Naturally, the degree of such an interpolant relates to the degree of the corresponding
controller. For instance, in the context of sensitivity shaping where a sensitivity function
S = 1/(1 − PC) is sought that satisfies suitable constraints, the degree ofthe controller
C = (S − 1)/PS is bounded by

degC ≤ degP + degS − nz + np

wherenz andnp are the number of unstable zeros and poles of the plant, respectively [30].
In a similar manner, robustness in coprime factor uncertainty or, uncertainty in the gap
metric, may also be posed as an interpolation problem and an analogous degree bound for
the controller holds. Interest in keeping the degree ofC, S or other input-to-error maps
small can be motivated from several different angles. First, the complexity of the controller
adds to numerical issues, round-off errors, implementation delays, and computational de-
lays. Second, a closed loop system may be the subject of control via an outer loop that may
include a human operator. Naturally, a high order input-to-error map will create an extra
impediment in controlling the system by providing suitableinputs for needed tasks. In
conclusion, it is highly desirable to achieve performance and robustness while maintaining
the degree of interpolants/C within reasonable bounds. This issue will be studied in detail
in Paper A. In the first part of this thesis we derive methods for shaping and approximation
of interpolants, and the design of low degree controllers.
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1.2 Stochastic processes and spectral estimation

The power spectrum of a time-series signal represents the energy content over frequencies
of the signal. Spectral estimation can therefore be thoughtof as estimation of the frequency
content of a signal. This is a widely used methodology, whichis used for analysis and pre-
diction in areas such as speech, stock market, radar, sonar,and several medical applications
(see e.g., [36, 25, 3]).

Consider a discrete-time stochastic process, which is represented by a mapping from a
probability space to a time series

. . . , y−1, y0, y1, . . . .

In addition we assume that this stochastic process has zero mean, i.e.,

E(yk) = 0 for all k ∈ Z,

and is second order stationary, i.e.,

E(ytȳt−k) is independent oft,

whereE{·} denotes the expectation operator. Stationarity allows us to define the covari-
ances asck = E(ytȳt−k). The power spectrumdµ of the process is the positive measure
onT = {z : |z| = 1} with covariances as Fourier coefficients

ck :=

∫ π

−π

e−ikθdµ(eiθ) for k ∈ Z.

If the spectrum is smooth, then the power spectral density ofthe time series is

Φ(eiθ) =

∞
∑

k=−∞

cke
ikθ,

whereΦ(eiθ)dθ = dµ(eiθ).
For any power spectrumdµ with covariances(c0, c1, c2, . . .), there is an associated

analytic function

f(z) =
1

2
c0 + c1z + c2z

2 . . . .

This function satisfies2Ref(eiθ)dθ = dµ(eiθ) a.e., or in the case with a smooth spectrum
2Ref(eiθ) = Φ(eiθ) holds. According to Herglotz’ theorem [2] this function satisfies

f(z) =
1

4π

∫ π

−π

eiθ + z

eiθ − z
dµ(eiθ) (1.6)

and is analytic inD := {z : |z| < 1} with nonnegative real part. Any analytic function
in D with nonnegative real part is referred to as either “positive-real” or, as a Carathèodory
function.
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Consider the inverse problem to determine when there existsa power spectrum with
covariance sequence(c0, c1, . . . , cn), and if such power spectrum exists, to parameterize
all of them. This is in fact an interpolation problem where a positive realf(z) is sought
such that

f(0) =
1

2
c0,

fk(0)

k!
= ck for k = 1, . . . , n. (1.7)

If the Toeplitz matrix corresponding to this interpolationproblem,

T =











c0 c−1 · · · c−n
c1 c0 · · · c−n+1

...
...

. . .
...

cn cn−1 · · · c0











, (1.8)

is positive definite, then there is a family of infinitely manypower spectra consistent with
the covariance sequence [23]. If the Toeplitz matrix (1.8) is positive semidefinite and
singular, then there is a uniquely defined power spectrumdµ consistent with the covariance
sequence.

When a stochastic process{uk}k∈Z with power spectrumdµ is passed through a LTI

filter h, the power spectrum of the output is
∣

∣h(eiθ)
∣

∣

2
dµ(eiθ). Therefore, the stochastic

process{yk}k∈Z, produced by passing white noise through an ARMA filterσ/a, has the
power spectrum

Φ(eiθ)dθ =

∣

∣

∣

∣

σ(eiθ)

a(eiθ)

∣

∣

∣

∣

2

dθ.

Conversely, ifΦ is rational, then it may be factored intoh(z)h(z)∗, whereh(z) = σ(z)/a(z)
is the transfer function of an ARMA-system. The corresponding positive real functionf
then satisfies

f(z) + f(z)∗ = Φ(z) = h(z)h(z)∗, for z ∈ T,

and henceσ(z) is determined byσ(z)σ(z)∗ = a(z)b(z)∗ + a(z)∗b(z). The zeros ofσ(z)∗

are referred to as thespectral zerosof the positive real functionf(z).

1.2.1 Identification and spectral estimates

In most practical applications, we study a stochastic process{yk}k∈Z, assumed to be zero-
mean, second-order stationary, ergodic, and with power spectrumdµ. Spectral estimation
is to find an estimatedµ̂ of dµ based on the finite sampley1, . . . , yN .

Here, the estimation of a power spectrum is done in two steps.First estimating covari-
ancesck from the sampley1, . . . , yN , and then finding a power spectrum which has the
estimated covariances as Fourier coefficients. The covariances can be estimated using the
averages

ĉk =
1

N

N
∑

ℓ=k+1

yℓȳℓ−k, (1.9)
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which are referred to as the biased covariance estimates. Ergodicity of the process ensures
thatĉk is a good estimate ofck as long ask ≪ N , and that̂ck converges tock almost surely
asN tends to infinity. For any such estimate(ĉ0, ĉ1, . . . , ĉn), the Toeplitz matrix (1.8) is
positive. This ensures that there exist a power spectrumdµ̂ that matches the covariances

ĉk =

∫ π

−π

e−ikθdµ̂(eiθ) for k = 0, . . . , n.

In general there is an infinite family of such power spectrum,and below we will describe
two methodologies for choosing specific power spectra.

The periodogram is the spectral estimate

ΦP (eiθ) =
1

N

∣

∣

∣

∣

∣

N
∑

ℓ=1

yℓe
−iθℓ

∣

∣

∣

∣

∣

2

of the spectral densityΦ [35]. It identifies periodicities in the signal by multiplying the
signal by a complex exponential. It can be shown that this equals

ΦP (eiθ) =
N−1
∑

k=−N+1

ĉke
ikθ

whereĉk are the biased covariance estimates from (1.9) [4]. The mainobjection to using
the periodogram in spectral estimation is that it has poor pointwise convergence properties
[36]. To deal with this, smoothing and/or windowing may be utilized. In this text, we con-
sider the problem from a different viewpoint, and instead ofchanging the spectral estimate,
the topology is changed to one where the periodogram converges nicely.

The second methodology is based on finding a rational spectrum of low degree that
match the covariances. Given a positive covariance sequence (c0, c1, . . . , cn), there is
always an AR-filtera of degreen such that the power spectrum 1

|a(eiθ)|2
dθ has Fourier

coefficients equal to the given covariance. It turns out thatthis is the power spectrum with
the highest entropy gain

∫

T

log

(

dµ

dθ

)

dm

that satisfies the covariance constraint [5]. Furthermore,this solution can be found by
solving a set of linear equations, and it is of the formdµ = Φdθ whereΦ is of degree2n.

In [26], R.E. Kalman put forth a rational covariance extension problem, which in
essence amounts to parameterizing all rational functionsΦ of degree bounded by2n such
thatΦdθ is a positive measure with covariances(c0, c1, . . . , cn). It was proved in [18, 17]
that for every given MA-filterσ, there is an AR-filter1a such that

dµ(eiθ) =

∣

∣

∣

∣

σ(eiθ)

a(eiθ)

∣

∣

∣

∣

2

dθ

is consistent with(c0, c1, . . . , cn), and it was conjectured that there is a unique such AR-
filter with a(0) > 0. The conjecture was established in [9, 10, 19] and a constructive
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method was developed in [8] for calculating solutions via a convex optimization problem.
This is described in the following theorem.

Theorem 1.2. Let (c0, c1, . . . , cn) be a covariance sequence for which the Toeplitz matrix
(1.8) is positive definite, and letσ be an arbitrary non-zero polynomial of degreen. Then
there exists a unique stable polynomiala of degreen with a(0) > 0 such that

(i) dµ(eiθ) =
∣

∣

∣

σ(eiθ)
a(eiθ)

∣

∣

∣

2

dθ is a positive measure and

(ii) ck =
∫ π

−π e
−ikθdµ(eiθ) k = 0, 1, . . . , n.

Moreover, settingΨ = |σ|2, the optimization problem

max

∫ π

−π

Ψ(eiθ) log

(

dµ(eiθ)

dθ

)

dm subject to ck =

∫ π

−π

e−ikθdµ(eiθ), k = 0, . . . , n

has a unique solutiondµ that is precisely the uniquedµ satisfying conditions (i), (ii).

This theory has been further developed for general weighting functionsΨ in [27]. Ap-
proximation of positive real interpolants using approximation of the corresponding weights
has been developed in [15, 14]. This follows a similar rationale as used in Paper A and Pa-
per C.

The functionf corresponding todµ according to (1.6) satisfies the interpolation con-
ditions (1.7). This may be used for characterizing all positive real interpolants of degree
bounded byn. In fact, the set of positive real functionsf = b/a of degree bounded byn
satisfying (1.7), may be parameterized in terms ofσ, whereab∗ + a∗b = σσ∗ [8].

1.2.2 Weak∗-convergence

The more data from the sequence{yk}k∈Z is used, the better estimates of the underlying
power spectrum can be obtained. Here we consider the spectral estimation problem based
on the sample

y1, . . . , yN

and convergence properties of the spectral estimates asN tends to infinity.
LetΦP,N (eiθ) be the periodogram based on the sequencey1, . . . , yN . If the true under-

lying power spectra isdµ(eiθ) = Φ(eiθ)dθ, then the periodogram is an unbiased estimator
of Φ, i.e.,

lim
N→∞

E(ΦP,N (eiθ)) = Φ(eiθ).

However, the asymptotic variance is

lim
N→∞

E
(

ΦP,N(eiθ) − Φ(eiθ)
)2

= Φ(eiθ)2,

and hence the variance of the error does not go to zero asN → ∞ (see e.g., [36]). There-
fore, the periodogram is not asymptotically efficient as a pointwise estimator of the power
spectral density.
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The maximum entropy spectrum has nicer pointwise convergence properties, but con-
vergence can only be guaranteed if the power spectrum is sufficiently smooth. Y. L. Geron-
imus [22] proved that the maximum entropy spectrum converges uniformly under such
assumptions. In practice, a priori information about such smoothness is rarely available.
Therefore, we are led to consider a weaker type of convergence where only localization of
the spectral power is required. This is explained next.

We denote byC(T) the class of real-valued continuous functions onT. The set of
measures onT can be identified with the dual space ofC(T), i.e., the space of bounded
linear functionalsΛ : C(T) → R ([24], [28]). This is the Riesz representation theorem,
which asserts the existence of a bounded measuredµ such that

Λ(G) =

∫

T

G(z)dµ(z)

for all G ∈ C(T). Thus, for any two measures that are different, there existsa continuous
function such that the two measures integrate to different values. In other words, contin-
uous functions serve as “test functions” to differentiate between measures, and bounds on
such integrals define the weak∗-topology. A sequence of measuresdµn, n = 1, 2, . . .,
converges todµ in the weak∗ topology if

∫

T

Gdµn →

∫

T

Gdµ for everyG ∈ C(T).

The limit, when it exists, is defined uniquely by the sequence.
The weak∗-topology on the set of power spectra respects the statistical properties of the

signal and localization of power spectra. The periodogram converges to the true spectrum
in the weak∗ topology. This was observed in [33] (cf. [24, page 24]).

Theorem 1.3. LetΦP,N be the periodogram obtained from the sample(y0, y1, . . . , yN) of
a stochastic process with power spectrumdµ. Then

ΦP,Ndθ → dµ in weak∗

almost surely.

In fact, any sequence of spectral estimatorsdµn with covariances(cn0 , c
n
1 , . . .) such that

cnk → ck for all k asn → ∞ converges todµ in weak∗. Therefore, the maximum entropy
estimate also converges to the true spectrum asn→ ∞ in weak∗.

1.2.3 Application to speech processing

Spoken communication between people consists of sound waves created in the vocal tract,
which transmits messages. The sound wave excites the tympanic membrane in the ear
which passes the information on to the brain. In speech analysis each part of this com-
munication is analyzed in order to understand a message digitally and in speech synthesis
sound waves are produced which resembles specific messages and phrases.
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Sampling a speech waveform gives rise to a time series representing the acoustic sound
pressure wave. The data carries information about both the speaker and the message. There
are many methods to analyze the data and obtain useful information from the speech sam-
ple, and most of the methods use local second order statistics. There are two main reasons
for this. Firstly, due to the physiology of the human speech production system, the speech
signal may be modelled as the output of a second order stationary process for short time
periods. Secondly, the second order statistics characterize the power of the signal over
the frequencies, a characteristic of the sound wave which the human auditory system is
sensitive to.
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Figure 1.2: Time-domain speech signal and power spectral estimates of the phonemes/S/
and/A/ respectively.

One example where this is used in everyday life is in a cellphone. Since there are limits
in the amount of data which may be sent through the telecommunication network, the en-
tire time series representing the sound wave can not be sent.Instead, the sampled speech is
divided into short segments and for each segment, the maximum entropy spectrum is cal-
culated from the covariances. The spectrum is then sent together with an input sequence
which carries information about the excitation and periodicity of the speech wave. Conse-
quently, the speech produced by the cellphone is artificially recreated, but nevertheless it
resembles the important characteristics of the sounds.

Phonemes are small segments of speech, and a sound wave can bethought of as a
sequence of phonemes. In speech analysis, a common procedure is to identify phonemes
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based on their power spectra. Consider two speech waves sampled from the phonemes/S/
and/A/, which are depicted on the left in Figure 1.2. For identifying which phonemes the
speech waves corresponds to, their spectra are estimated, and the power spectral estimates
corresponding to the maximum entropy spectrum and the periodogram are shown on the
right. The spectra obtained are then compared to a database,where different spectra cor-
responding to the phonemes are stored (usually utilizing hidden markov models). The
main theme of the second part of this thesis deals with how to construct distances that are
appropriate for such discrimination and which properties such distances should have.

1.3 Main contributions of this thesis

This thesis is divided into two parts. The first part, containing Papers A-C, deals with
approximation subject to interpolation constraints. The second part, containing Papers D-
E, deals with spectral estimation and weak∗-continuous distances. The main results are
explained below.

1.3.1 Approximation subject to interpolation constraints

In [7] the degree-constrained Nevanlinna-Pick problem wassolved for contractive inter-
polants, and this circle of ideas is studied in detail in Paper A and Paper B. The parameter-
ization of the interpolants is done in terms of minimizers of

min−

∫

T

Ψ log(1 − |f |2)dm subject tof(zk) = wk, k = 0, . . . , n (1.10)

where the weighted entropy functional is to be minimized. WheneverΨ = |σ|2 for some
σ ∈ K0, the degree of the minimizer is bounded byn. In Paper A, we generalize this result
for handling arbitrary log-integrable weightsΨ. As a corollary to this theorem, the set of
weightsK0 may be extended in a natural way for parameterizing interpolants of degree
bounded byn+m for any givenm ≥ 0. As a second corollary to the theorem, we obtain
a solution to the following inverse problem: given an interpolantf , determine the class of
weightsΨ so that the minimizer of (1.10) is the given functionf .

Using these results we develop a degree reduction procedurefor interpolants. This
gives a solution to the previously partly open problem on howto choose the weightΨ (i.e.,
spectral zeros off ) in order to obtain a particular shape. Given a interpolantg of high
degree, first find a weight|ρ|2 so thatg is the minimizer of (1.10) using weightΨ = |ρ|2.
Then use quasi-convex optimization to find theσ ∈ K such that|σ|2 is as close as possible
to |ρ|2. Then, lettingf be the minimizer of (1.10) using the weight|σ|2, gives a interpolant
f that is of low degree and close tog. By approximating in the weights instead of directly
in the interpolants, a nonconvex problem is replaced by one that is tractable. Bounds on
the approximation error,f − g, are given in terms of the optimum of the quasi-convex
optimization problem.

We consider two control applications, one dealing with sensitivity shaping and the
other dealing with frequency-dependent robustness in the coprime factors of the plant.
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Both problems can be formulated as interpolation problems and degree bounds on the
controller can be obtained based on the degree of the interpolant. The advantage of using
our method, compared to standardH∞ theory, is that it allows for shaping interpolants
without increasing the degree unduly.

In Paper B the role of weightsΨ and interpolation points for shaping the minimizerf
of the minimization problem (1.10) is considered. It is shown that, if, for a sequence of
interpolants, the values of the entropy gain of the interpolants converge to the optimum,
then the interpolants converge inH2, but not necessarily inH∞. This result is then used to
describe the asymptotic behaviour of the interpolant as an interpolation point approaches
the unit circle. The result is, under a condition on the weight, that adding an interpolation
point close to the unit circle have negligible effect on theH2-norm, but it may have large
effect on theH∞ norm.

For loop shaping to specifications in control design, it might at first seem natural to
place strategically additional interpolation points close to the boundary. However, our re-
sults indicate that such a strategy will have little effect on the shape. Another consequence
of our results relates to model reduction based on minimum-entropy principles, where one
should avoid placing interpolation points too close to the boundary. We have analyzed a
design example from robust control, studied by Nagamune [31], in the context of our re-
sults. It turns out that the effect of an added interpolationcondition close to the boundary
turns out to be small, but that the effect of changing the weight is major.

These results are also utilized in Paper A for studying the continuity of the mapping
from weightsΨ to minimizersf of the minimization problem (1.10). It is shown that the
mapping fromlog Ψ ∈ L∞ to H2 is continuous, but the mapping fromlog Ψ ∈ L∞ to
H∞ is not. The former statement is in fact used above for deriving the error bound in the
approximation procedure.

By scaling the interpolantf → γ−1f , the optimization problem (1.10) becomes

min−γ2

∫

T

Ψ log(1 − γ−2|f |2)dm subject tof(zk) = wk, k = 0, . . . , n

and can be used to parameterize interpolants with‖f‖∞ ≤ γ. In Paper C we study what
happens asγ → ∞. It turns out that

−γ2

∫

T

Ψ log(1 − γ−2|f |2)dm→

∫

T

Ψ|f |2dm asγ → ∞,

i.e., that the entropy functional converges to a weightedH2-norm asγ → ∞. This leads
to a parameterization result similar to the ones obtained for contractive interpolation and
positive real interpolation. The functionsσ ∈ K0 parameterize the analytic functions
f = b

a whereb ∈ K, a ∈ K0 in terms of minimizers of the entropy functionals in the
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following table.

Property Entropy functional Spectral zeros

Passive Re(f) ≥ 0
∫

|σ|2 log Re(f) σσ∗ =a∗b+ ab∗

Bounded ‖f‖∞ ≤ γ −γ2
∫

|σ|2 log(1 − γ−2|f |2) σσ∗ =aa∗−γ−2bb∗

Stable f ∈ H(D)
∫

|σf |2 σσ∗ =aa∗

In Paper C, we also develop a procedure similar to the one derived in Paper A for ap-
proximation of interpolants. Also here, the basic idea is touse the inverse problem and
quasi-convex optimization to find a weight for which the minimizing interpolant is of both
low degree and attains a desired shape. In some problems, only a few interpolation condi-
tions are given. This gives an additional freedom of choosing interpolation points as extra
design parameters. By considering the error bound of the approximation, the interpolation
points may be chosen in a systematic way in order to guaranteegood approximation in
selected regions.

1.3.2 Spectral estimation and weak∗-continuous distances

In the second part, we consider metrics and topologies for power spectra. In Paper D, we
start by studying spectral estimation based on covariances. Consider a positive measuredν
with covariance sequencec = (c0, c1, . . .) and consider the set of power spectra consistent
with then first covariances

Fc0:n =

{

dµ ≥ 0 : ck =

∫ π

−π

e−ikθdµ, k = 0, 1, . . . , n

}

.

Identification often builds on covariance estimates, and ifonly the finite covariance se-
quence(c0, c1, . . . , cn) is given, the only thing known about the measuredν is that it be-
long toFc0:n . Asn tends to∞, this set shrinks and in the limit the only measure consistent
with the entire covariance sequencec is dν

⋂

n∈N

Fc0:n = {dν}.

Therefore one would expect that the diameter ofFc0:n with respect to the distancesδ,

ρδ(Fc0:n) := sup{δ(dµ0, dµ1) : dµ0, dµ1 ∈ Fc0:n},

also shrinks nicely asn → ∞. This is not the case for most of the standard distance
functions used for discriminating between power spectra. If δ is taken as the Itakura-Saito
distance, the Kullback-Leibler distance, or the logaritmic distance, then the diameter is
infinite for anyn. If the total variation is considered, the diameterρδTV

(Fc0:n) is 2c0 for
anyn. The problem is that, determining the values of the spectraldensity at a point based
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on a finite set of covariances is an ill-posed problem, and allthe distance functions above
are based on the pointwise behaviour of the spectra.

However, we prove that, ifδ is weak∗-continuous then the diameterρδ(Fc0:n) shrinks
to 0 asn → ∞. By using weak∗-continuous distances, localization of the measure is
possible, i.e., determining the value of

∫

T

G(z)dν(z)

with increasing accuracy asn increases, wheneverG is a continuous function. Motivated
by this, several ways of constructing weak∗-continuous metrics are proposed. For one
class of such metrics, explicit bounds on the diameter ofρδ(Fc0:n) are given in terms of
the covariance sequence. Finally, we consider an example where the trade-off between
variance and resolution is considered. In this setting, thechoice of metric represents the
required resolution, and then sufficient data (covariances) need to be provided guarantee
that the variance is low.

In Paper E, we consider distances for power spectra based on the Monge-Kantorovic
transportation problem. One characteristic of a good distance measure is that is has a set
of useful properties. In this paper we consider the inverse problem of finding distances
which satisfy a set of natural properties. This axiomatic approach builds on four axioms.
We require that the distance is 1) a metric, 2) contractive with respect to additive noise, 3)
contractive with respect to multiplicative noise, and 4) weak∗-continuous. When signals
are corrupted with noise, discrimination between signals becomes more difficult. This
is the motivation for the contractiveness properties. The weak∗-continuity is required in
order to ensure that the metric is continuous with respect tothe second order statistics. We
contrast this by considering earlier established distances based on information theory and
statistics. In this context, another property which seem natural is invariance with respect
to linear filtering. However, we show that this property is incompatible with any weak∗-
continuous metric.

The Monge-Kantorovic transportation problem is a problem,where the cost of trans-
porting mass from one measuredµ0 to another measuredµ1 is to be minimized. The
Wasserstein distance is a metric, associated with the minimal transportation cost, which
satisfies several of the requested properties. However, it only allows for differentiating
between measures of equal mass. To handle the situations with possibly unequal mass,
we postulate that the measuresdµ0, dµ1 are perturbations of two other measuresdν0, dν1
which have equal mass. Then, the cost of transporting the original measuresdµ0, dµ1 to
one another can be thought of as the cost of transporting the perturbed measuresdν0, dν1
to one another plus the size of the respective perturbations. This leads to the optimization
problem

T̃c,κ(dµ0, dµ1) := inf
R

dν0=
R

dν1
Tc(dν0, dν1) + κ

1
∑

i=0

δTV(dµi, dνi),

whereTc is the transportation cost andδTV is the total variation. By using the cost function
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c(x, y) = |x− y|p, the distance function

δp,κ(dµ0, dµ1) :=
(

T̃c,κ(dµ0, dµ1)
)min(1, 1

p
)

imposes a metric on the set of power spectra which satisfies all the above properties. At
first, computation of the distance appears to be a problem. However, by considering the
dual formulation, this may be posed as the linear optimization problem

T̃c,κ(dµ0, dµ1) = sup
(φ,ψ)∈Φc,κ

J (φ, ψ)

where

J (φ, ψ) =

∫

φdµ0 + ψdµ1.

and

Φc,κ :=
{

(φ, ψ) ∈ L1(dµ0) × L1(dµ1) : φ(x) ≤ κ,

ψ(y) ≤ κ , φ(x) + ψ(y) ≤ c(x, y)
}

.

Therefore, it may be calculated using standard methods for solving linear optimization
problems. One additional property of the transport distances is that their geodesics repre-
sent smooth transitions of mass. This is an important contrast to standard distances used
for power spectra which are mainly based on the pointwise distance between the spectra
on the unit circle.

1.4 Summary of the papers

This thesis consists of five papers, and hereafter follows a short summary of each of them.

A: The Inverse Problem of Analytic Interpolation with Degree Constraint and
Weight Selection for Control Synthesis. The paper is coauthored with Tryphon
Georgiou and Anders Lindquist and has been provisionally accepted for publication
in IEEE Transactions of Automatic Control. Results from this paper have appeared
or will appear in the proceedings of CDC 2006, MTNS 2008, CDC 2008.
The minimizers of certain weighted entropy functionals arethe solutions to an an-
alytic interpolation problem with a degree constraint, andall solutions to this in-
terpolation problem arise in this way by a suitable choice ofweights. This allows
for parameterizing the set of contractive interpolants with a degree bound by select-
ing weights. An approximation procedure is developed as follows. First the set of
weights which give rise to an interpolant of high degree is found. This is referred to
as the inverse problem. Then based on an optimization problem, the weight which
give rise to a low degree interpolant and is closest to the former weight is found. This
weight is used to obtain an interpolant of low degree, and which is close to the inter-
polant of high degree. Instead of approximation of the interpolant directly, which is
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a non-convex problem, the problem of approximating the weight is tractable.
This approximation procedure is used in order to systematize feedback control syn-
thesis with a constraint on the degree. This is utilized for weighted sensitivity shap-
ing and for design of controllers for weighted robustness inthe coprime factors,
while at the same time keeping the degree of the controller and the closed loop low.

B: On Degree-Constrained Analytic Interpolation with Interp olation Points Close
to the Boundary. The paper is coauthored with Anders Lindquist and has been
provisionally accepted for publication inIEEE Transactions of Automatic Control.
Results from this paper has appeared in the proceedings of MTNS 2006.
In this paper we study contractive interpolants obtained asminimizers of a weighted
entropy functional, and analyze the role of weights and interpolation conditions as
design parameters for shaping the interpolants. We first show that, if, for a sequence
of interpolants, the values of the entropy gain of the interpolants converge to the
optimum, then the interpolants converge inH2, but not inH∞. This result is then
used to describe the asymptotic behaviour of the interpolant as an interpolation point
approaches the boundary of the domain of analyticity. For loop shaping to specifica-
tions in control design, it might at first seem natural to place strategically additional
interpolation points close to the boundary. However, our results indicate that such
a strategy will have little effect on the shape. Another consequence of our results
relates to model reduction based on minimum-entropy principles, where one should
avoid placing interpolation points too close to the boundary. We have analyzed a
design example from robust control, studied by Nagamune [31], in the context of
our results. It turns out that the effect of an added interpolation condition close to
the boundary is small, but that the effect of changing the weight is major.

C: Stability-Preserving Rational Approximation Subject to Interpolation Con-
straints. The paper is coautored with Anders Lindquist and has been accepted for
publication inIEEE Transactions of Automatic Control. The conference version of
this paper for CDC 2007 was a finalist for the best student paper award.
This paper presents new theory for stability-preserving model reduction that can also
handle prespecified interpolation conditions and comes with error bounds. We have
presented a systematic optimization procedure for choosing an appropriate weight
so that the minimizer of a corresponding weightedH2 minimization problem both
matches the original system and has low degree.
The study of theH2 minimization problem is motivated by the relation between the
H2 norm and the entropy functional used in the bounded interpolation problem. The
H2 minimization problem may be seen as the limit case of boundedinterpolation,
but where the∞−norm bound is removed and only stability is required. There-
fore, new concepts derived in this framework are useful for understanding entropy
minimization.

D: Localization of Power Spectra.The paper is coauthored with Tryphon Georgiou.
Results from this paper has appeared in the proceedings of CDC 2005.
In this paper we study the problem of robust identification ofpower spectra based
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on covariance measurements and the purpose is to study the topology and develop
metrics that allows for localization of power spectra. The main conclusion is that,
for our robustness criteria to be satisfied with respect to a metric, the metric needs to
be weak∗-continuous. Several examples on how to construct such metrics are given.
This allows us to quantify uncertainty of spectra in a natural way and to calculate
a priori bounds on spectral uncertainty, based on second-order statistics. Finally,
we study identification of spectral densities and relate this to the trade-off between
resolution and variance of estimates.

E: Metrics for Power Spectra: an Axiomatic Approach. This paper is coauthored
with Tryphon Georgiou and Mir Shahrouz Takyar and has been accepted for pub-
lication in IEEE Transactions of Signal Processing. Results from this paper will
appear in the proceedings of CDC 2008.
In this paper we propose an axiomatic way of determining metrics for power spec-
tra. A set of properties are put forth, which requires the metric to be 1) continuous
with respect to second order statistics, and 2) contractivewith respect to certain
transformations which correspond to corruption of the signal. We then present a
particular metric which abides by these requirements. The metric is based on the
Monge-Kantorovich transportation problem and is contrasted to an earlier Rieman-
nian metric based on the minimum-variance prediction geometry of the underlying
time-series. Finally we compare the distance with the Itakura-Saito distance and a
metric based on prediction, in two identification examples.
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The Inverse Problem of Analytic
Interpolation with Degree Constraint

and Weight Selection for Control
Synthesis

Johan Karlsson, Tryphon Georgiou, and Anders Lindquist

Abstract

The minimizers of certain weighted entropy functionals arethe solutions to an analytic interpo-
lation problem with a degree constraint, and all solutions to this interpolation problem arise in this
way by a suitable choice of weights. Selecting appropriate weights is pertinent to feedback control
synthesis, where interpolants represent closed-loop transfer functions. In this paper we consider the
correspondence between weights and interpolants in order to systematize feedback control synthesis
with a constraint on the degree. There are two basic issues that we address: we first characterize ad-
missible shapes of minimizers by studying the corresponding inverse problem, and then we develop
effective ways of shaping minimizers via suitable choices of weights.

A.1 Introduction

The topic of this paper relates to the framework and the mathematics of modern robust
control. The foundational work [37] of George Zames in the early 1980’s cast the basic ro-
bust control problem as an analytic interpolation problem,where interpolation constraints
ensure stability of the feedback scheme, and a norm bound guarantees performance and
robustness. In this context, the analytic interpolant represents a particular transfer function
of the feedback system. The work of Zames and the fact that thedegree of the interpolant
relates to the dimension of the closed-loop system motivated a program to investigate an-
alytic interpolation with degree constraint (see [8, 9]). This led to an approach based on
convex optimization, in which interpolants of a certain degree are obtained as minimiz-
ers ofweightedentropy functionals. In this paper we study the correspondence between
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weights and such interpolants, and we develop a theory whichallows for systematic shap-
ing of interpolants to specification.

The basic issue of how the choice of weights and indices in optimization problems
affects the final design is by no means new. It was R.E. Kalman [24] who, in the context of
quadratic optimal control, first raised the question of whatit is that characterizes optimal
designs and, further, how to describe all performance criteria for which a certain design
is optimal. Following Kalman’s example we study here the analogous inverse problem
for analytic interpolation with complexity constraint, namely the problem to decide when
a particular interpolant is a minimizer of some weighted entropy functional, and if so, to
determine the set of all admissible weights.

The analysis of the inverse problem leads to a new procedure for feedback control
synthesis. More specifically, the quality of control depends on the frequency characteristics
of the interpolant, which in turn dictates the loop shape of the feedback control system.
The theory of [8, 9] provides a parametrization of all interpolants, having degree less than
the number of interpolation constraints, in terms of weights in a suitable class. These
admissible weights are specified by their roots. These rootscoincide with thespectral
zerosof the corresponding minimizers of the weighted entropy functionals [8]. The choice
of weights for feedback control design via this procedure has been the subject of several
papers (see e.g., [31, 32]). The challenge stems from the fact that the correspondence
between weights and the shape of interpolants is nonlinear.One of the contributions of this
paper is to develop a systematic procedure for the selectionof weights based on the inverse
problem.

The synthesis proceeds in two steps. We first obtain an interpolant with the required
shape, but without any restriction on the degree. Then, via the inverse problem, we identify
all weights for which the given interpolant is a minimizer ofthe corresponding entropy
functional. The problem of approximating the interpolant by one of lower degree is then
replaced by approximating weights in a suitable class. Thisapproximation problem is
quasi-convex and can be solved by standard methods. Hence wehave replaced a non-
convex problem by one that is tractable.

In Section A.2 we establish notation and review basic facts on bounded analytic in-
terpolation and complexity-constrained interpolation. We only discuss interpolation in the
unit discD = {z : |z| < 1}, but the theory applies equally well to interpolation in the
half plane. In Section A.3 we consider two motivating examples in the context of robust
control. In Section A.4 we provide the characterization of minimizers of weighted en-
tropy functionals and describe the set of weights which giveinterpolants of a prespecified
bounded degree. In Section A.5 we formulate and solve the inverse problem which is one
of the key tools needed in the paper, and study the possible shapes of minimizers without
any bound on their degree. In Section A.6 we develop a method for degree reduction of
interpolants via the corresponding weights. In Section A.7we highlight the steps of the
synthesis procedure. Finally, in Section A.8, we revisit the motivating examples of Section
A.3 and apply the procedure of Section A.7.
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A.2 Background

Given complex numbersz0, z1, . . . , zn in D which we assume to be distinct for simplicity,
and given complex numbersw0, w1, . . . , wn, the classical Pick interpolation problem asks
for a functionf in theSchur class

S = {f ∈ H∞(D) : ‖f‖∞ ≤ 1}

which satisfies the interpolation condition

f(zk) = wk, k = 0, 1, . . . , n, (A.1)

whereH∞(D) (or simplyH∞) is the Hardy space of bounded analytic functions onD. It
is well-known (see, e.g., [16]) that such a function exists if and only if the Pick matrix

P =

[

1 − wkw̄ℓ
1 − zkz̄ℓ

]n

k,ℓ=0

(A.2)

is positive semi-definite. The solution is unique if and onlyif P is singular, in which casef
is a Blaschke product of degree equal to the rank ofP . In this paper, throughout, we assume
thatP is positive definite and hence that there are infinitely many solutions to the Pick
problem. A complete parameterization of all solutions was given by Nevanlinna (see e.g.
[1]), and for this reason the subject is often referred to as Nevanlinna-Pick interpolation.

In engineering applicationsf usually represents the transfer function of a feedback
control system or of a filter, and therefore the McMillan degree off is of significant inter-
est. Thus, it is natural to require thatf be rational and of bounded degree. Such a constraint
completely changes the nature of the underlying mathematical problem.

The Nevanlinna-Pick theory provides one particular solution that is rational and of a
generic degree equal ton – the so-calledcentral solution. However, it provides no insight
and no help in determining any other possible solutions of the same degree. The central
solution is also referred to as themaximum-entropy solutionbecause it maximizes the
functional

∫

T

log(1 − |f |2)dm

subject to (A.1), whereT = {z = eiθ : θ ∈ (−π, π]} is the unit circle anddm := dθ/2π
is the (normalized) Lebesgue measure onT. Invariably, determining extremals for such
an entropy functional leads to a set of linear equations. These are often referred to as the
canonical equations, and one such example is Levinson’s equations in spectral analysis.
For more recent developments and generalizations we refer to [4, 13, 30].

Following [9, 21], we consider the generalized entropy functional

KΨ : S → R ∪∞,

defined by

KΨ(f) = −

∫

T

Ψ log(1 − |f |2)dm, (A.3)
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whereΨ is a non-negative log-integrable function onT. We study how the minimizer of

min{KΨ(f) : f ∈ S, f(zk) = wk, k = 0, . . . , n} (A.4)

depends on the weighting functionΨ and then determine when an interpolantf is attain-
able as a minimizer of (A.4) for a suitable choice ofΨ. One particularly interesting case,
as we will see below, is whenΨ = |σ|2 andσ belongs to the class of rational functions
with poles at the conjugate inverses of the interpolation points.

Let φ be the Blaschke product

φ(z) =

n
∏

k=0

zk − z

1 − z̄kz
(A.5)

and letU : f(z) 7→ zf(z) denote the standard shift operator onH2. ThenφH2 is a shift
invariant subspace, i.e.f ∈ φH2 implies thatU(f) = zf ∈ φH2. Denote byK the
co-invariant subspaceH2 ⊖ φH2. ThenK is invariant underU∗, whereU∗ denotes the
adjoint ofU . Let K0 denote the set of outer functions inK that are positive at the origin.
The following result is taken from [9].

Theorem A.1. Suppose that the Pick matrix(A.2) is positive definite, and letσ be an
arbitrary function inK0. Then there exists a unique pair of elements(a, b) ∈ K0×K such
that

(i) f = b/a ∈ H∞ with ‖f‖∞ ≤ 1

(ii) f(zk) = wk, k = 0, 1, . . . , n, and

(iii) |a|2 − |b|2 = |σ|2 a.e. onT.

Conversely, any pair(a, b) ∈ K0 × K satisfying (i) and (ii) determines, via (iii), a unique
σ ∈ K0. Moreover, settingΨ = |σ|2, the optimization problem

min KΨ(f) s.t. f(zk) = wk, k = 0, . . . , n

has a unique solutionf that is precisely the uniquef ∈ S satisfying conditions (i), (ii) and
(iii).

We define

τ(z) :=
n
∏

k=0

(1 − z̄kz),

where{zk}nk=0 are the interpolation points. Then, it is easy to see that

K =

{

p(z)

τ(z)
: p ∈ Pol(n)

}

,

where Pol(n) denotes the set of polynomials of degree at mostn, and

K0 =

{

p(z)

τ(z)
: p ∈ Pol+(n)

}

,
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where Pol+(n) denotes the subset of polynomialsp ∈ Pol(n) such thatp(z) 6= 0 for all
z ∈ D andp(0) > 0.

The zeros of the functionσ = p/τ ∈ K0 with p ∈ Pol+(n), as in the theorem, are the
zeros of the spectral factor of the nonnegative function1−|f |2 on the unit circle. Thus, the
n roots of the polynomialznp̄(z−1) are often referred to asspectral zeros. We also note
that the degree off may be less thann, which happens whena, b, andσ, have common
roots.

Theorem A.1 has two parts: the first part states that interpolants of degree at mostn are
completely parameterized in terms of spectral zeros. More specifically, there is bijection
between the pairs(b, a) such thatf = b/a is an interpolant of degree at mostn and sets of
n points in the unit disc –the roots ofσ. Given such an arbitrary choice ofn spectral zeros,
the second part provides a convex optimization problem, theunique solution of which is
precisely the corresponding interpolant.

The theorem, stated in [9], allows for considerably more general interpolation con-
ditions than (ii). In the case where the points{z0, . . . , zn} are not necessarily distinct,
condition(ii) needs to be replaced by

f = f0 + φq with q ∈ H∞(D),

which encapsulates interpolation of derivatives as well. The special case whereφ(z) = zn

is analogous to the so-called covariance extension problemwith degree constraints, which
is usually stated for Carathéodory functions rather than Schur functions. The theorem is
also valid whenφ is an arbitrary inner function. The background to the derivation of The-
orem A.1 has a long history. The existence part of the parameterization was first proved
in the covariance extension case in [19, 17] and in the Nevanlinna-Pick case in [18]. The
uniqueness part (as well as well-posedness) in [12]. The optimization approach was initi-
ated in [10] (also, see the extended version [11]) and further developed in, e.g., [8, 7, 20].

A.3 Motivating examples

We present two basic examples of robust control design to highlight the relevance of the
theory. The first one deals with sensitivity minimization and revisits an (academic) example
which was discussed in [8]. The second example addresses a more typical (and well-
conditioned) design which is formulated in the context ofH∞-loopshaping and optimal
robustness in the gap metric.

A.3.1 Sensitivity minimization

Consider the standard feedback system in Figure A.1 whereP (z) andC(z) are the trans-
fer functions of plant and controller, respectively. The stability and tracking/disturbance-
rejection qualities of the feedback system are reflected in properties of the sensitivity func-
tionS(z) = (1 − P (z)C(z))−1. It is well-known (see, for example, [38]) that the internal
stability of the feedback system is equivalent toS(z) being analytic outside the unit disc
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C(z) P (z)= 1
z−2

u

d

y

Figure A.1: Feedback system.

and satisfying the interpolation conditions

S(zk) = 1, k = 1, 2, . . . , nz,

S(pℓ) = 0, ℓ = 1, 2, . . . , np,

wherez1, . . . , znz
andp1, . . . , pnp

are the zeros and poles outside the unit disk, respec-
tively, of the plantP (z). Conversely, ifS(z) is any stable, proper rational function which
satisfies these conditions, then it can be specified as the sensitivity function of such a feed-
back system with the givenP (z) and a choice of a suitable control transfer functionC(z).

The maximal disturbance-amplification depends on the choice of the controller and is
equal to theH∞-norm of the sensitivity function‖S‖∞. To illustrate this, consider the
simple exampleP (z) := 1

z−2 . The optimal value‖Sopt‖∞ in this example turns out to be
equal to two (see [8]), and the magnitude of the optimal sensitivity functionSopt is constant
across frequencies. The choice of such an optimal controller is in fact unique. However,
in general, the magnitude of disturbances and the modeling uncertainty arenot uniform
across frequencies. Thus, the design ought to differentiate between frequency bands so as
to achieve desired levels of performance and robustness. Therefore, we need to relax the
requirement of uniformly minimal sensitivity gain to a pre-specified upper bound

‖S‖∞ ≤ γ.

In this case, providedγ > ‖Sopt‖∞, there is large family of controllers which achieve such
a specification. Naturally, the size of the family and the ability to “shape” |S| increases
with γ. On the other hand, the degree of the controller and the complexity of the feedback
system depend on the degree ofS. Thus, for a given value ofγ, our goal is to not only
control the shape ofS, but its degree as well.

Adhering to a typical design specification for disturbance rejection, we require

|S(eiθ)| ≤ ǫ, on (0, θc),
|S(eiθ)| ≤ γ, on (θc, π),

(A.6)

where we takeγ = 2.5, ǫ = 0.75 andθc = 0.25. In Figure A.2, the degree1 sensitivity
functions which satisfy‖S‖∞ ≤ γ are depicted in Subplot1. It is observed that the design
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specifications are not met by any such function. Subplot2, in the same figure, shows
a sensitivity function of degree5 which satisfies the constraints. As expected, this shows
that by relaxing the degree constraint to degree5, we are able to find a function that satisfies
the constraint. The design is accomplished with the method in Section A.6, utilizing the
theory in the first part of the paper. Details will be providedin Section A.8 where the
example will be revisited.
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Figure A.2: Subplot1: Possible degree one shapes. Subplot2: A degree5 function satis-
fying the constraints.

A.3.2 Frequency-dependent robustness margin

LetP0 denote the transfer function of a single-input, single-output finite-dimensional linear
system with stable coprime factorizations

P0 =
N0

M0
,

i.e.,M0, N0 ∈ H∞, normalized to satisfy

M∗
0M0 +N∗

0N0 = 1, onT, (A.7)

wheref(z)∗ := f(z̄−1). Then, as is well-known, all stabilizing controllers forP0 are
parameterized byq ∈ H∞ via

C =
U0 +M0q

V0 +N0q
, (A.8)
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whereU0, V0 ∈ H∞ satisfyV0M0−U0N0 = 1, see, e.g., [14, 34]. To model perturbations
of the coprime factors for frequency-dependent uncertainty, we consider plantsP = N/M
such that

∥

∥

∥

∥

(

M(z) −M0(z)
N(z) −N0(z)

)∥

∥

∥

∥

< α|w(z)| for z ∈ T, (A.9)

where‖ · ‖ denotes Euclidean vector norm andw is an outer function shaping the radius.
Moreover, the size of the radius is controlled by a separate scaling parameterα ∈ R+.
Thus, we consider the problem of robust stabilization of theball of plants

B(P0, αw) :=

{

P =
N

M
: (A.9) holds

}

,

around the centerP0.
As shown in [35], a controller specified byq stabilizesB(P0, αw) provided

∥

∥

∥

∥

(

U0 +M0q
V0 +N0q

)

αw

∥

∥

∥

∥

∞

≤ 1. (A.10)

This condition can be expressed as a Nevanlinna-Pick problem. Indeed, taking advantage
of the normalization of the coprime factors as in [29] (see also [22]), we define the trans-
formation

Z :=

(

M∗
0 N∗

0

−N0 M0

)

which is unitary, i.e.,ZZ∗ = Z∗Z = I. We also denote byφ the Blaschke product that
vanishes at the conjugate inverse of the poles ofM0,N0. Hence,φM∗

0 , φN∗
0 ∈ H∞. Then,

the left hand side of (A.10) is
∥

∥

∥

∥

(

φ 0
0 1

)

Z

(

U0 +M0q
V0 +N0q

)

αw

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

(

F
1

)

αw

∥

∥

∥

∥

∞

, (A.11)

whereF0 = φM∗
0U0 + φN∗

0V0 ∈ H∞ and

F = F0 + φq. (A.12)

It can be seen that the values ofF at the roots ofφ are independent ofq and are specified
by the plant. Moreover, as seen from (A.11), condition (A.10) holds providedF ∈ H∞

satisfies (A.12) and
√

|F |2 + 1 ≤
1

α|w|
, onT. (A.13)

Conversely, for anyF ∈ H∞ satisfying (A.12), there corresponds a unique parameterq
and a controllerC, whereC stabilizes the ball of plantsB(P0, αw) with radius

α|w| = (|F |2 + 1)−
1

2 .

Furthermore, if the degree ofF is small, so is the degree of the controllerC. This is stated
in the following proposition proved in the appendix.
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Proposition A.2. LetF ∈ H∞ satisfy(A.12) andC be the controller specified via(A.12)
and(A.8). Then

degC ≤ degF.

We consider

ΠP//C :=

( P0

1−P0C
−P0C
1−P0C

1
1−P0C

−C
1−P0C

)

= Z∗

(

1 −φ∗F
0 0

)

Z,

which is the matrix of transfer functions from disturbancesat the input and output ports
of the plant to the plant input and output. This is a rank-one matrix function (see [22])
with singular value

√

|F |2 + 1. Thus, the shape of|F | relates directly to amplification of
external disturbances in the loop, and it also dictates how robust the control system is to
plant uncertainty in the coprime factor (or, in the gap metric; cf. [29, 22]). In fact,

bopt(P ) := max
C stabilizing

‖ΠP//C‖
−1
∞

is precisely the optimal robustness radius for gap-ball uncertainty (see [22]) and coincides
with 1/

√

|F |2 + 1 for the smallest‖F‖∞ consistent with (A.12).
The use of a frequency-dependent weightw allows shaping the loop-gain [29] as well

as the performance and the robustness of the closed-loop system over different frequency
bands [35, 6, 36]. By scalingα in (A.13) one can maximize the radius ofB(P0, αw) for
which a stabilizing controller exists (as in [35, 29, 22]). The maximal valueαmax and the
optimal interpolantF , consistent with (A.12) and (A.13), satisfy

|F |2 =
1 − α2

max|w|
2

α2
max|w|

2
.

Thus, the use of a nontrivial weightw forces the interpolant to have a nontrivial outer factor
as well. This causes a corresponding increase in the degree of the closed-loop system and
of the controller. Therefore, the purpose of this work is to develop techniques for reducing
the degree of the control system while relaxing design requirements in a controlled fashion.
In Section A.8 we revisit the issue of frequency-dependent robustness margin in order to
demonstrate the application of the framework.

A.4 Characterization of KΨ-minimizers

Theorem A.1 provides a (complete) parametrization of Nevanlinna-Pick interpolants of
degree≤ n. It states that such interpolants are in correspondence with Ψ = |σ|2 for σ ∈
K0. Furthermore, it states that such interpolants originate as minimizers of the generalized
entropy integralKΨ specified by such a weightΨ. In this paper we are also interested
in interpolants of higher degree. Thus, we are led to consider KΨ-entropy minimizers for
more general choices ofΨ. Indeed, the entropy functionalKΨ can be defined for arbitrary
nonnegative functionsΨ and since the minimizer relates algebraically toΨ, choices of
a rationalΨ generate minimizers of a suitable degree. Thus, the following theorem is a
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generalization of Theorem A.1 which allows for the use of general weightsΨ. This is one
of our main results.

Theorem A.3. Suppose that the Pick matrix(A.2) is positive definite andΨ is a log-
integrable nonnegative function on the unit circle. A function f is a minimizer of(A.4) if
and only if the following three conditions hold:

(i) f(zk) = wk for k = 0, . . . , n,

(ii) f = b
a ∈ S whereb ∈ K anda is outer,

(iii) Ψ = |a|2 − |b|2.

Any such minimizer is necessarily unique.

Proof. See the appendix.

As seen from Theorem A.1, any choice ofΨ = |σ|2 with σ ∈ K0 gives rise toa, b ∈ K,
and hence to an interpolantf with a degree bounded byn. Even ifΨ is rational of an arbi-
trarily high degree or is irrational,b still belongs toK. In fact, the additional “complexity”
is absorbed ina. Naturally, in such a case, the interpolantf will also be rational of a high
degree or irrational, respectively. This observation allows us to characterize all minimizers
of KΨ of degree at mostn+m for any givenm ∈ N+. More specifically, let

Km :=
{

σ = σ0p : σ0 ∈ K0, deg p ≤ m, p outer,p(0) > 0
}

=
{ q

τπ
: π ∈ Pol+(m), q ∈ Pol+(n+m)

}

(A.14)

The following statement gives the sought characterization.

Proposition A.4. Let Ψ = |σ|2 with σ ∈ Km. Then the minimizing functionf in (A.4)
satisfies

(i) f(zk) = wk for k = 0, . . . , n,

(ii) f has at mostn zeros inD,

(iii) the degree off is at mostn+m.

Conversely, for anyf ∈ S which satisfies (i), (ii), and (iii), there exists a corresponding
choice ofσ ∈ Km so thatf is the minimizer of(A.4).

Proof. By Theorem A.3, the minimizerf satisfies (ii), where

|a|2 = |σ|2 + |b|2, σ ∈ Km, b ∈ K.

Then, in view of (A.14),a ∈ Km, and hencedeg f ≤ n + m. Conversely, suppose
f = (βπ)/α, whereβ ∈ Pol(n), π ∈ Pol+(m) andα ∈ Pol+(n + m), thenf = b/a,
whereb ∈ K anda ∈ Km. Then

Ψ = |a|2 − |b|2 = |σ|2,

whereσ ∈ Km. If, in addition, f satisfies the interpolation conditions in(i), then, by
Theorem A.3,f is the minimizer of (A.4), as claimed.
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Corollary A.5. If f ∈ S is a minimizer ofKΨ for some choice of a log-integrable non-
negative functionΨ, thenf has at mostn zeros inD.

Proof. The corollary follows directly from condition(ii) in Theorem A.3, sincef = b/a
with a outer andb ∈ K.

This corollary underscores the significance of Theorem A.3 for understanding the struc-
ture of minimizers.

A.5 The inverse problem of analytic interpolation with degree
constraint

We begin by considering the inverse problem of analytic interpolation with a degree con-
straint, and then explain how this can be used to shape interpolants to specifications.

A.5.1 The inverse problem

It turns out that the number of roots inD determine whether an interpolantf is a minimizers
of KΨ for some choice ofΨ. Furthermore, it is possible to characterize all suchΨ. This is
stated below.

Proposition A.6. Any functionf ∈ S that satisfies

(i) f(zk) = wk for k = 0, . . . , n,

(ii) f has at mostn zeros inD,

(iii) log(1 − |f |2) ∈ L1(T),

is the unique minimizer of(A.4) with

Ψ = (|f |−2 − 1)|b|2

for any b ∈ K chosen so thatbf−1 is outer. Conversely, a (nonzero) functionf having
more thann zeros inD cannot arise as the minimizer of(A.4) for any choice ofΨ.

Proof. Suppose thatf ∈ S satisfies the interpolation constraint(i). Then, by Theorem
A.3, f is the minimizer of (A.4) if and only iff = b/a, whereb ∈ K, a is outer, andΨ =
|a|2−|b|2, which in turn holds if and only ifbf−1 is outer,b ∈ K, andΨ = (|f |−2−1)|b|2.
This condition cannot hold iff has more thann zeros inD. In fact, forbf−1 to be outer,
the zeros off in D must be canceled by zeros ofb. However,b ∈ K can have at mostn
zeros.

The choice ofb ∈ K in Theorem A.6 is not unique, in general. The selection ofb must
preventbf−1 from having poles inD, and hence any zero off must also be a zero ofb. If
f has more thann zeros inD, there is no suchb, whereas iff has exactlyn zeros inD,
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thenb is uniquely defined. In all other cases, whenf hasnf < n zeros inD, the family of
possible choices ofb, and hence the family of possible weights

{Ψ : Ψ = (|f |−2 − 1)|b|2, b ∈ K, bf−1 outer}

has dimensionn−nf . The design freedom offered by this nonuniqueness will be exploited
in Section A.7 for finding a weight corresponding tof that is close to a low-degree weight.

RemarkA.1. Since the more general frequency-dependent constraint

|f(z)| ≤ |w(z)| for z ∈ T,

with w an outer weighting function, is often quite natural, [21] introduced the (doubly
“weighted”) entropy functional−

∫

T
Ψ log(1 − |w−1f |2)dm. Thus, compared to (A.3),

w can be introduced as an extra design-parameter. Proposition A.6 may be modified ac-
cordingly by changing condition (iii) tolog(1 − |w−1f |2) ∈ L1(T). Thenf is the unique
minimizer of

min KΨ(w−1f) s. t. f(zk) = wk, k = 0, . . . , n, (A.15)

for the weight

Ψ =
(

∣

∣w−1f
∣

∣

−2
− 1
)

|b|2

with b ∈ K chosen so thatbf−1 is outer. The price to pay is that, in general, the degree of
the interpolantf increases by the degree ofw.

A.5.2 Shaping the interpolant based on the inverse problem

Suppose thatg is a given function onT. We address the following two questions that
pertain to admissible shapes of analytic interpolants:

a) Does there exist anf ∈ S which satisfies (A.1) and

|f(eiθ)| ≤ |g(eiθ)|, θ ∈ (−π, π]? (A.16)

b) Does there exist aΨ such that the corresponding (unique) minimizerf of (A.4)
satisfies

|f(eiθ)| = |g(eiθ)|, θ ∈ (−π, π]? (A.17)

Without loss of generality we may assume thatg is an outer function and that, moreover,
g ∈ S. We note that the first question is equivalent to finding anf in the set

{f ∈ S : ‖fg−1‖∞ ≤ 1, f(zk) = wk, k = 0, . . . , n}, (A.18)

and this set is nonempty if and only if the associated Pick matrix

Pick(g) :=

[

1 − wkg(zk)
−1wlg(zl)−1

1 − zkzl

]n

k,l=0

(A.19)
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is positive semi-definite. This answers the first question.
If Pick(g) is positive definite, there exist interpolantsf̂ such that|f̂(z)| < |g(z)| for

all z ∈ T and the design specifications (A.16) may be satisfied with strict inequality.
Therefore, any minimizing interpolantf cannot satisfy (A.17), since|f̂(z)| < |f(z)| for all
z ∈ T implies thatKΨ(f̂) < KΨ(f), which contradicts the claim thatf is the minimizer.
Therefore in order for (A.4) to have a solution satisfying (A.17), Pick(g) must be positive
semidefinite and singular. In this case, the set (A.18) is a singleton. This provides an
answer to the second question, which we summarize next.

Proposition A.7. Let g ∈ S be outer and such thatlog(1 − |g|2) ∈ L1. Then there exists
a pair (Ψ, f) of functions onT such that

(i) log Ψ ∈ L1,

(ii) f is the solution of (A.4), and

(iii) |f | = |g| onT

if and only if Pick(g) is positive semidefinite and singular. Furthermore,f is uniquely
determined.

Proof. Sufficiency is shown in the text leading to the proposition, so it remains to prove
necessity. Since the matrix in (A.19) is nonnegative definite and singular, there is a unique
f satisfying‖fg−1‖ ≤ 1 and (A.1). Thenf = gϕ whereϕ is inner and of degree≤ n.
Sincef is rational with at mostn zeros inD, by Proposition A.6 there exists a functionsΨ
such thatf is the minimizer of (A.4).

A.6 Continuity properties of the map from weights to minimizers

Assume thatf is the minimizer of the entropy functional, as in (A.4), for asuitable weight
selected without regard to the degree. We begin by studying the properties of the nonlinear
transformation

ϕ : Ψ 7→ f (A.20)

which maps a space of weights

Ψ ∈ M := {Ψ | log Ψ ∈ L∞(T)}

to the corresponding minimizersf of (A.4). We define the metric onM asd(Ψ,Ψr) :=
‖ log(Ψ) − log(Ψr)‖∞, and, as we shall see,ϕ is continuous when the range is taken to
beH2, but not with rangeH∞. On the other hand, the mapΨ 7→ |f | ∈ L∞ is again
continuous.

RemarkA.2. Here we only study the case whereΨ ∈ M. However, it is easy to show that
these continuity properties also holds for arbitraryL∞ perturbations oflog Ψ whenΨ is
non-negative and log-integrable.
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A.6.1 Continuity of the mapϕ

In this subsection we establish the continuity of the mapϕ : M → H2. Moreover, with
a counterexample, we show that the corresponding mapϕ : M → H∞, with the range
endowed with the topology ofH∞, is not continuous.

Lemma A.8. LetΨ andΨr be nonnegative log-integrable functions onT that satisfy

‖ log(Ψ) − log(Ψr)‖∞ = ǫ, (A.21)

and setf := ϕ(Ψ) andfr := ϕ(Ψr). Then
∫

T

Ψ log

(

1 +
|f − fr|2

8

)

dm ≤ (e2ǫ − 1)KΨ(f). (A.22)

Proof. From (A.21), it follows that

e−ǫΨ(z) ≤ Ψr(z) ≤ eǫΨ(z), for z ∈ T

and hence
KΨ(fr) ≤ eǫ KΨr

(fr) ≤ eǫ KΨr
(f) ≤ e2ǫ KΨ(f).

From [27] we have that

1

2
(KΨ(f) + KΨ(fr)) ≥ KΨ

(

f + fr
2

)

+
1

2

∫

T

Ψ log

(

1 +
|f − fr|2

8

)

dm.

Then, sincef is the minimizer ofKΨ, we have

KΨ(f) ≤ KΨ

(

f + fr
2

)

,

and consequently
∫

T

Ψ log

(

1 +
|f − fr|2

8

)

dm ≤ KΨ(fr) − KΨ(f) ≤ (e2ǫ − 1)KΨ(f),

as claimed.

Lemma A.8 provides a bound on a weightedH2 norm of the errorf − fr, as stated in
the next corollary.

Corollary A.9. Let f, fr andΨ,Ψr be as in Lemma A.8 and letσ be the outer spectral
factor ofΨ; i.e.,σ is outer and|σ|2 = Ψ onT. Then

‖σ(f − fr)‖
2
2 ≤ 10(e2ǫ − 1)KΨ(f). (A.23)

Proof. Sincelog(1 + t) ≥ 0.81t for t ∈ [0, 1
2 ], we have that

∫

T

Ψ log

(

1 +
|f − fr|2

8

)

dm ≥

∫

T

Ψ
|f − fr|2

10
dm.

Then (A.23) follows from Lemma A.8.
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The continuity ofϕ is then a direct consequence of this.

Proposition A.10. The mapϕ in (A.20) with rangeH2, is continuous.

The mappingϕ from Ψ ∈ M to f ∈ H∞ is not continuous. This can be seen from
the following counterexample. Consider the interpolationproblem with one interpolation
condition: f(0) = 1/2. Given a weightΨ, according to Theorem A.3, the minimizerf
satisfies

|f |2 =
1

1 + Ψ
|b|2

, (A.24)

whereb ∈ K, which implies thatb is a constant. Since there is only one interpolation point,
and thusn = 0, the minimizerf cannot have any zeros (Corollary A.5). Hencef is the
outer factor of (A.24), whereb is a constant chosen so that the interpolation constraint is
satisfied. IfΨ ≡ 1, thenf ≡ 1/2. Define

Ψǫ(e
iθ) =

{

1 for θ ∈ [−π
2 ,

π
2 ]

1 + ǫ for θ ∈ (π2 ,
3π
2 )

and letfǫ = bǫ

aǫ
= ϕ(Ψǫ), with bǫ ∈ K andaǫ outer, as in Theorem A.3. By Lemma A.17,

bǫ → b, but since|fǫ|2 is a discontinuous atθ = π
2 for ǫ > 0, the spectral factorfǫ does

not converge tof ≡ 1/2 in H∞ asǫ → 0. This is since the phase of the spectral factor
will differ by an arbitrarily large amount [2, page 147] (c.f. example in [2] page 145-158).

A.6.2 Continuity of the map defining the shape of the interpolant

From an engineering viewpoint,∞-norm bounds on the approximation error are important
in order to guarantee performance and robustness. Here we will show that a small approx-
imation error on the weightΨ will in fact correspond to a smallL∞ error in the shape of
the interpolant. To this end, consider the mapping

ψ : Ψ 7→ |f | ∈ L∞, (A.25)

which maps a choice of weightΨ ∈ M to the magnitude|f | of the corresponding min-
imizer f of (A.4). As seen from the previous example, the lack ofH∞ continuity of
interpolants is due to the fact that spectral factorizationis not continuous. This problem
does not ocur withψ, which is continuous.

Proposition A.11. The mapψ in (A.25) is continuous.

Proof. Let Ψ ∈ M andf = b
a = ϕ(Ψ), and letΨk ∈ M andf = bk

ak
= ϕ(Ψk) for

k = 1, 2, . . .. Assume further that

‖Ψ − Ψk‖ → 0 ask → ∞.

Then, by Lemma A.17 in the appendix,bk → b. The proposition now follows since

|fk|
2 =

1

1 +
∣

∣

∣

Ψk

bk

∣

∣

∣

2 →
1

1 +
∣

∣

Ψ
b

∣

∣

2 = |f |2

uniformly.
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A.7 Approximation of interpolants

The continuity properties described in the previous section suggests a new approach for ap-
proximating interpolants that exploits the correspondence between minimizers and weights.
Given an interpolantf we would like to find a degree-r approximating interpolantfr of
f , wherer ≥ n. From the inverse problem there is a setϕ−1(f) of admissible weightsΨ
for which a givenf is the minimizer of (A.4). Our first task is to find a pair(Ψ,Ψr) for
whichΨ ∈ ϕ−1(f) andΨr = |σr|2, with σr ∈ Kr−n, so that their logarithmic distance is
minimal. That is, we solve the following optimization problem

min
{

‖ log(Ψ) − log(Ψr)‖∞ : Ψ ∈ ϕ−1(f) andΨr = |σr |
2 with σr ∈ Kr−n

}

.

This optimization problem may be reformulated as a quasi-convex optimization and solved
efficiently. By Proposition A.4 the degree of the interpolant fr = ϕ(Ψr) is bounded byr,
and by Proposition A.10, a bound on the approximation errorf − fr is obtained. In fact,
based on the quality of approximation obtained via quasi-convex optimization, explicit a
bound on the error can be obtained from Lemma A.8 and Corollary A.9.

By Proposition A.4, the functionϕ, defined in (A.20), mapsKr−n into the set of
interpolants of degree at mostr. Thus, the basic idea is to replace the hard nonconvex
problem of approximatingf by another interpolating functionfr of degree at mostr, by
the simpler quasi-convex problem to approximate aΨ ∈ ϕ−1(f) by aΨr = |σr |2 with
σr ∈ Kr−n.

The theory presented so far suggests a computational procedure in several steps, which
we now summarize. In general, the required bound on the norm of the interpolant may
differ from one, and therefore we consider the more general problem to find a functionF ,
of a desired shape, which satisfies‖F‖∞ ≤ γ and the interpolation conditions

F (zk) = Wk for k = 0, 1 . . . , n. (A.26)

Step 1.Find an interpolant having the desired shape, but without restricting its degree.
To this end, we begin with a family of functions{gα} having desired shape, and we select
one functiong in this class for which the Pick condition in Proposition A.7is satisfied.
Then, by Proposition A.7, there is aΨ such thatf := ϕ(Ψ) satisfies|f(z)| = |g(z)| for all
z ∈ T.

Typically we choose this family of functions in such a way that |gα| is monotonically
decreasing inα. In the first of our motivating examples we take

gα =
w

α
,

which leads to a standardH∞ optimization problem. In the second example we take

|gα|
2 =

1 − α2|w|2

α2|w|2

which leads to a typical2-block problem.
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We then seek a solution to the optimization problem

maxα

subject to

|F | ≤ |gα| andF (zk) = Wk, k = 0, 1 . . . , n.

The optimum is attained when Pick(gα) is positive semidefinite and singular (Proposition
A.7). Here the boundγ must satisfy

‖F‖∞ ≤ γ and log(γ2 − |F |2) ∈ L1,

or else the boundγ needs to be relaxed. Then the normalized interpolant

f :=
1

γ
F

has the same shape asF and satisfies the interpolation conditions

f(zk) = wk :=
1

γ
Wk, k = 0, 1, . . . , n,

as well as the log-integrability condition of1 − |f |2. Hence we have constructed an in-
terpolant with the required shape, but which in general doesnot satisfy the desired degree
constraint.

Step 2. For somer ≥ n, find an approximationfr of f of degree at mostr which
satisfies the same interpolation conditions. To this end, find functionsΨ andΨr that solve
the optimization problem

min ‖ log(Ψ) − log(Ψr)‖∞

subject to

Ψ ∈ ϕ−1(f) andΨr = |σr|
2 with σr ∈ Kr−n,

where
ϕ−1(f) = {Ψ : Ψ = (|f |−2 − 1)|b|2 | b ∈ K, bf−1 outer}.

This is a quasi-convex optimization problem. In fact,‖ log(Ψ)− log(Ψr)‖ ≤ ǫ if and only
if

e−ǫ ≤
Ψr(z)

Ψ(z)
≤ eǫ for all z ∈ T. (A.27)

The constraints (A.27) define an infinite set of linear constraints on the pseudo-polynomials
representing the nominator and denominator, respectively, of Ψr/Ψ. Since the sublevel set
of nominators and denominators solving (A.27) is convex foreachǫ > 0, the problem
is quasiconvex. The reader is referred to [28] for a detaileddescription how to solve this
problem.

Step 3.Next we solve the optimization problem

min{KΨr
(fr) : fr ∈ S, fr(zk) = wk, k = 0, . . . , n}
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for the unique solutionfr. In Step 2 we have determined the weightΨr as an approxima-
tion of Ψ, and thereforefr will also be an approximation of tof , for which the bounds
(A.22) and (A.23) hold. Furthermore, sinceΨr = |σr|2 with σr ∈ Kr−n, the degree offr
is bounded byr (Proposition A.4). Finally, we renormalize the interpolant

Fr := γfr

to obtain the approximant which solves the original interpolation problem.

A.8 Examples Revisited

We now return to the two examples from Section A.3. In both examples, the underlying
mathematical problem is an analytic interpolation problemwhere a desired shape is sought
for the interpolant. These are addressed using the procedure outlined in Section A.7.

A.8.1 Sensitivity minimization (continued)

In this example, we consider the sensitivity functionS = (1 − PC)−1 of the feedback
system with plant

P (z) =
1

z − 2
.

SinceP has one unstable pole at2 and an unstable zero at∞, we require that the sensitivity
function satisfies

S(∞) = 1 andS(2) = 0.

We further require that the specifications (A.6) are met. Therelaxed bound on the infinity-
norm ofS is ‖S‖∞ ≤ γ := 5

2 , and we therefore define the function

f(z) = γ−1S(z−1)

which is normalized so thatf satisfies‖f‖∞ ≤ 1 and is analytic inD. The constraints on
S can be directly translated into constraints onf :

f(0) = 0.4, andf(0.5) = 0,

and

|f(eiθ)| ≤ ǫγ−1, on (0, θc),

|f(eiθ)| ≤ 1, on (θc, π),

where, as before,γ = 2.5, ǫ = 0.75 andθc = 0.25. We begin with a particular interpolant
fideal that meets the criteria without regard to any constraint on the degree, shown in Figure
A.3, which we then approximate using the theory in Section A.6.

We determinefideal as follows. We first define an outer functionw with the property
that log |w(eiθ)| is piecewise linear inθ ∈ (0, π) and passes through the points

(0, ǫγ−1), (θc + 0.1, ǫγ−1), (θc + 0.3, 1), and(π, 1).
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This is our desired shape. Then we setg = w
α and scaleα > 0 so that there exists a

minimizer of (A.4) which satisfies|f | = |g| on T. By Proposition A.7,α is specified
by the requirement that Pick(g) is positive semidefinite and singular. In this case,α =
1.0498 > 1, and hence|fideal| = |g| is consistent with the requirement‖fideal‖∞ ≤ 1. It is
clear that neitherg norfideal is a rational function, but, unlikeg, fideal is an interpolant.
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Figure A.3: Ideal function:fideal = γ−1S∗
ideal

Next we approximatefideal by an interpolant of small degree. We first characterize the
inverse image offideal under the map (A.20), which according to Proposition A.6 is given
by

ϕ−1(fideal) = {Ψ : Ψ = (|fideal|
−2 − 1)|b|2, b ∈ K, bf−1

ideal outer}.

In the present case,|b|2 is a positive constant. Hence,ϕ−1(fideal) contains a single element,
modulo scaling, and we chooseΨideal = (|fideal|−2 − 1). As described in Section A.5.2 we
let fr be the approximant of degree less or equal tor obtained from

fr = arg min
{

K|σr |2(fr)
∣

∣ fr ∈ S and (A.1) holds
}

,

whereσr is the solution of the quasi-convex optimization

min
{∥

∥log(|σr|
2) − log(Ψideal)

∥

∥

∞

∣

∣ for σr ∈ Kr−n

}

.

Finally, by scalingSr(z) := γfr(z
−1) andSideal(z) := γfideal(z

−1), we obtain admissible
sensitivity functions.
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We computeSr for r = 1, 3, 5 and display the magnitudes ofS1, S3 andS5 in Figure
A.4. Neither the degree-one nor the degree-three approximant of Sideal satisfies the design
specifications, wherasS5 does. It is interesting to note that even thoughfideal is infinite-
dimensional it is possible to find satisfactory low-dimensional approximants.
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Figure A.4: Approximations of degree1, 3, and5

It is also interesting to note that when the bound‖S‖∞ ≤ γ is removed and only
stability is required, as in [28], the approximation is better in the low-frequency band
(0, θc + 0.1), but worse in the high-frequency band(θc + 0.3, π). It seems as if approx-
imation with a bound puts more emphasis on the region where the interpolant is close to
the bound (i.e.|S| ≈ γ) at the expense of the region where|Sideal| ≪ γ.

A.8.2 Frequency-dependent robustness margin (continued)

We consider a continuous-time plant having one integrator,a slow unstable pole, and a
time-lag, modeled vias−1

s+1
1

s(s−0.1) . We base our design on its discrete-time counterpart

P0(z) =
0.08772z3 − 0.08772z2 − 0.4386z − 0.2632

z3 − 2.439z2 + 1.807z − 0.3684

obtained via the Möbius transform

s→ z =
2 + s

2 − s
,

and restrict our analysis to the discrete-time domain.



THE INVERSEPROBLEM OF ANALYTIC INTERPOLATION 43

The design objective is encapsulated in the choice of a weight w, chosen as in Sec-
tion A.3 to increase robustness to high-frequency modelinguncertainty. The selected
“nominal weight”w is shown in Figure A.5. The maximal scaling parameterαmax can
be readily computed by first calculating the outer factorgα of

|F |2 =
1 − α2|w|2

α2|w|2
= |gα|

2 onT,

and then, finding the maximal valueαmax for which the Pick matrix Pick(gα) is positive
semidefinite (cf. Proposition A.7). The Pick matrix Pick(gα) is defined in (A.19) and
requires the interpolation data that can be obtained by evaluatingF0 at the roots ofφ in
(A.12). Denote byFideal the unique interpolant which satisfies|Fideal| = |gαmax|, and denote
the corresponding controller byCideal. Sincew is not rational, neither areFideal andCideal.
Next we describe how to approximateFideal with an admissible interpolant of low degree.
Using the corresponding controller leads to closed-loop transfer functions of low degree.
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Figure A.5: The frequency-dependent robustness shapew

The uniform robustness margin corresponding to the controllerCideal is determined by
the value of‖Fideal‖∞ via (A.13). For the above choices‖Fideal‖∞ = 10.87. In order
to achieve the desired characteristic for the frequency-dependent robustness margin, we
relax theH∞ bound onF . For the particular example, it is deemed appropriate to allow
‖F‖∞ ≤ γ = 20. We normalizeF by definingf = 1

γF , which is then required to satisfy

f(z) =
1

γ
F0(z) wheneverφ(z) = 0, (A.28)
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in view of the interpolation condition (A.12). Then we follow the steps of Section A.7 to
obtain approximants tofideal =

1
γFideal.

For any givenr ≥ n we determine a degree-r approximantfr of fideal as follows. We
first compute a minimizerσr of the quasi-convex optimization problem to find aσr ∈
Kr−n and aΨ ∈ ϕ−1(fideal) which minimize

∥

∥log(|σr|
2) − log(Ψ)

∥

∥

∞
.

Next we determinefr as the minimizer of the convex optimization problem

fr = arg min{K|σr|2(fr)
∣

∣f ∈ S and (A.28)}.

A corresponding controllerCr can now be determined viaq from (A.12) and (A.8).
The uniform robustness radius for gap-metric uncertainty is maximal for an optimal

choice of the controllerCopt and equalsbopt(P ) ([35, 22]. This is the inverse of theH∞-
norm of the “parallel projection” operatorΠP//Copt, and this value is shown in Figure A.6
with a dash-dotted line. On the other hand, the inverse of themaximal singular value
of ΠP//Cideal, plotted as a function of frequency with solid line, represents a frequency-
dependent robustness radius [35]. Both are now compared with a degree-four approximant

C4 =
0.876z4 − 0.190z3 − 0.0669z2 − 0.460z + 0.157

z4 + 0.1205z3 + 1.389z2 + 0.07538z + 0.2214
,

and it is seen that there is substantial improvement of robustness as compared tobopt(P )
in the high-frequency range. Figure A.7 compares the gains of C4 andCopt. Similarly,
Figure A.8 and Figure A.9 compare the loop-gains and the Nyquist plots, respectively, for
the two cases. It is seen that some form of phase compensationis effected byC4 around
1.6 rad/sec, as compared toCopt so as to gain the sought advantage. Figure A.10 compares
the gains of the four entries of the closed-loop transfer matrix ΠP//C . The improvement
in the sensitivity function at middle range becomes evident.

A.9 Concluding remarks

The formulation of feedback control synthesis as an analytic interpolation problem has
been at the heart of modern developments in robust control. Yet, many of the standard ap-
proaches often lead to designs of a large degree, due to degree inflation when introducing
and absorbing “weights” into the controller. At various stages, alternative methodologies
for dealing with control design under structural and dimensionality constraints were de-
veloped by several authors based primarily on suitable approximations and a linear matrix
inequality formalism (see [15], [33], [23], [3]). In particular, a comparison between the
viewpoint in Gahinet and Apkarian [15] and Skelton, Iwasaki, and Grigoriadis [33] and
the viewpoint advocated in our work is provided in [21].

Our approach builds on the originalH∞-formulation of control synthesis as an ana-
lytic interpolation problem and on the recently discoveredfact that, in contrast toH∞-
minimization, dimensionality and performance are inherited by the weighted-entropy min-
imization. In this setting, “weights” provide the means of shaping interpolants in a manner
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Figure A.6: The robustness radius obtained for the controllersCideal, C4, andCopt.

akin toH∞ design. Thus, the advantage of the new methodology which involves entropy
functionals stems from the fact that selection of weights within a specific class does not
unduly penalize the degree of the design. However, the choice of weights is not immediate,
as it is in the standardH∞ paradigm [14]. The choice of weights that lead to acceptable
controllers is, in itself, a non-convex optimization problem. Thus, one of the contributions
of this paper is a relaxation of this non-convex problem intoone which is quasi-convex,
and thus solvable by standard methods. The methodology builds on a more fundamental
question which forms a main theme of the paper, namely the characterization of all pos-
sible minimizers of weighted entropy functionals. The inverse problem of constructing
weights for permissible minimizers is the basis for our new design theory. In a more gen-
eral context, the results of this paper provide a solution tothe longstanding open problem of
determining which spectral zeros correspond to a certain desired shape of the interpolant.

This paper provides a considerable extension of the resultspresented in the conference
paper [25]. The modified problem obtained by removing thea priori boundγ on the
interpolants has been studied in [26, 28]. In fact, by allowing the upper boundγ to tend to
infinity, the entropy optimization problem becomes anH2 optimization problem, and the
interpolants are then parameterized in terms of poles rather than in terms of spectral zeros.

A.10 Appendix

In the appendix we prove Theorem A.3 and some technical results needed in the paper.
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Figure A.7: Bode plots of controllersC4, andCopt

A.10.1 Controller complexity: Proof of Proposition A.2

Given the controller parameterization (A.8), we haveC = U/V , whereU = U0+M0q and
V = V0 +N0q. SinceU, V ∈ H∞, the number of the distinct poles ofU andV (counted
with multiplicity, including poles at zero and at∞) is at least as large as the degree ofC.
From (A.11) and (A.12) we have

(

U
V

)

=

(

φ∗M0

φ∗N0

)

F +

(

−N∗
0

M∗
0

)

,

and, sinceM0, N0, φM
∗
0 , φN

∗
0 ∈ H∞, any stable pole ofU or V is a stable pole ofF .

However,U andV has no unstable poles, and therefore, the degree ofC is bounded by the
degree ofF , as claimed.

A.10.2 Proof of Theorem A.3

The main ideas of the proof of Theorem A.3 are similar to thoseof Theorem 1 in [9], but
some lemmas need to be modified to handle the present situation. For ease of reference,
we retain (modulo a sign change) the notations of [9].

We start by showing that for any log-integrable weightΨ, there exists a strictly con-
tractive interpolantw with finite generalized entropy.

Lemma A.12. Suppose thatΨ ≥ 0 satisfieslog Ψ ∈ L1(T), and letP be the Pick matrix
(A.2). Then, ifP > 0, there exists aw ∈ H∞ that satisfies(A.1) and‖w‖∞ < 1 and such
thatKΨ(w) <∞.
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Figure A.8: Bode plots ofP and of loop gainsPC4, andPCopt

Proof. Let gǫ be the outer function such that|gǫ| =
√

1
1+ǫ+ǫΨ , for ǫ > 0. Sincegǫ → 1

pointwise inD asǫ → 0, and since Pick(1) = P > 0, it is possible to chooseǫ small
enough so that Pick(gǫ) ≥ 0. Then it is possible to find aw which satisfies (A.1) and for
which |w| ≤ |gǫ| onT. The calculation

KΨ(w) ≤ KΨ(gǫ)

=

∫

T

Ψ log

(

1 + ǫ+ ǫΨ

ǫ+ ǫΨ

)

dm

≤

∫

T

Ψ

(

1 + ǫ+ ǫΨ

ǫ+ ǫΨ
− 1

)

dm

≤
2π

ǫ

shows thatKΨ(w) <∞.

With w fixed and satisfying the properties in Lemma A.12, we define

X = {v | ‖w + φv‖ ≤ 1} ,

X0 = {v | ‖w + φv‖ ≤ 1, KΨ(w + φv) <∞} ,

whereφ is the Blaschke product (A.5).
Consider the convex functionalF : X → [0,∞] given by

F (v) = −

∫

T

|σ|2 log(1 − |w + φv|2)dm (A.29)
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Figure A.9: Nyquist plots of the loop gainsPC4 (above) andPCopt (below), respectively

where as previous,σ is outer such that|σ|2 = Ψ

Lemma A.13. There exists a setL of continuous affine functionals onH∞ of the form

λ(v) = λ0 +

∫

T

Re(hv)dm,

with λ0 ∈ R, h ∈ L1, such that

F (v) = sup
λ∈L

λ(v) for everyv ∈ X. (A.30)

Proof. For all a, x > 0, log(x) ≤ log(a) + x−a
a . Hence for all|s| ≤ 1, |z| ≤ 1, and

ǫ ∈ (0, 1) we have

log(1 − (1 − ǫ)|s|2) ≤ log(1 − (1 − ǫ)|z|2) + (1 − ǫ)
|z|2 − |s|2

1 − (1 − ǫ)|z|2

≤ log(1 − (1 − ǫ)|z|2) + 2(1 − ǫ)
|z|2 − Re(z̄s)

1 − (1 − ǫ)|z|2

with equality if s = z. Let Ψǫ := min(Ψ, 1/ǫ). By monotone convergence,KΨǫ
((1 −
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Figure A.10: The four closed-loop transfer functions ofΠP//C4
andΠP//Copt

ǫ)f) → KΨ(f) asǫ→ 0. Consequently,

F (v) = sup
ǫ∈(0,1)

−

∫

T

Ψǫ log(1 − (1 − ǫ)|w + φv|2)dm

≥ sup
u∈X

sup
ǫ∈(0,1)

−

∫

T

Ψǫ

(

log(1 − (1 − ǫ)|w + φu|2)

+2(1 − ǫ)
|w + φu|2 − Re(w + φu)(w + φv)

1 − (1 − ǫ)|w + φu|2

)

dm,

where the outer infimum is achieved atu = v. Therefore, by definingL to be the class of
affine functionals onH∞ defined via

λ0 = −

∫

T

Ψǫ

(

log(1 − (1 − ǫ)|w + φu|2) + 2(1 − ǫ)
|w + φu|2 − Re((w + φu)w)

1 − (1 − ǫ)|w + φu|2

)

dm

and

h = Ψǫ
2(1 − ǫ)(w + φu)φ

1 − (1 − ǫ)|w + φu|2
,

for all ǫ ∈ (0, 1) andu ∈ X , the representation (A.30) follows.

This leads to the main lemma, the proof of which follows verbatim from [9, p. 974]
using Lemma A.13.
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Main Lemma A.14. The optimization problem(A.4) has a unique minimizer onX .

Lemma A.15. Letf = w + φv, wherev = arg min(F ). Then

|σf |2

1 − |f |2
∈ L1(T).

Proof. Consider fort ∈ (0, 1), the differentiable functionψ : t 7→ F ((1 − t)v) with
derivative

ψ̇(t) =

∫

T

ϕtdm,

where

ϕt := |σ|2
Re
{

(f̄ + t(w̄ − f̄))(f − w)
}

1 − |f + t(w − f)|2
.

SinceF has a minimum atv, ψ̇(t) ≥ 0 for smallt. Choose aγ such that‖w‖∞+1
2 ≤ γ < 1,

and letI1 and I2 be the subintervals ofT where |f | < γ and |f | ≥ γ, respectively.
On I1, the denominator ofϕt is bounded, and, since

∫

T
|σf |2dm ≤ KΨ(f) < ∞ and

∫

T
|σw|2dm ≤ KΨ(w) <∞, we have that

∣

∣

∣

∣

∫

I1

ϕtdm

∣

∣

∣

∣

is uniformly bounded fort ∈ (0, 1), while, onI2,ϕt < 0 for sufficiently smallt. Therefore,

to say that |σf |
2

1−|f |2 /∈ L1(T) is to say that

∫

I2

ϕtdm→ −∞,

contradicting the nonnegativity oḟψ(t) for smallt.

Sinceσ is log-intergrable andf ∈ H∞ with ‖f‖ ≤ 1, the fact that |σf |
2

1−|f |2 ∈ L1(T)

implies thatlog(1− |f |2) ∈ L1. Thereforelog |σ|2

1−|f |2 ∈ L1(T) and there is a unique outer
factora with a(0) > 0 such that

|a|2 =
|σ|2

1 − |f |2
,

and, if we defineb := fa (in H2 due to Lemma A.15),a andb satisfies

f =
b

a
,

|σ|2 = |a|2 − |b|2.

Next, we show thatb ∈ K.
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Lemma A.16. Letf = w + φv, wherev = arg min(F ), and letf0 be the outer part off .
Then

|σ|2f0f∗φ

1 − |f |2
∈ zH1(D).

Proof. From the Lemma A.15 we have that|σf |
2

1−|f |2 ∈ L1(T), and, sincelog |σ| ∈ L1, it

follows thatlog(1 − |f |2) ∈ L1. Hence there isg ∈ H2 such that1− |f |2 = |g|2. For any
h ∈ H∞ with ‖h‖∞ ≤ 1, we have thatv + tg2f0h ∈ X0 for t ∈ (−ǫ, ǫ) andǫ sufficiently
small. In fact, sinceRe{f̄φtg2f0h} ≤ |t||f |2, we have

1 − |f + tφg2f0h|
2 ≥ |g|2(1 − 2|t||f |2 − t2|f |4),

and hence

F (v + tg2f0h) = −

∫

T

|σ|2 log(1 − |f + tφg2f0h|
2)dm

≤ F (v) −

∫

T

|σ|2 log(1 − 2|t||f |2 − t2|f |4)dm.

In fact, since− log(1 − x) ≤ 2x for x ∈ (0, 1
2 ), we have fort ∈ (− 1

6 ,
1
6 ) that

−

∫

T

|σ|2 log(1 − 2|t||f |2 − t2|f |4)dm ≤ −

∫

T

|σ|2 log(1 − 3|t||f |2)dm

≤ 6|t|

∫

T

|σ|2|f |2dm <∞.

This proves thatv + tg2f0h ∈ X0 for t ∈ (− 1
6 ,

1
6 ). Sincev = argmin(F ), the derivative

of F must be zero atv in the directionsg2f0h for arbitraryh ∈ H∞ with ‖h‖∞ ≤ 1; i.e.,

∫

T

|σ|2
Re{f∗φg2f0h}

1 − |f |2
dm = 0

for all h ∈ H∞ in the unit ball. Therefore,

|σ|2
f∗φg2f0
1 − |f |2

∈ zH1(D),

so, sinceg is outer and|σ|2 f
∗φf0

1−|f |2 ∈ L1, Lemma A.16 follows.

By Lemma A.15, we have thatb = af = σf
g ∈ H2. By Lemma A.16,b

∗σf0φ
g = zq

whereq ∈ H1, and henceb
∗φ
z = qg

σ ∈ H2. Sinceb ∈ H2 and b∗φ
z ∈ H2 it follows

that b ∈ K. Finally, sincea = σ
g , the minimizing interpolantf is of the form stated in

Theorem A.3.
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We have thus established that the minimizer exists and satisfies (i), (ii), and (iii). It
remains to prove that there is only one functionf ∈ S satisfying (i), (ii), and (iii). This
follows directly from the arguments on page977 in [9] and by noting that

|σ|2
|f∗

1 (f1 − f2)|

1 − |f1|2
≤

|σf1|
2

1 − |f1|2
+

|σf2|
2

1 − |f2|2
∈ L1

and hence that

|σ|2
2Re{f∗

1 (f1 − f2)}

1 − |f1|2
∈ L1.

This concludes the proof of Theorem A.3.

A.10.3 A lemma on continuity

Lemma A.17. Let Ψ ∈ M andf = b
a = ϕ(Ψ), and letΨk ∈ M andfk = bk

ak
= ϕ(Ψk)

for k = 1, 2, . . .. Then, if

‖ log(Ψ) − log(Ψk)‖ → 0 ask → ∞,

bk → b ask → ∞.

Proof. From the proof of the main theorem, we see that

b =
fσ

g
,

with σ the outer factor ofΨ andg the outer factor of1 − |f |2. Similarly bk = fkσk

gk
where

σk, gk are outer,|σk|2 = Ψk and|gk|2 = 1 − |fk|2.
As ‖ log(Ψ) − log(Ψk)‖ → 0, fk → f in H2 (Proposition A.10). From this it follows

that 1 − |fk|2 → 1 − |f |2 in L1 and hence thatgk → g in H2 (see [5] and note that
{1 − |fk|

2}k are log-integrable). Clearlyσk → σ in H2.
Sinceb, bk ∈ K, b = β

τ , bk = βk

τ with β, βk ∈ Pol(n), we therefore have

gkβk = fkσkτ.

The convergencebk → b now follows, sincegk → g fk → f andσk → σ coefficientwise
(weakly) andg is not identically zero.
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On Degree-Constrained Analytic
Interpolation with Interpolation Points

Close to the Boundary

Johan Karlsson and Anders Lindquist

Abstract

In the recent article [4] a theory for complexity-constrained interpolation of contractive functions
is developed. In particular, it is shown that any such interpolant may be obtained as the unique
minimizer of a (convex) weighted entropy gain. In this paperwe study this optimization problem in
detail and describe how the minimizer depends on weight selection and on interpolation conditions.
We first show that, if, for a sequence of interpolants, the values of the entropy gain of the interpolants
converge to the optimum, then the interpolants converge inH2, but not necessarily inH∞. This
result is then used to describe the asymptotic behavior of the interpolant as an interpolation point
approaches the boundary of the domain of analyticity. For loop shaping to specifications in control
design, it might at first seem natural to place strategicallyadditional interpolation points close to
the boundary. However, our results indicate that such a strategy will have little effect on the shape.
Another consequence of our results relates to model reduction based on minimum-entropy principles,
where one should avoid placing interpolation points too close to the boundary.

B.1 Introduction

Many important engineering problems lead to analytic interpolation, where the interpolant
represents a transfer function of, for example, a feedback control system or a filter and
therefore is required to be a rational function of bounded degree. In recent years, a com-
plete theory of analytic interpolation with degree constraint has been developed, which pro-
vides complete smooth parameterizations of whole classes of such interpolants in terms of
a weighting function belonging to a finite-dimensional space, as well as convex optimiza-
tion problems for determining them; see [3, 4] and references therein.

This theory provides a framework for tuning an engineering design based on analytic
interpolation to satisfy additional design specification without increasing the degree of the
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transfer function. Occasionally the number of tuning parameters is too small to satisfy the
design specifications, and then the parameter space needs tobe enlarged by increasing the
degree bound. In [11] this was done by adding new interpolation conditions, often close to
the boundary.

In this paper we present some negative results concerning this strategy and explain why,
after all, the solution in [11] is satisfactory. We show thatunless the weighting function
is changed, adding new interpolation points close to the boundary will have little effect on
the interpolant. We illustrate this by analyzing a simple example from robust control.

We also show that interpolation conditions close to the unitdisc have little effect on the
minimum-entropy solution and can thus be discarded (RemarkB.2). Recently some pro-
cedures for model reduction based on the minimum-entropy solution have been proposed
[2, 12], which amount to interpolating in the mirror images of selected spectral zeros. Our
results suggest (at least for bounded-real interpolants) that dominant spectral zeros close to
the boundary should not be selected in this procedure. However, by choosing more general
weights [8], this situation can be avoided.

In Section B.2 we begin by reviewing some pertinent results from [4] amplified with
a generalization from the more recent paper [9]. Then, in Section B.3, we provide a mo-
tivation example from robust control, which is then revisited in Section B.5 after having
presented the main results in Section B.4. Some proofs are deferred to Section B.6.

B.2 Background

Consider the classical Nevanlinna-Pick problem of finding afunctionf in the Schur class

S := {f ∈ H∞(D) : ‖f‖∞ ≤ 1}

that satisfies the interpolation condition

f(zk) = wk, k = 0, 1, . . . , n, (B.1)

where(zk, wk), k = 0, 1, . . . , n, are given pairs of points in the open unit discD := {z :
|z| < 1}. It is well-known that such anf ∈ S exists if and only if the Pick matrix

P :=

[

1 − wkw̄ℓ
1 − zkz̄ℓ

]n

k,ℓ=0

(B.2)

is positive semi-definite, and that the functionf is unique if and only if the matrixP
is singular. In the latter casef is a Blaschke product of degree equal to the rank ofP .
Here we shall takeP to be positive definite, in which case there are infinitely many solu-
tions to the Pick problem. A complete parameterization of the solutions of this so called
Nevanlinna-Pick interpolation problem was given by Nevanlinna (see, e.g. [1]) in 1929.
The parameterization is in terms of a linear fractional transformation centered around a
rational solution of degreen, known as thecentral solution.

In a research program leading to [3, 4], the subset of all solutions of the Nevanlinna-
Pick problem that are rational of degree at mostn were parameterized. Most engineering
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problems require such degree constraints, which completely alter the basic mathematical
problem. More precisely, letK be the space of all functions

K =

{

p(z)

τ(z)
: p(z) ∈ Pol(n), τ(z) =

n
∏

k=0

(1 − z̄kz)

}

,

where Pol(n) denotes the set of polynomial of degree at mostn. ClearlyK is a subspace
of the Hardy spaceH2(D). Moreover, letK0 be the the subset of allf ∈ K such thatp(z)
has all its roots in the complement ofD andp(0) > 0. In this (rational) context, Theorem
1 in [4] can be stated in the following way.

Theorem B.1. Suppose that the Pick matrix(B.2) is positive definite. Letσ be an arbitrary
function inK0. Then there exists a unique pair(a, b) ∈ K0 × K such that

(i) f = b/a ∈ S

(ii) f(zk) = wk, k = 0, 1, . . . , n, and

(iii) |a|2 − |b|2 = |σ|2 a.e. onT := {z : |z| = 1}.

Conversely, any pair(a, b) ∈ K0×K satisfying(i) and(ii) determines, via(iii), a unique
σ ∈ K0.

Consequently, the solutions(a, b) corresponding to interpolants of degree at mostn
are completely parameterized by the zeros ofσ ∈ K0; i.e., then-tuples{λ1, . . . , λn} of
complex number in the complement ofD; these are called thespectral zeros. For each
such choice of spectral zeros, the corresponding interpolant f ∈ S can be determined by
minimizing the strictly convex functionalKΨ : S → R ∪ {∞}, given by

KΨ(f) = −

∫

T

Ψ log(1 − |f |2)dm(z),

over the class of interpolants, whereΨ := |σ|2 andm is the normalized Lebesgue measure
onT. In fact, in the present context, Theorem 5 in [4] can can be stated as follows.

Theorem B.2. Suppose that the Pick matrix(B.2) is positive definite. Letσ be an arbitrary
function inK0, and setΨ := |σ|2. Then the functionalKΨ has a unique minimizer in
the class of functions that satisfy the interpolation conditions(B.1), and this minimizer is
precisely the unique functionf ∈ S satisfying conditions(i), (ii) and(iii) in Theorem B.1.

RemarkB.1. Whenz0 = 0, then the central solution corresponds toΨ ≡ 1. The cor-
responding functionalK1 is the usual entropy gain, and the central solution is therefore
equal to theminimum entropy solution(see, e.g. [10]). Thenσ ≡ 1 ∈ K0, and hence
the generic degree of the minimum entropy solution isn, and the corresponding spectral
zeros are located at the conjugate inverses (mirror images in unit circle) of{zk}nk=1; all in
harmony with Theorems B.1 and B.2. If zero is not an interpolation point, then1 /∈ K0

and the generic degree of the minimum entropy solution is insteadn+ 1.
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By varyingΨ we can tune the interpolant without increasing its degree. In the context
of our motivating example in the next section, this amounts shaping the sensitivity function
without increasing the McMillan degree of the closed-loop system. By adding interpolation
conditions we can increase the number of tuning parameters at the cost of increased degree
of the interpolant.

Theorems B.1 and B.2 can be generalized to the case thatΨ is an arbitrary log-integrable
function onT. This was done in the following way in [9].

Theorem B.3. Suppose that the Pick matrix(B.2) is positive definite and thatΨ = |σ|2

is a log-integrable nonnegative function on the unit circle, whereσ is analytic but need
not belong toK0. Thenf is the minimizer ofKΨ in the class of functions that satisfy the
interpolation conditions(B.1) if and only if the following three conditions hold:

(i) f = b/a ∈ S whereb ∈ K anda is outer,

(ii) f(zk) = wk for k = 0, . . . , n,

(iii) |a|2 − |b|2 = |σ|2.

Any such minimizer is necessarily unique.

This allows for shaping the interpolant without the constraint thatσ belong toK0, but
at the expense of increased degree; for a precise statement,see [9]. An interesting special
case of this is whenΨ ∈ C(T)+, i.e. Ψ is positive and continuous on the unit circle.

The theory described above allows us to choose an interpolant that satisfies additional
design specifications. In fact, the map fromσ to (a, b) defined by Theorem B.1 is smooth
[5, 6], and hence a given design can be tuned viaΨ to smoothly change the interpolant.
An obvious first choice ofΨ is to make it large in frequency bands where|f | needs to be
small. This paper is an attempt to gain understanding of the underlying function theory
involved in tuning the interpolant. In the paper [9] we have derived asystematicprocedure
for shaping interpolants based on design specifications.

B.3 A motivating example

The purpose of this paper is to show how the interpolant changes as the weightΨ is
changed and as additional interpolation points are introduced, especially close to the bound-
ary of D. To illustrate this point, we consider an example on sensitivity shaping in robust
control from [11]. Figure B.1 depicts a feedback system withu denoting the control input
to the plant

G(z) =
1

z − 1.05

to be controlled,d represents a disturbance, andy is the resulting output, which is fed back
through a compensatorK(z) to be designed. The goal is to determine a controllerK(z)
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G(z)

K(z)

d

yu
Σ

Figure B.1: A feedback system.

so that the feedback system in Figure B.1 satisfies the designspecifications

|S(eiθ)| < 2.0 ∼ 6.02dB 0 ≤ θ ≤ π (B.3)

|S(eiθ)| < 0.1 ∼ −20.1dB 0 ≤ θ ≤ 0.3 (B.4)

|T (eiθ)| < 0.5 ∼ −6.02dB 2.5 ≤ θ ≤ π (B.5)

in terms of the sensitivity functionS = (1 − GK)−1 and the complementary sensitivity
functionT = 1 − S.

The plantG(z) has one unstable pole atz = 1.05 and one non-minimum phase zero
at z = ∞. It follows fromH∞ control theory (see, e.g. [7]) that the feedback system is
internally stable if and only if the sensitivity functionS(z), the transfer function fromd to
y, is analytic inDC := {z : |z| > 1}, the complement of the closed unit disc, and satisfies
the interpolation conditions

S(1.05) = 0, S(∞) = 1.

By the design specification (B.3), the interpolants are required to satisfy‖S‖∞ ≤ γ := 2.
Setting

f(z) =
1

2
S(z−1), (B.6)

f fits into the framework of Theorem B.1 with interpolation conditions

f(0.9524) = 0, f(0) =
1

2
. (B.7)

Sincen = 1, there exists a one-parameter family of degree-one interpolants satisfying
‖f‖∞ ≤ 1 that may be parametrized by its corresponding spectral zeroλ. Figure B.2
shows the solutionsS(z) = 2f(z−1) as1/λ varies from−1 to 1 with the grid0.2.

Clearly none of these designs satisfies the specifications. Therefore, following Naga-
mune [11], we add the interpolation conditions

f(−0.9901) =
1

2
(B.8)
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Figure B.2:The degree-one sensitivity functions corresponding to spectral-zero selections
with 1/λ between−1 to 1 with grid 0.2.

and

f(0.9901e±0.3i) = 0. (B.9)

Here (B.8), motivated by the design specification (B.5), ensures, via (B.6), thatT (1.01) =
0, while (B.9), motivated by the design specification (B.4), ensures thatS(1.01e±0.3i) = 0.
The number of interpolation conditions adds up ton+ 1 = 5, and therefore Theorem B.1
allows for parameterizing all solutions of degreen = 4 by choosingn spectral zeros. As
in [11], we choose the spectral zeros in0.97e±0.55i and0.9e±1.55i, which corresponds to
the weight

ΨN =

˛

˛

˛

˛

(1− 0.9e
1.55i

z)(1− 0.9e
−1.55i

z)(1− 0.97e
0.55i

z)(1− 0.97e
−0.55i

z)

(z − 1.05)(z + 1.01)(z − 1.01e0.3i)(z − 1.01e−0.3i)

˛

˛

˛

˛

2

. (B.10)

The corresponding sensitivity functionSN, depicted in Figure B.3 together with the weight
ΨN, satisfies the design specifications (B.3)-(B.5). The interpolation points and spectral
zeros for this design are depicted in Figure B.4.

From the plots in Figure B.3 one first notices that in the example where a large weight
in the low frequency region is used, the magnitude of the sensitivity is low. This seems to
be intuitive since the high weight in the entropy functionalpenalizes the sensitivity more
in that region than in others. However, the weight is also large in the high frequency area,
and in this case there is no significant change in the sensitivity.

In order to understand the effects of interpolation points and spectral zeros in this de-
sign, in the next section we develop results for interpolation points close to the unit circle.
Then, in Section B.5 we revisit the example above.
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Figure B.3:The weightΨN (above) and the magnitude of the sensitivity functionSN (be-
low).
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Figure B.4: The intepolation points (×) and the mirror images (◦) of the spectral zeros
corresponding toSN.



64 PAPER B

B.4 Main results

As the example of Section B.3 suggests, we need to investigate how the interpolant changes
as additional interpolation points are introduced close tothe unit circle. The following
theorem is one of our main results.

Theorem B.4. Let Ψ = |σ|2 ∈ C(T)+, whereσ ∈ K0, and let f̂ be the minimizer of
KΨ(f) subject to the interpolation conditions

f(zk) = wk, k = 0, 1, . . . , n.

Moreover, given|w| < 1, let fλ be the minimizer ofKΨ(f) subject to

f(zk) = wk, k = 0, 1, . . . , n, f(λ) = w.

Thenfλ → f̂ in H2 as|λ| → 1.

This theorem indicates that adding interpolation conditions close to the unit circle will
not affect the design in any important way unless we also change the weighting function
Ψ. For the proof we first need to show that if the generalized entropy of interpolants
converge to the optimum, then the interpolants converge to the optimal interpolant inH2.
The following theorem is proved in Section B.6.

Theorem B.5. Let Ψ ∈ C(T)+, and letf̂ be the minimizer ofKΨ(f) subject tof(zk) =

wk, k = 0, 1, . . . , n. If fℓ satisfiesfℓ(zk) = wk, k = 0, 1, . . . , n, andKΨ(fℓ) → KΨ(f̂),
thenfℓ → f̂ in H2.

It should be noted that this result could not be strengthenedto H∞ convergence. A
counterexample could be constructed by noting thatKΨ(f+αχEℓ

) → KΨ(f) if m(Eℓ) →
0. Hereχ denotes the characteristic function andα is a scalar such that0 < |α| <
1 − ‖f‖∞. But ‖αχEℓ

‖∞ = α for all ℓ. This argument works equally well forf + gℓ,
wheregℓ ∈ φH2 and|gℓ| is an appropriate approximation ofχEℓ

.
A second step in proving Theorem B.4 is to investigate how theinterpolant changes as

the data is transformed under a Möbius transformation. Forλ ∈ D, let bλ be the Blaschke
factor

bλ(z) =
λ− z

1 − λ̄z
.

Then the following proposition tells us how the entropy is changed as the range is trans-
formed by a Möbius transformation.

Proposition B.6. The mapρ(·, λ,Ψ) : S → R defined by

ρ(f, λ,Ψ) =

∫

T

Ψ log
|1 − λ̄f |2

1 − λ̄λ
dm(z)

is continuous, and
KΨ(bλ(f)) = KΨ(f) + ρ(f, λ,Ψ).

Moreover, ifΨ = |σ|2 whereσ ∈ K0, thenρ(f1, λ,Ψ) = ρ(f2, λ,Ψ), wheneverf1(zk) =
f2(zk) for k = 0, 1, . . . , n.
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Proof. First part is trivial, second part follows from [4, p. 8 and Lemma 10].

As a corollary we have the following proposition, which tells us that the solution ob-
tained from the transformed data is the solution transformed with the same transformation.

Proposition B.7. Letσ ∈ K0, and letf be the minimizer ofK|σ|2(f) subject tof(zk) =
wk, k = 0, 1, . . . , n, as prescribed by Theorem B.1. Theng = bλ(f) is the minimizing
interpolant corresponding to the sameσ of the analytic interpolation problemg(zk) =
bλ(wk), k = 0, 1, . . . , n.

A simple proof of Proposition B.7, derived directly from Theorem B.1 using basic
principles, is given in Section B.6.

To conclude the proof of Theorem B.4, we first prove a version in which the interpola-
tion valuew equals zero.

Theorem B.8. Let Ψ ∈ C(T)+, and let f̂ be the minimizer ofKΨ(f) subject to the
interpolation conditionsf(zk) = wk, k = 0, 1, . . . , n. Moreover, letfλ be the minimizer
of KΨ(f) subject tof(zk) = wk, k = 0, 1, . . . , n andf(λ) = 0. Thenfλ → f̂ in H2 as
|λ| → 1.

In Theorems B.4 and B.8,fλ may not exist for certainλ ∈ D, since the corresponding
Pick matrix may not be positive definite. However, there is always anǫ > 0 such thatfλ
exists whenever1 − ǫ < |λ| < 1, hence the limit results are valid.

Proof. Let Mλ = {g : g ∈ S, g(zk) = wk

bλ(zk)}. First note that ifg ∈ Mλ, thengbλ
satisfies the interpolation conditions. Furthermore

KΨ(g) = KΨ(gbλ) ≥ KΨ(fλ) ≥ KΨ(f̂)

by the definitions offλ andf̂ . If we prove that

min
g∈Mλ

KΨ(g) → KΨ(f̂) as|λ| → 1, (B.11)

thenKΨ(fλ) → KΨ(f̂), and by Theorem B.5 it follows thatfλ → f̂ in H2. However,
since wk

bλ(zk) → wk as|λ| → 1, there is a sequence of functionsgλ ∈Mλ such thatgλ → f̂

in H∞. ByH∞ continuity ofKΨ, (B.11) holds.

Note that Theorem B.8 holds for any positive and continuousΨ, whereas Theorem B.4
only holds if Ψ = |σ|2 andσ belong toK0. This is because the proof of Theorem B.4
requires the use of Proposition B.7, whereσ ∈ K0 is a condition.

We are now in a position to prove Theorem B.4. To this end, letgλ = bw(fλ) and
g = bw(f̂). By Proposition B.7 and Theorem B.1,gλ is the unique minimizer ofKΨ(f)
such thatf(zk) = bw(wk), k = 1, . . . , n, andf(λ) = 0. Furthermoreg is the unique
minimizer ofKΨ(f) such thatf(zk) = bw(wk), k = 1, . . . , n. By Theorem B.8,gλ → g

in H2. Sincebw is Lipschitz continuous,fλ → f̂ in H2. This concludes the proof of
Theorem B.4.
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Figure B.5: The sensitivity functions corresponding to the maximum entropy solution, i.e.
Ψ ≡ 1. The dashed lines correspond to interpolation conditions(B.7) and (B.8) and the
solid lines(B.7)-(B.9).

RemarkB.2. Consider a Pick problem withz0 = 0 and several interpolation points close
to the unit circle. Since1 ∈ K0 for all n ≥ 1, it follows from Theorem B.4 thet removing
the interpolation points close to the boundary have little effect on the minimium-entropy
interpolant. Unless the interpolation value equals zero (Theorem B.8), the situation is more
complicated for a more general choice ofΨ, since removing an interpolation condition
generally produces aσ 6∈ K0.

B.5 Revisiting the example

We now return to the example of Section B.3. For determining the sensitivity function, two
design tools were used, namely adding interpolation conditions and changing the weight
Ψ by adding spectral zeros. We shall now investigate how thesestrategies have affected
the design.

As a starting point we choose the maximum entropy interpolant corresponding to the
interpolation conditions (B.7) and (B.8). This senitivityfunction, obtained by using the
weightΨ ≡ 1, is depicted Figure B.5 with a dashed line. Next we observe what happens
to the maximum entropy solution when we add the interpolation conditions (B.9), which
requires the interpolant to be zero at the points0.9901e±0.3i. This interpolation point is
close to the unit circle. The corresponding sensitivity function is depicted by the solid
line in Figure B.5. As is seen, the added interpolation points have neglible effect on the
modulus of the interpolant and only a local effect on the phase around0.3 rad/sec, where
there is a sharp shift of2π in the phase. This is in harmony with Theorem B.4 which states
that the effect of adding additional interpolation points close to the unit circle is small in
theH2-norm.
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Figure B.6: The sensitivity functions corresponding to the weightΨN. The dashed lines
correspond to interpolation conditions(B.7) and(B.8) and the solid lines to(B.7)-(B.9).

However, the theory allows for shaping the interpolant by specifying spectral zeros or,
equivalently, the weightΨ. In the motivating example of Section B.3, the spectral zeros
were chosen to be in0.97e±0.55i and0.9e±1.55i, which corresponds to the weightΨN given
by (B.10). The sensitivity functionSN obtained, via (B.6), by using this weight and the
interpolation constraints (B.7)-(B.9) is depicted in Figure B.6 with solid line. If we remove
the interpolation condition (B.9) we obtain the sensitivity function depicted by dashed line
in Figure B.6. As can be seen, also in this case, the only significant change resulting from
the additional interpolation condition is the change of2π in the phase aroundθ = 0.3. As
before this change is very local close to the added interpolation condition.

Therefore, solely adding the interpolation condition (B.9) does not change the solution
significantly. The change in the magnitude is neglible, as isthe change in the phase, except
for the region close to the added interpolation point, wherethere is a sharp shift of2π in
the phase. Since the shift occurs over a short interval, the change inH2 norm is minor, and
as the interpolation point approaches the boundary this shift will have negligible effect on
theH2 norm. This example shows why the same convergence result could not hold for the
H∞ norm.

Let us return to Figure B.3 and the fact that there is no significant change in the sen-
sitivity in the high frequency area, despite the large weight in this region. This could be
due to the interpolation condition (B.8), which lies very close to the boundary in the high
frequency region. Note that any effect (B.8) has on the interpolant is not in conflict with
Theorem B.4. This is becauseσ /∈ K0 if (B.8) is removed, and hence Theorem B.4 is not
applicable. What can be concluded is that the weight has a large effect on the design. This
is further exploited in [9] where a systematic procedure forfinding appropriote weights is
developed.
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B.6 Proofs

For the proof of Theorem B.5 we will use concepts from convex analysis. LetΛ : X → R

be a strictly convex functional, whereX is compact and convex. Then the minimum

β = min
x∈X

Λ(x)

exists and is attained at a uniquex ∈ X. Consider the setKǫ of ǫ−suboptimal solutions

Kǫ = {x ∈ X : Λ(x) < β + ǫ}, ǫ > 0.

It seems reasonable that the “size” ofKǫ tends to zero asǫ → 0. However, to state and
prove this properly, we need topological considerations and the concept of strong convex-
ity.

Definition B.9. A functionalΛ is strongly convex with respect to the norm‖ · ‖ if there
exists anα : [0,∞) → [0,∞) that is continuous, strictly increasing and satisfiesα(0) = 0,
for which

1

2
(Λ(x) + Λ(y)) ≥ Λ(

x+ y

2
) + α(‖x− y‖)

holds for allx, y ∈ X.

Lemma B.10. Let X be a convex set, and letΛ be a strongly convex functional onX with
respect to the norm‖ · ‖. Moreover, let̂x be the minimum ofΛ(x) such thatx ∈ X. Then
Λ(xk) → Λ(x̂), xk ∈ X, implies‖xk − x̂‖ → 0.

An equivalent statment is that, ifΛ is strongly convex with respect to the norm‖ · ‖,
then

sup{‖x− y‖ : x, y ∈ Kǫ} → 0

as ǫ → 0, or, equivalently,Kǫ is a neighboorhood basis for the optimal pointx̂ in the
topology induced by the norm‖ · ‖.

Proof. Assume that the statement of Lemma B.10 does not hold, i.e. that there exists an
ǫ > 0 so that for anyδ > 0 it is possible to find anx ∈ X so that|Λ(x) − Λ(x̂)| < δ and
‖x − x̂‖ > ǫ. Let δ < α(ǫ). ThenΛ(x̂) + δ ≥ 1

2 (Λ(x) + Λ(x̂)) ≥ Λ(x+x̂2 ) + α(‖x −

x̂‖) ≥ Λ(x+x̂2 ) + α(ǫ). This contradicts that̂x is the minimizer, and hence the validity of
Lemma B.10 is proved by contradiction.

In order to apply this result to the entropy functional, we need to show thatKΨ is
strongly convex with respect to theH2 norm.

Proposition B.11. Let Ψ ∈ C(T)+. Then the entropy functionalKΨ is strongly convex
with respect to theH2 norm.
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Proof. For |f | < 1 and|g| < 1, we have the following inequality

1
2 (− log(1 − |f |2) − log(1 − |g|2))

≥ − log

(

1 −
∣

∣

∣

f+g
2

∣

∣

∣

2
)

+ 1
2 log

(

1+ |f−g|2

2

)

. (B.12)

To see this, use the parallellogram law

|f + g|2 + |f − g|2 = 2|f |2 + 2|g|2

to obtain
(

1 −
|f + g|2

4

)2

= (1 − |f |2)(1 − |g|2) − |f |2|g|2 +
|f − g|2

2

+
1

16

(

2|f |2 + 2|g|2 − |f − g|2
)2

= (1 − |f |2)(1 − |g|2) +
|f − g|2

4

(

2 − |f |2 − |g|2
)

+
1

4

(

|f |2 − |g|2
)2

+
1

16
|f − g|4

≥ (1 − |f |2)(1 − |g|2) +
|f − g|2

4

(

2 − |f |2 − |g|2
)

.

Consequently, since
2 − |f |2 − |g|2

(1 − |f |2)(1 − |g|2)
≥ 2,

we have
(

1 − |f+g|2

4

)2

(1 − |f |2)(1 − |g|2)
≥ 1 +

|f − g|2

2
,

from which (B.12) follows. Then, multiplying (B.12) byΨ and integrating, we obtain

1

2
(KΨ(f) + KΨ(g)) ≥ KΨ

(

f + g

2

)

+
1

2

∫

T

Ψ log

(

1 +
|f − g|2

2

)

dm. (B.13)

Sincelog(1 + t) ≥ t/2 for t ∈ [0, 2], the last term in (B.13) is bounded from below by

1

2

∫

T

Ψ log

(

1 +
|f − g|2

2

)

dm ≥

∫

T

Ψ
|f − g|2

4
dm ≥

min Ψ

4
‖f − g‖2

2,

establishing the strong convexity ofKΨ

Theorem B.5 then follows from Lemma B.10 and Proposition B.11.
We now provide a more direct proof of Proposition B.7. In fact, bλ(f) clearly satisfies

the interpolation conditionsbλ(f(zk)) = bλ(wk) and‖bλ(f)‖∞ < 1. Let f = b/a. Then

β

α
= bλ(f) =

λ− f

1 − λ̄f
=
aλ− b

a− λ̄b
,
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and hence

αα∗ − ββ∗ = (a− λ̄b)(a− λ̄b)∗ − (aλ− b)(aλ− b)∗ = (1 − λλ̄)(aa∗ − bb∗).

This shows thatg = bλ(f) is the interpolant corresponding toσ.

B.7 Conclusions and further directions

In this paper we have studied the (generalized) entropy functionalKΨ of [4] and the inter-
polants solving the optimization problem

min KΨ(f) subject tof(zk) = wk, k = 0, 1, . . . , n.

It is shown that, if the entropies of a sequence of interpolants converge to the minimum,
then the corresponding interpolants converge inH2, but not necessarily inH∞. Further-
more, if the interpolation values are transformed by a Möbius transform, so is the mini-
mizing interpolant. Next we show that the introduction of anadditional interpolation point
close to the boundary produces an insignificant increase in the entropy gain. Taken to-
gether with the results above, this implies that the change in the interpolant is small inH2

norm.
We have analyzed a design example from robust control, studied by Nagamune [11],

in the context of our results. The effect of an added interpolation condition close to the
boundary turns out to be small, in harmony with Theorems B.4 and B.8. In the solution of
Nagamune [11], a main objective of the additional interpolation conditions was to increase
the dimension ofK, thereby allowing for more design parameters. However, by instead
applying the parameterization of Theorem B.3, we could solve the optimization problem
for a larger class ofΨ without the additional interpolation conditions. Adding interpolation
points restricts the admissible set, and, if they have negligible effect, one would expect
better solutions without them. A complete theory for this isdeveloped in [9].
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Stability-Preserving Rational
Approximation Subject to Interpolation

Constraints

Johan Karlsson and Anders Lindquist

Abstract

A quite comprehensive theory of analytic interpolation with degree constraint, dealing with ra-
tional analytic interpolants with an a priori bound, has been developed in recent years. In this paper
we consider the limit case when this bound is removed, and only stable interpolants with a prescribed
maximum degree are sought. This leads to weightedH2 minimization, where the interpolants are
parameterized by the weights. The inverse problem of determining the weight given a desired inter-
polant profile is considered, and a rational approximation procedure based on the theory is proposed.
This provides a tool for tuning the solution to specifications.

C.1 Introduction

Stability-preserving model reduction is a topic of major importance in systems and control,
and over the last decades numerous such approximation procedures have been developed;
see, e.g., [3, 17, 23, 1] and references therein. In this paper we introduce a novel approach
to stability-preserving model reduction that also accommodates interpolation contraints, a
requirement not uncommon in systems and control. By choosing the weights appropriately
in a family of weightedH2 minimization problems, the minimizer will both have low
degree and match the original system.

As we shall see in this paper, stable interpolation with degree constraint can be regarded
as a limit case of bounded analytic interpolation under the same degree constraint – a topic
that has been thoroughly researched in recent years; see [5,9]. More precisely, letf be
a function inH(D), the space of functions analytic in the unit discD = {z : |z| < 1},
satisfying

73



74 PAPER C

(i) the interpolation condition

f(zk) = wk, k = 0, . . . , n, (C.1)

(ii) the a priori bound‖f‖∞ ≤ γ, and

(iii) the condition thatf be rational of degree at mostn,

wherez0, z1, . . . , zn ∈ D are distinct (for simplicity) andw0, w1, . . . , wn ∈ C. It was
shown in [5] that, for each suchf , there is a rational functionσ(z) of the form

σ(z) =
p(z)

τ(z)
, τ(z) :=

n
∏

k=0

(1 − z̄kz),

wherep(z) is a polynomial of degreen with p(0) > 0 andp(z) 6= 0 for z ∈ D such thatf
is the unique minimizer of the generalized entropy functional

−

∫ π

−π

|σ(eiθ)|2γ2 log(1 − γ−2|f(eiθ)|2)
dθ

2π

subject to the interpolation conditions (C.1). In fact, there is a complete parameterization of
the class of all interpolants satisfying (i)–(iii) in termsof the zeros ofσ, which also are the
spectral zeros off ; i.e., the zeros ofγ2 − f(z)f∗(z) located in the complement of the unit
disc. It can also be shown that this parameterization is smooth, in fact a diffeomorphism
[6].

This smooth parameterization in terms of spectral zeros is the center piece in the the-
ory of analytic interpolation with degree constraints; see[4, 5] and reference therein. By
tuning the spectral zeros one can obtain an interpolant thatbetter fulfills additional design
specifications. However, one of the stumbling-blocks in theapplication of this theory has
been the lack of a systematic procedure for achieving this tuning. In fact, the relation be-
tween the spectral zeros off andf itself is nontrivial, and how to choose the spectral zeros
in order to obtain an interpolant which satisfy the given design specifications has been a
partly open problem.

In order to understand this problem better, we will in this paper focus on the limit case
asγ → ∞; i.e., the case when condition (ii) is removed. We shall refer to this problem
– which is of considerable interest in its own right – asstable interpolation with degree
constraint. Note that, asγ → ∞,

−γ2 log(1 − γ−2|f |2) → |f |2,

and hence (see Proposition C.2),

−

∫ π

−π

|σ|2γ2 log(1 − γ−2|f |2)
dθ

2π
→

∫ π

−π

|σf |2
dθ

2π
.

For the caseσ ≡ 1, this connection between theH2 norm and the corresponding entropy
functional have been studied in [15]. Consequently, the stable interpolants with degree
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constraint turn out to be minimizers of weightedH2 norms. Indeed, theH2 norm plays the
same role in stable interpolation as the entropy functionaldoes in bounded interpolation.
Stable interpolation andH2 norms are considerably easier to work with than bounded
analytic interpolation and entropy functionals, but many of the concepts and ideas are
similar.

The purpose of this paper is twofold. First, we want to provide a stability-preserving
model reduction procedure that admits interpolation constraints and error bounds. Sec-
ondly, this theory is the simplest and most transparent gateway for understanding the full
power of bounded analytic interpolation with degree constraint. In fact, our paper provides,
together with the results in [12], the key to the problem of how to settle an important open
question in the theory of bounded analytic interpolation with degree constraint, namely
how to choose spectral zeros. In the present setting, spectral zeros are actually the poles.

In many applications, no interpolation conditions (or onlya few) are given a priori.
This allows us to use the interpolation points as additionaltuning variables, available for
satisfying design specifications. Such an approach for passivity-preserving model reduc-
tion was taken in [8]. However, a problem left open in [8] was how to actually select
spectral zeros and interpolation points in a systematic wayin order to obtain the best ap-
proximation. This problem, here in the context of stability-preserving model reduction, is
one of the topics of this paper.

The paper is outlined as follows. In Section C.2 we show that the problem of stable
interpolation is the limit, as the bound tend to infinity, of the bounded analytic interpola-
tion problem stated above. In Section C.3 we derive the basictheory for how all stable
interpolants with a degree bound may be obtained as weightedH2-norm minimizers. In
Section C.4 we consider the inverse problem ofH2 minimization, and in Section C.5 the
inverse problem is used for model reduction of interpolants. The inverse problem and the
model reduction procedure are closely related to the theoryin [12]. A model reduction
procedure where no a priori interpolation conditions are required are derived in Section
C.6. This is motivated by a weighed relative error bound of the approximant and gives a
systematic way to choose the interpolation points. This approximation procedure is also
tunable so as to give small error in selected regions. In the Appendix we describe how
the corresponding quasi-convex optimization problems canbe solved. Finally, in Section
C.7 we illustrate our new approximation procedures by applying them to an example and
finally conclude with two control design examples.

C.2 Bounded interpolation and stable interpolation

In this section we show that theH2 norm is the limit of a sequence of entropy function-
als. From this limit, the relation between stable interpolation and bounded interpolation
is established, and it is shown that some of the important concepts in the two different
frameworks match.

First consider one of the main results of bounded interpolation: a complete parameter-
ization of all interpolants with a degree bound [5]. For this, we will need two key concepts
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in that theory; the entropy functional

K
γ
|σ|2(f) = −

∫ π

−π

γ2|σ(eiθ)|2 log(1 − γ−2|f(eiθ)|2)
dθ

2π
,

where we takeKγ
|σ|2(f) := ∞ whenever theH∞ norm‖f‖∞ > γ, and the co-invariant

subspace

K =

{

p(z)

τ(z)
: τ(z) =

n
∏

k=0

(1 − z̄kz), p ∈ Pol(n)

}

. (C.2)

Here Pol(n) denotes the set of polynomials of degree at mostn, and{zk}nk=0 are the
interpolation points.

In fact, any interpolantf of degree at mostnwith ‖f‖∞ ≤ γ is a minimizer ofKγ
|σ|2(f)

subject to (C.1) for someσ ∈ K0, where

K0 = {σ ∈ K : σ(0) > 0, σ outer}.

Furthermore, all such interpolants are parameterized byσ ∈ K0. This is one of the main
results for bounded interpolation in [5] and is stated more precisely as follows.

Theorem C.1. Let {zk}nk=0 ⊂ D, {wk}nk=0 ⊂ C, andγ ∈ R+. Suppose that the Pick
matrix

P =

[

γ2 − wkw̄ℓ
1 − zkz̄ℓ

]n

k,ℓ=0

(C.3)

is positive definite, and letσ be an arbitrary function inK0. Then there exists a unique
pair of elements(a, b) ∈ K0 × K such that

(i) f(z) = b(z)/a(z) ∈ H∞ with ‖f‖∞ ≤ γ

(ii) f(zk) = wk, k = 0, 1, . . . , n, and

(iii) |a(z)|2 − γ−2|b(z)|2 = |σ(z)|2 for z ∈ T,

whereT := {z : |z| = 1}. Conversely, any pair(a, b) ∈ K0 × K satisfying (i) and (ii)
determines, via (iii), a uniqueσ ∈ K0. Moreover, the optimization problem

min K
γ
|σ|2(f) s.t. f(zk) = wk, k = 0, . . . , n

has a unique solutionf that is precisely the uniquef satisfying conditions (i), (ii) and (iii).

The essential content of this theorem is that the class of interpolants satisfying‖f‖∞ ≤
γ may be parameterized in terms of the zeros ofσ, and that these zeros are the same as
the spectral zerosof f ; i.e., the zeros of the spectral outer factorw(z) of w(z)w∗(z) =
γ2 − f(z)f∗(z), wheref∗(z) = f(z̄−1).

Let ‖f‖ =
√

〈f, f〉 denote the norm in the Hilbert spaceH2(D) with inner product

〈f, g〉 =

∫ π

−π

f(eiθ)g(eiθ)
dθ

2π
.
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As the boundγ tend to infinity,

−γ2 log(1 − γ−2|f |) → |f |2.

Therefore, the entropy functionalK
γ
|σ|2(f) converge to the weightedH2 norm‖σf‖2.

Proposition C.2. Letf ∈ H∞(D) andσ be rational functions withσ outer. Then

(i) K
γ
|σ|2(f) is a non-increasing function ofγ, and,

(ii) K
γ
|σ|2(f) → ‖σf‖2 asγ → ∞.

Proof. It clearly suffices to consider onlyγ ≥ ‖f‖∞. Then the derivative of−γ2 log(1 −
γ−2|f |2) with respect toγ is non-positive for|f | ≤ γ, and henceKγ

|σ|2(f) is non-increasing.
To establish (ii), note that

−γ2 log(1 − γ−2|f |2) = |f |2 +O(γ−2|f |2),

and therefore
−|σ|2γ2 log(1 − γ−2|f |2) → |σf |2

pointwise inT except forσ with poles inT. There are two cases of importance. First,
if σ has no poles inT, or if a pole ofσ coincided with a zero off of at least the same
multiplicity, then−|σ|2γ2 log(1 − γ−2|f |2) is bounded, and (ii) follows from bounded
convergence. Secondly, ifσ has a pole inT at a point in whichf does not have a zero, then
bothK

γ
|σ|2(f), and‖σf‖2 are infinite for anyγ.

The condition‖f‖∞ < ∞ is needed in Proposition C.2. Otherwise, if‖f‖∞ = ∞,
thenK

γ
|σ|2(f) is infinite for anyγ, while ‖σf‖2 may be finite ifσ has zeros in the poles of

f onT.
The next proposition shows that stable interpolation may beseen as the limit case of

bounded interpolation when the boundγ tend to infinity.

Proposition C.3. Letσ be any outer function such that the minimizerf of

min ‖σf‖ subject tof(zk) = wk, k = 0, . . . , n (C.4)

satisfies‖f‖∞ <∞. Letfγ be the minimizer of

min K
γ
|σ|2(fγ) subject tofγ(zk) = wk, k = 0, . . . , n

for γ ∈ R+ large enough so that the Pick matrix(C.3) is positive definite. Then‖σ(f −
fγ)‖ → 0 asγ → ∞.

Proof. By Proposition C.2, and sincef andfγ are minimizers of the respective functional,
we have

K
γ
|σ|2(f) ≥ K

γ
|σ|2(fγ) ≥ ‖σfγ‖

2 ≥ ‖σf‖2.

Moreover, sinceKγ
|σ|2(f) → ‖σf‖2 asγ → ∞ it follows that ‖σfγ‖2 → ‖σf‖2, and

hence, by Lemma C.8, we have‖σ(f − fγ)‖ → 0 asγ → ∞, as claimed.
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Note that Proposition C.3 holds for anyσ which is outer and not only forσ ∈ K0.
However, ifσ ∈ K0, thendeg fγ ≤ n for anyγ. Therefore, since‖σ(f − fγ)‖ → 0 as
γ → ∞, for σ ∈ K0 the minimizerf of (C.4) will be a stable interpolant of degree at most
n. We will return to this in the next section.

It is interesting to note how concepts in the two types of interpolation are related. First
of all, the weightedH2 norm plays the same role in stable interpolation as the entropy
functional does in bounded interpolation. Secondly, the spectral zeros, which play a major
role in degree constrained bounded interpolation, simply correspond to the poles in stable
interpolation. This may be seen from (iii) in Theorem C.1.

C.3 Rational interpolation and H2 minimization

In the previous section we have seen that minimizers of a specific class ofH2 norms are
stable interpolants of degree at mostn. This, and also the fact that this class may be
parameterized byσ ∈ K0 can be proved using basic Hilbert space concepts. This will be
done in this section.

To this end, first consider the minimization problem

min ‖f‖ subject tof(zk) = wk, k = 0, . . . , n, (C.5)

without any weightσ. Let f0 ∈ H2(D) satisfy the interpolation condition (C.1). Then any
f ∈ H2(D) satisfying (C.1) can be written asf = f0 + v, whereB =

∏n
k=0

zk−z
1−z̄kz

and
v ∈ BH2. Therefore, (C.5) is equivalent to

min
v∈BH2

‖f0 + v‖.

By the Projection Theorem (see, e.g., [13]), there exists a unique solutionf = f0 + v to
this optimization problem, which is orthogonal toBH2, i.e. f ∈ K := H2 ⊖BH2.

Conversely, iff ∈ K andf(zk) = wk, for k = 0, . . . , n, thenf is the unique solution
of (C.5). To see this, note that any interpolant inH2(D) may be written asf + v where
v ∈ BH2. However, sincev ∈ BH2 ⊥ K ∋ f , we have‖f + v‖2 = ‖f‖2 + ‖v‖2, and
hence the minimizer isf , obtained by settingv = 0.

We summarize this in the following proposition.

Proposition C.4. The unique minimizer of(C.5)belongs toK. Conversely, iff ∈ K and
f(zk) = wk, for k = 0, . . . , n, thenf is the minimizer of(C.5).

Consequently, in view of (C.2),f is a rational function with its poles fixed in the
mirror images (with respect to the unit circle) of the interpolation points. By introducing
weighted norms, any interpolant with poles in prespecified points may be constructed in a
similar way. In fact, the set of interpolantsf of degree≤ n may be parameterized in this
way. One way to see this is by considering

min ‖σf‖ subject tof(zk) = wk, k = 0, . . . , n, (C.6)
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whereσ ∈ K0. Sinceσ is invertible inH(D), (C.6) is equivalent to

min ‖σf‖ subject to(σf)(zk) = σ(zk)wk, k = 0, . . . , n.

According to Proposition C.4, this has the optimal solutionσf = b ∈ K, and hence the
solution of (C.6),f = b

σ , is rational of degree at mostn. To see that any solution of
degree at mostn can be obtained in this way, note that any such interpolantf is of the
form f = b

σ , b ∈ K, σ ∈ K0. Sinceσf = b ∈ K holds together with the interpolation
condition (C.1) if and only ifσ(zk)f(zk) = σ(zk)wk for k = 0, . . . , n, f is the unique
solution of (C.6), by Proposition C.4. This proves the following theorem.

Theorem C.5. Letσ ∈ K0. Then the unique minimizer of

min ‖σf‖ subject tof(zk) = wk, k = 0, . . . , n, (C.7)

belongs toH(D) and is rational of a degree at mostn. More precisely,

f =
b

σ
(C.8)

whereb ∈ K is the unique solution of the linear system of equations

b(zk) = σ(zk)wk, k = 0, 1, . . . , n. (C.9)

Conversely, iff satisfies(C.8) for someb ∈ K and the interpolation condition(C.1)holds,
thenf is the unique minimizer of(C.7).

In other words, the set of interpolants inH(D) of degree at mostn may be param-
eterized in terms of weightsσ ∈ K0. Another way to look at this is that the poles of
the minimizer (C.8) are specified by the zeros ofσ and that the numeratorb = β/τ is
determined from the interpolation condition by solving thelinear system of equations

β(zk) = τ(zk)σ(zk)wk, k = 0, 1, . . . , n (C.10)

for then + 1 coefficientsβ0, β1, . . . , βn of the polynomialβ(z). This is a Vandermonde
system have a unique solution (as long as the interpolation pointszo, z1, . . . , zn are distinct
as here).

Note that this parameterization is not necessarily injective. If, for example,wk = 1
for k = 0, . . . , n, then there is a unique functionf of degree at mostn that satisfies
f(zk) = wk, k = 0, . . . , n. No matter howσ ∈ K0 is chosen,b = σ, and hence the
minimizer of (C.6) will bef ≡ 1.

C.4 The inverse problem

In [12] we considered theinverse problem of analytic interpolation; i.e., the problem of
choosing an entropy functional whose unique minimizer is a prespecified interpolant. In
this section we will consider the counterpart of this problem for stable interpolation. To this
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end, let us first introduce the subclassHQ(D) of log-integrable analytic functions inH(D)
for which the inner part is rational. In particular, the class of rational analytic functions
belong toHQ(D).

Supposef ∈ HQ(D) satisfies the interpolation condition (C.1). Then, when does there
existσ which is outer such thatf is the minimizer of

min ‖σf‖ subject tof(zk) = wk, k = 0, . . . , n?

We refer to this as theinverse problem ofH2 minimization, and its solution is given in the
following theorem.

Theorem C.6. Let f ∈ HQ(D) satisfy the interpolation conditionf(zk) = wk, k =
0, . . . , n. Thenf is the minimizer of

min ‖σf‖ subject tof(zk) = wk, k = 0, . . . , n, (C.11)

whereσ is outer if and only ifσf ∈ K, in which case the minimizer is unique. Such aσ
exists if and only iff has no more thann zeros inD.

Proof. The functionf is the minimizer of (C.11) if and only ifb = σf is the minimizer
(necessarily unique) of

min ‖b‖ subject tob(zk) := wkσ(zk), k = 0, . . . , n,

which, by Proposition C.4, holds if and only ifσf = b ∈ K. Such aσ only exists if
f has less or equal ton zeros insideD. To see this, first note that, iff has more than
n zeros inD, thenσf has more thann zeros inD and can therefore not be of the form
p/τ with p ∈ Pol(n). On the other hand, iff has less or equal ton zeros inD, then let
p =

∏

(z − pk) wherepk are the zeros off , and setσ := p
fτ . Thenσ is outer and satisfies

σf ∈ K.

Theorem C.6 defines a mapϕ that sendsσ to the unique minimizerf of the optimiza-
tion problem (C.11); i.e.,

σ 7→ f = ϕ(σ). (C.12)

LetWf denote the set of weightsσ that givef as a minimizer of (C.11); i.e., the inverse
imageϕ−1(f) of f . By Theorem C.6,

Wf := ϕ−1(f) = {σ outer : σf ∈ K} (C.13)

=

{

σ =
p

fτ
: p ∈ Pol(n) r {0},

p

f
outer

}

,

i.e.,Wf may be parameterized in terms of the polynomialsp ∈ Pol(n). For the condition
thatpf−1 is outer to hold for somep ∈ Pol(n), it is necessary thatf has at mostn zeros
in D. This is in accordance with Theorem C.6. It is interesting tonote that the dimension
of Wf depends on the number of zeros off insideD. The more zerosf has insideD, the
more restricted is the classWf . One extreme case is whenf has no zeros insideD. Then
p could be any stable polynomial of degreen. The other extreme is whenf hasn zeros in
D, in which casep is uniquely determined up to a multiplicative constant.
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C.5 Rational approximation with interpolation constraint s

In this section the solution of the inverse problem (TheoremC.6) will be used to develop
an approximation procedure for interpolants. Letf ∈ HQ(D) be a function satisfying the
interpolation condition (C.1). We want to construct another functiong ∈ HQ(D) of degree
at mostn satisfying the same interpolation condition such thatg is as close as possible to
f .

Let σ ∈ Wf ; i.e., letσ be a weight and such thatf is the minimizer of (C.11), and let
ρ be close toσ. Then it is reasonable that the minimizerg of the optimization problem

min ‖ρg‖ subject tog(zk) = wk, k = 0, . . . , n, (C.14)

is close tof . This is the statement of the following theorem.

Theorem C.7. Let f ∈ HQ(D) satisfy the interpolation conditionf(zk) = wk, k =
0, . . . , n, and letσ ∈Wf . Moreover, letρ be an outer function such that

∥

∥

∥

∥

1 −
∣

∣

∣

ρ

σ

∣

∣

∣

2
∥

∥

∥

∥

∞

= ǫ, (C.15)

and letg be the corresponding minimizer of(C.14). Then

‖σ(f − g)‖2 ≤
4ǫ

1 − ǫ
‖σf‖2. (C.16)

For the proof we need the following lemma.

Lemma C.8. Let letg ∈ HQ(D) satisfyg(zk) = wk for k = 0, . . . , n, and letf be the
minimizer of(C.11). Then, if

‖σg‖2 ≤ (1 + δ)‖σf‖2,

we have

‖σ(f − g)‖2 ≤ 2δ‖σf‖2.

Proof. From the parallelogram law we have,

1

2

(

‖σf‖2 + ‖σg‖2
)

=

∥

∥

∥

∥

σ
f + g

2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

σ
f − g

2

∥

∥

∥

∥

2

.

Therefore, sincef is the minimizer of (C.11), and hence‖σf‖ ≤ ‖σ(f + g)/2‖, it follows
that

‖σ(f − g)‖2 ≤ 2(‖σg‖2 − ‖σf‖2) ≤ 2δ‖σf‖2,

which concludes the proof of the lemma.
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Proof of Theorem C.7:In view of (C.15) we have

(1 − ǫ)|σ(eiθ)|2 ≤ |ρ(eiθ)|2 ≤ (1 + ǫ)|σ(eiθ)|2

for all θ ∈ [−π, π]. Therefore, sinceg is the minimizer of (C.14), by (C.15), we have

‖σg‖2 ≤
1

1 − ǫ
‖ρg‖2 ≤

1

1 − ǫ
‖ρf‖2 ≤

1 + ǫ

1 − ǫ
‖σf‖2 = (1 + δ)‖σf‖2,

whereδ := 2ǫ/(1−ǫ). Consequently (C.16) follows from Lemma C.8.

We have thus shown that if
∣

∣

∣

ρ(z)
σ(z)

∣

∣

∣ is close to1 for z ∈ T, then‖σ(f − g)‖ is small.

This suggests the following approximation procedure, illustrated in Figure C.1. By The-
orem C.5, the functionϕ, defined by (C.12), maps the subsetK0 into the space of inter-
polants of degree at mostn. In Figure C.1 these subsets are depicted by fat lines. The basic
idea is to replace the hard problem of approximatingf by a functiong of degree at mostn
by the simpler problem of approximating an outer functionσ by a functionρ ∈ K0.

ρ σ

K0

g f

ϕ

Interpolants of degree≤ n

Figure C.1: The mapϕ sending weighting functions to interpolants.

Theorem C.7 suggests various strategies for choosing the functionsρ ∈ K0 andσ ∈
Wf depending on the design preferences. If a small error bound for ‖σ(f − g)‖ is desired
for a particularσ ∈ Wf , thisσ should be used together with theρ ∈ K0 that minimizes
(C.15).

However, obtaining a small value of (C.15) is often more important than the choice
of σ. Therefore, in general it is more natural to choose the pair(σ, ρ) ∈ (Wf ,K0) that
minimizesǫ. For such a pair, settingq := τρ, we can be see from (C.2) and (C.13) that

ǫ =
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∥
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∞

, (C.17)
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whereq ∈ Pol(n) andp ∈ Pol(n) r {0} needs to be chosen so thatp/f is outer. It is
interesting to note that (C.17) is independent ofτ(z) :=

∏n
k=0(1 − z̄kz) and hence of the

interpolation pointsz0, z1, . . . , zn.
Now suppose thatf hasν zeros inD; i.e.,ν nonminimum-phase zeros. Thenf = πf0,

wheref0 is outer (minimum phase) andπ is an unstable polynomial of degreeν ≤ n.
Settingp = πp0, our optimization problem to minimizeǫ reduces to the problem to find a
pair (p0, q) ∈ Pol(n− ν) × Pol(n) that minimizes

ǫ =

∥

∥

∥

∥

∥

1 −

∣

∣

∣

∣

qf0
p0

∣

∣

∣

∣

2
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∥

∥

∞

(C.18)

for a given nonminimum-phasef0. This is a quasi-convex optimization problem, which
can be solved as described in the Appendix (see also [20, 21]). The optimalq yields the
optimalρ = q/τ . The approximantg is then obtained by solving the optimization problem
(C.14) as described in Theorem C.5.

One should note that, the more zerosf has insideD, the smaller is the choice ofp.
Therefore one expects approximations of non-minimum phaseplants to be worse than
approximations of plants without unstable zeros.

C.6 Rational approximation

In applications where there are no a priori interpolation constraints, the choice of interpo-
lation points serve as additional design parameters. It is then important to choose them
so that a good approximation is obtained. The main strategy previously used is to chose
interpolation points close to the regions of the unit circlewhere good fit is desired. The
closer to the unit circle the points are placed, the better fit, but the smaller is the region
where good fit is ensured; see [8] for further discussions on this. However, in this paper
we shall provide a systematic procedure for choosing the interpolation points, based on
quasi-convex optimization.

As we have seen in the previous section the choice of interpolation points does not
affectǫ given by (C.17). However, sinceσ = p

fτ , the weightedH2 error bound (C.16) in
Theorem C.7 becomes

∥

∥

∥

∥

p

τ

f − g

f

∥

∥

∥

∥

2

≤
4ǫ

1 − ǫ

∥

∥

∥

p

τ

∥

∥

∥

2

,

which depends onτ and hence on the choice of interpolation points. In fact, this is a
weighedH2 bound on the relative error(f − g)/f . If a specific part of the unit circle
is of particular interest, interpolation points may be placed close to that part, which gives
a bound on the weighted relative error with high emphasis on that specific region. (For
a method to do this by convex optimization, see Remark C.3 in the next section.) If no
particular part is more important than the rest, we suggest to selectτ as the outer part ofp;
i.e., |τ(z)| = |p(z)| for z ∈ T. This gives a natural choice of interpolation points that are
the mirror images of the roots ofτ . Furthermore, this choice gives the relative error bound
‖(f − g)/f‖ ≤ 4ǫ/(1 − ǫ). This is summarized in the following theorem.
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Theorem C.9. Let p andq be polynomials of degrees at mostn such thatpf−1 is outer,
and set

ǫ :=

∥

∥

∥

∥

∥
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∣

∣

qf

p

∣
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∥

∥

∞

. (C.19)

Let z0, z1, . . . , zn ∈ D and let

g = arg min ‖ρg‖ subject tog(zk) = f(zk), k = 0, . . . , n,

whereρ = q/τ andτ =
∏n
k=0(1 − z̄kz). Thendeg g ≤ n and

∥

∥

∥

∥

p

τ

f − g

f
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2

≤
4ǫ
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∥

p

τ

∥

∥

∥

2

. (C.20)

In particular, if the interpolation pointsz0, z1, . . . , zn are chosen so that|τ(z)| = |p(z)|
for z ∈ T, then

∥

∥

∥

∥

f − g

f

∥

∥

∥

∥

2

≤
4ǫ

1 − ǫ
. (C.21)

RemarkC.1. Note that the choice|τ | = |p| in Theorem C.9 implies that the unstable zeros
of f become interpolation points. Therefore, forǫ < 1, (f − g)/f belongs toH2.

RemarkC.2. Our method requires that we choosen to be greater than or equal to the
number of unstable zeros. This is a natural design restriction, since the approximation
problem becomes more difficult the larger is the number of unstable zeros. It should be
noted that other methods for which there is a bound for the relative error, such as balanced
stochastic truncation or Glover’s relative error method (see, e.g., [10]), will not work either
if the number of unstable zeros exceedsn. In fact, in such a case the corresponding phase
function will have more thann Hankel singular values equal to1, and therefore the bound
will be infinite, and the problem to minimize‖(f − g)/f‖∞ over allg of degree at most
n will have the optimal solutiong ≡ 0. Also note that, unlike these methods, our method
does not requiref to be rational.

C.7 The computational procedure and some illustrative examples

Next we summarize the computational procedure suggested bythe theory presented above
and apply it to some examples.

Given a functionf ∈ HQ(D) with at mostn zeros inD, we want to construct a function
g ∈ HQ(D) of degree at mostn that approximatesf as closely as possible. We consider
two versions of this problem. First we assume thatf satisfies the interpolation condition
(C.1), and we requireg to satisfy the same interpolation conditions. Secondly, werelax the
problem by removing the interpolation constraints.

Suppose thatf hasν ≤ n zeros inD. Thenf = πf0, wheref0 is minimum-phase, and
π is a polynomial of degreeν with zeros inD. The approximantg can then be determined
in two steps:
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(i) Solve the quasi-convex optimization problem to find a pair (p0, q) ∈ Pol(n− ν) ×
Pol(n) that minimizes (C.18), as outlined in the Appendix. This yields optimalǫ, p0 and
q. Setp := πp0.

(ii) Solve the optimization problem (C.14) withρ = q/τ , as described in Theorem C.5.
Exchangingσ for ρ in (C.10) we solve the Vandermonde system

β(zk) = q(zk)wk, k = 0, 1, . . . , n,

for theβ ∈ Pol(n), which yields

g =
β

q
(C.22)

and the bound (C.20), whereτ(z) :=
∏n
k=0(1 − z̄kz).

For the problem without interpolation condition, before step (ii) we chose the interpo-
lation points in one of the following ways.

(ii) ′ Choosez0, z1, . . . , zn arbitrarily, or as in Remark C.3 below. This yields a solution
(C.22) and a bound (C.20).

(ii) ′′ Choosez0, z1, . . . , zn so thatτ is the outer (minimum-phase) factor ofp. This
yields a solution (C.22) and the bound (C.21) for the relativeH2 error.

RemarkC.3. If a bound on the weighted error‖w(f−g)‖ is desired in Step (ii)′, it is natural
to chooseτ (which specify the interpolation points) so thatpτf is as close tow as possible.
This may be done by solving the convex optimization problem to find aτ ∈ Pol(n) that
minimizes
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,

as in the Appendix. If instead we need a bound on the weighted relative error‖w(f −
g)/f‖, we modify the optimization problem accordingly.

Next, we apply these procedures to some numerical examples.

C.7.1 Model reduction with and without interpolation constraints

Example C.1. Let

f(z) =
b(z)

a(z)
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Figure C.2: Poles and zeros off in Examples1 and2.

be the stable system of order13 given by

b(z) = 30z13 + 90z12 + 128.6z11 + 114.6z10

−137.4z9 − 322.3z8 − 371.4z7 + 10.8z6

+1005.8z5 + 2428.7z4 + 3967.0z3 + 4189.7z2

+2800.6z + 726.2,

a(z) = 4.0z13 − 13.4z12 − 44.2z11 − 144.5z10

+83.5z9 + 363.7z8 + 791.4z7 + 340.1z6

+770.7z5 + 877.3z4 − 93.6z3 − 4767.8z2

−6349.3z − 4532.7.

This system has one minimum-phase zero. The poles and zeros are given in Figure C.2.
Consider the problem to approximatef by a functiong of degree six while preserving

the values in the points(z0, z1, . . . , zn) = (0, 0.3, 0.5,−0.1,−0.7,−0.3± 0.3i). Such an
interpolation condition occurs in certain applications.

Step (i) to solve the quasi-convex optimization problem to minimize (C.18) yields op-
timal ǫ, p andq, and Step (ii) the approximantg, the Bode plot of which is depicted in
Figure C.3 together with that off . The third subplot in the picture shows the relative error

∣

∣

∣

∣

f(eiθ) − g(eiθ)

f(eiθ)

∣

∣

∣

∣

for θ ∈ [0, π].
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Figure C.3: Bode plots off andg together with the relative error.

It is important to note that the functiong, which is guaranteed to be stable, satisfies the
prespecified interpolation conditions and the error bound (C.20). Figure C.3 shows thatg
matchesf quite well.

Example C.2. Next we approximate the functionf in Example 1 without imposing any
interpolation condition. Forn = 4, 6 and8 we determine an approximantgn of degree
n via Steps (i) and (ii)′′. This approximant satisfies the relative error bound (C.21). Then
we comparegn to an approximant̂fn of the same degree obtained by balanced truncation
[19, 24].

Since balance truncation imposes a bound on the absolute, rather than the relative,
error, it is reasonable to also compare it with the approximanthn of degreen obtained by
stochastically balanced truncation [22, 18], which comes with a relative error bound.

The respective Bode plots and relative errors for the three methods are depicted in
Figures C.4, C.5, and C.6. Stochastically balanced truncation gives the best approximation
close to the valleys of the plant, and balanced truncation gives best approximation close to
the peaks. The proposed method performs somewhere in between and has a more uniform
relative error. In fact, as can be seen from Figure C.5 and Figure C.6, it is the method with
the smallest relativeL∞-error forn = 6 andn = 8. As can be seen in the following tables,
listing the relative and absolute errors of the three methods, the approximants of roughly
the same quality.
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RelativeL2 Error Degree
Approximation method 4 6 8
Proposed method 0.4736 0.0764 0.0194
Balanced truncation 0.4727 0.0785 0.0220
Stoch. Bal. truncation 0.7958 0.0656 0.0334

H2 Error Degree
Approximation method 4 6 8
Proposed method 0.1918 0.0422 0.0100
Balanced truncation 0.0746 0.0451 0.0057
Stoch. Bal. truncation 0.3073 0.0506 0.0213

In the present example, the error bound (C.21) is quite conservative. In fact, the bound
is 10.4735, 0.8765, and0.3994, for n equal to4, 6, and8 respectively, which should be
compared with the corresponding errors in the table. By comparison, the relativeL∞

bound onhn is 3.9288, 0.3562, and0.0573 for n equal to4, 6, and8 respectively, which is
also conservative forn = 4, 6. Although these bounds are measured in different norms, it
is still interesting to compare them. How to improve our bound will be subject to further
studies.

In Figure C.7 the approximantg from Example 1 is compared tog6. The interpolation
points forg6 are chosen according to (ii)′′, and the interpolation condition ofg is prespec-
ified. It can be seen from Figure C.7 thatg6 matchesf better than doesg. This is because
the interpolation points could be chosen freely forg6.

RemarkC.4. Note that stable approximation could be done iteratively bysolving a non-
convex optimization directly by gradient methods to find local optima; see e.g. [14] and
references therein. With a sufficiently good starting point, a global optimum could be ob-
tained. Using such methods for the present example, it is possible to find approximants of
degrees4, 6, and8 with relative errors that compare favorable to all the abovemethods.
However, our method is based on convex and quasi-convex optimization, and thus does not
rely on a good starting point, which is often difficult to find.It will be subject to further
research to investigate in which way optimal approximations of weights relate to optimal
approximations of interpolants.

C.7.2 Sensitivity shaping in robust control

Finally, we apply our approximation procedure to loop-shaping by low-degree controllers
in robust control, where interpolation conditions are needed to ensure internal stability.
Given a plantP , a controller is often designed by shaping the sensitivity function

S =
1

1 − PC
,

whereP andC are the transfer functions of the plant and the controller respectively. In
fact, the design specifications may often be translated intoconditions on the sensitivity
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Figure C.4: Bode plot off , g4, f̂4, andh4 together with the relative errors.
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Figure C.5: Bode plot off , g6, f̂6, andh6 together with the relative errors.
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Figure C.6: Bode plot off , g8, f̂8, andh8 together with the relative errors.
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Figure C.7: Bode plot off , g6, andg together with the relative errors.
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function. For internal stability of the closed loop system,the sensitivity functionS needs
to satisfy the following properties:

(i) S is analytic inC+ (continuous time) or inDc, whereDc := {z | |z| ≥ 1}, (discrete
time),

(ii) S(zk) = 1 wheneverzk is an unstable zero ofP ,

(iii) S(pk) = 0 wheneverpk is an unstable pole ofP .

Furthermore, in general we require that

(iv) S has low degree, and

(v) S satisfies additional design specifications.

The degree bound onS is important for several reasons. In fact, a low-degree sensitivity
function results in a low-degree controller (see e.g., [16]), and, in some applications, the
degree of the sensitivity function is important in its own right. A case in point is an autopi-
lot, for which the feedback system itself is to be controlled. Conditions (i)-(iv) do not in
general uniquely specifyS, so the additional freedom can be utilized to satisfy additional
design specifications (v).

Example C.3. As a simple example, also illustrating rational approximation of a nonra-
tional function, consider sensitivity shaping of a feedback system with the plantP (z) =
(z − 2)−1. SinceP has an unstable pole atz = 2 and an unstable zero atz = ∞, the sen-
sitivity function must satisfyS(∞) = 1 andS(2) = 0. Then the functionf(z) := S(z−1)
is analytic inD, and satisfies

f(0) = 1 andf(1/2) = 0. (C.23)

Now, suppose we want to find a rational sensitivity functionSn of degreen that preserves
internal stability and that approximates an ideal sensitivity function Sid with the spline-
formed shape in bold in Figure C.8. The shape is originally given as a positive functionW
on the unit circle, and a normalizing factorρ > 0 needs to be chosen so that|Sid(e

iθ)| =
ρW (eiθ) for θ ∈ [−π, π]. An outer functionh having the prescribed shape is given by

h(z) = exp

[

1

2π

∫ π

−π

eiθ + z

eiθ − z
logW (e−iθ)dθ

]

(see, e.g., [11, p. 62]). Now, define the function

f(z) = ρ
z − 1

2

1 − 1
2z
h(z),

whereρ is selected so thatf(0) = 1. Thenf is analytic inD and satisfies the interpolation
conditions (C.23), andSid(z) = f(z−1). Clearly,f is nonrational andSid represents a
infinite-dimensional system.1

1For a systematic procedure to determineSid from W for general interpolation constraints, see [12].
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Figure C.8: Approximations of degree1, 2, and3

By using the computational procedure in the beginning of thesection, we determine the
approximantsgn of f of degreesn = 1, 2 and3 which satisfy the interpolation conditions
(C.23). More precisely,g1 is determined via steps (i) and (ii), whereas, forg2 andg3, we
need to add one or two extra interpolation points and use (i) and (ii)′. That is,z0 = 0 and
z1 = 1/2, andz2 andz2, z3, respectively, are determined as in Remark C.3 withw := f−1.

The magnitudes of the corresponding sensitivity functionsS1, S2 andS3, obtained
from Sn(z) = gn(z

−1), are depicted in Figure C.8. The degree of the controller corre-
sponding to the approximantS3 is two.

Example C.4. In [7] the problem of shaping the sensitivity function of a flexible beam
with transfer function

P (s) =
−6.4750s2 + 4.0302s+ 175.770

s(5s3 + 3.5682 + 139.5021s+ 0.09290)

is considered, and a controller is sought so that the sensitivity function is close to

Sid =
s(s+ 1.2)

s2 + 1.2s+ 1
,

whose Bode plot is depicted in Figure C.9. The plantP has an unstable zero in5.5308, a
pole at0 and has relative degree2. For the controller to be strictly proper and the closed
loop system to be internally stable, the interpolation condition

S(5.5308) = S(∞) = 1,

S(0) = S(∞)′ = S(∞)′′ = 0,
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Figure C.9: Bode plot ofSid andS

needs to be satisfied.
In order to apply our theory as presented in this paper, we first transform the domain of

the problem fromC+ to D, using the bilinear transformation

s→ z =
s0 − s

s0 + s
, wheres0 = 3.1.

The constants0 = 3.1 is chosen the corresponding bilinear transformation maps the area
of interest,0.1i to 100i, onto a large part of the unit circle. Choosings0 too small or too
large might cause numerical problems. This yields

fid(z) = Sid

(

s0
1 − z

1 + z

)

,

and the problem is then to find a stable functiong that is close tofid(z) and which satisfies
the constraints

g(−0.2816) = g(−1) = 1,
g(1) = g(−1)′ = g(−1)′′ = 0.

(C.24)

However,fid does not satisfy the constraints (C.24), and therefore the method in Sec-
tion C.5 does not directly apply. Instead we would like to findan approximationf of fid
which satisfies the interpolation constraints, and then apply the degree reduction method
onf .

Note that it is impossible to obtain an analytic functionf which simultaneously satisfies
the interpolation condition (C.24) and the criterion|f(z)| ≤ |fid(z)| for z ∈ T. If such a
functionf did exist, thenB := f/fid would be analytic inT and bounded by one onT.
However,

B(−0.2816) = f(−0.2816)/fid(−0.2816) = 1.0269 > 1,
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and henceB violates the maximum principle. Therefore we need to be content with a
functionf which satisfies|f(z)| ≤ |fid(z)|(1 + ǫ) for z ∈ T with someǫ > 0.0269.

If all the interpolation points off were inD, a straightforward method would be to take
f as the minimizer of

∥

∥

∥

∥

f(z)

fid(z)

∥

∥

∥

∥

∞

subject to (C.24).

Then we would havef = fidBα, whereB is a Blaschke product andα > 0. But, since
there are interpolation points on the boundary, a slightly larger region of analyticity need
to be considered.

Note thatfid is analytic in(1 + δ)D := {(1 + δ)z : |z| < 1} for 0 < δ < 0.44, and let
f be the function that minimizes

∥

∥

∥

∥

f(z)

fid(z)

∥

∥

∥

∥

H∞((1+δ)D)

subject tof satisfying the constraints (C.24). Now, for anyǫ > 0.0269 one can find a

δ > 0 so that
∥

∥

∥

f(z)
fid(z)

∥

∥

∥

∞
≤ 1 + ǫ. We chooseǫ = 0.05, and for thisǫ, δ = 0.05 works.

Then the functionf satisfies|f(z)| ≤ 1.05|fid(z)| for z ∈ T, and, since (C.24) holds
for f it is possible to follow the steps (i) and (ii) to reduce the degree off to 4. That is, let
(ρ, σ) ∈ K0 ×Wf be the minimizer of

∥

∥

∥

∥

1 −
∣

∣

∣

ρ

σ

∣

∣

∣

2
∥

∥

∥

∥

∞

,

and letg be the unique function satisfying (C.24) andρg ∈ K. Finally we transform the
domain back to the continuous-time setting via

z → s = s0
1 − z

1 + z
,

whcih givesS(s) = g
(

s0−s
s0+s

)

as depicted in Figure C.10.

Note that since there are interpolation points on the boundary, the relativeH2 bound is
not meaningful. In fact,σ has poles in−1 that are not cancelled by zeros off , and hence
the right hand side of

‖σ(f − g)‖2 ≤
4ǫ

1 − ǫ
‖σf‖2.

will be infinite, rendering the inequality trivial. How to deal with interpolation points on
the boundary in a more rigorous way will be the subject of further research.

RemarkC.5. It is worth noting that if the main concern is a low order controller, one
can consider a larger class of sensitivity functions with a possibility of better design. For
clairity of presentation we will consider a discrete-time plant P . Briefly, we recall from
[16] that

degC ≤ degP + deg S − np − nz
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Figure C.10:Bode plot ofSid andS

wherenp andnz are the number of unstable zeros and poles respectively of the plantP .
Since the theory guarantees thatdeg S ≤ np + nz − 1, the degree of the controller is less
than the degree of the plantP . We then factor the transfer function of the plant into a stable
and an unstable part as(βuβs)/(αuαs), whereβu andαu have roots inD, andβs andαs
have roots inDC . The idea is to use our knowledge about the stable part of the plant to
construct a larger class of sensitivity functions for whichthe controller order is the same.
Let

Kαs
=

{

σ =
b

ταs
, b ∈ Pol(n+ degαs), σ outer

}

,

where

τ(z) =

nz
∏

k=1

(1 − z̄kz)

np
∏

k=1

(1 − z̄pz).

Now for anyσ ∈ Kαs
the minimizer of

min ‖σS‖ subject to

{

S(zk) = 1, k = 0, . . . , nz
S(pk) = 0, k = 0, . . . , np,

is of the formS = αsa
b , wherea ∈ Pol(n). Due to the interpolation constraints we have

αu|a andβu|(αsa− b), and hence

C =
S − 1

PS
=
αu(αsa− b)

βuβsa
=

αsa−b
βu

βsa
αu

,
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whereαsa−b
βu

and βsa
αu

are polynomials. Moreover, sincedegαu + deg βu = n, we have

deg
αsa− b

βu
≤ n+ degαs − deg βu = degαs + degαu

deg
βsa

αu
≤ n+ deg βs − degαu = deg βs + deg βu.

This shows that any choice ofσ in the classKαs
will produce a controller of a degree

less than the degree of the plant. By utilizing the stable part of the plant, we have shown
that chosing sensitivity functions from a larger class willnot increase the degree of the
controller.

C.8 Concluding remarks

This paper presented a new theory for stability-preservingmodel reduction (for plants that
need not be minimum-phase) that can also handle prespecifiedinterpolation conditions
and comes with error bounds. We have presented a systematic optimization procedure for
choosing appropriate weight (and, if desired, interpolation points) so that the minimizer of
a corresponding weightedH2 minimization problem both matches the original system and
has low degree.

The study of theH2 minimization problem is motivated by the relation between theH2

norm and the entropy functional used in bounded interpolation. Therefore, new concepts
derived in this framework are useful for understanding entropy minimization. In fact, the
degree reduction methods proposed in this paper easily generalize to the bounded case; see
[12] for the method which preserves interpolation conditions. We are currently working on
similar bounds for the positive real case; also, see [8].

C.9 Appendix

A quasi-convex optimization problem is an optimization problem for which each sublevel
set is convex. The optimization problem to minimize (C.19),wherep andq are polynomials
of fixed degree is quasi-convex. For simplicity, we assume that f is real and hence thatp
andq are real as well.

As a first step, consider thefeasibility problemof finding a pair(p, q) of polynomials
satisfying

∥

∥

∥

∥

∥

1 −

∣

∣

∣

∣

qf

p

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

∞

≤ ǫ (C.25)

for a givenǫ, or, equivalently,

−ǫ|p(eiθ)|2 ≤ |p(eiθ)|2 − |q(eiθ)f(eiθ)|2 ≤ ǫ|p(eiθ)|2
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for all θ ∈ [−π, π]. Since|p|2 and|q|2 are pseudo-polynomials, they have representations

|p(eiθ)|2 = 1 +

np
∑

k=1

pk cos(kθ),

|q(eiθ)|2 =

nq
∑

k=0

qk cos(kθ),

wherenp andnq are the degree bounds onp andq respectively, and the first coefficient in
|p|2 is chosen to be one without loss of generality. Hence (C.25) is equivalent to

−1 − ǫ ≤ (1 + ǫ)

np
∑

k=1

pk cos kθ − |f(eiθ)|2
nq
∑

k=0

qk cos kθ,

1 − ǫ ≤ (ǫ− 1)

np
∑

k=1

pk cos kθ + |f(eiθ)|2
nq
∑

k=0

qk cos kθ,

for all θ ∈ [−π, π]. There is also a requirement on1+
∑np

k=1 pk cos(kθ) and
∑nq

k=0 qk cos(kθ)
to be positive. However, ifǫ ∈ (0, 1), then the above constraints will imply positivity. The
set ofp1, p2, . . . , pnp

, q0, q1, . . . , qnq
satisfying this infinite number of linear constraints is

convex.
The most straightforward way to solve this feasibility problem is to relax the infinite

number of constraints to a finite grid, which is dense enough to yield an appropriate so-
lution. Here one must be carefully to check the positivity of1 +

∑np

k=1 pk cos(kθ) and
∑nq

k=0 qk cos(kθ) in the regions between the grid points. Another method is theEllipsoid
Algorithm, described in detail in [2].

Minimizing (C.19) then amounts to finding the smallestǫ for which the feasibility
problem has a solution. This can be done by the the bisection algorithm, as described in
[2]. Note that forǫ = 1, the trivial solutionq = 0 is always feasible.
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Localization of Power Spectra

Johan Karlsson and Tryphon Georgiou

Abstract

The purpose of this paper is to study the topology and developmetrics that allows for localiza-
tion of power spectra, based on second-order statistics. Weshow that the appropriate topology is the
weak∗-topology and give several examples on how to constuct such metrics. This allows us to quan-
tify uncertainty of spectra in an natural way and to calculate a priori bounds on spectral uncertainty,
based on second-order statistics. Finally, we study identification of spectral densities and relate this
to the tradeoff between resolution and variance of estimates.

D.1 Introduction

The estimation of power spectra of stationary time-series relies on second order statis-
tics. The premise is that these are moments of an underlying power spectral distribution
—the power spectrum. Thus, the question arises as to how muchis “knowable” about
the power spectrum from such statistics. In other words, in what ways statistics localize
the power spectrum. Traditionally, there have been “methods” that lead to specific power
spectra which, in one way or another, are consistent with therecorded data and estimated
moments. For instance, the correlogram, the periodogram, Burg’s algorithm, and the max-
imum entropy spectrum are specific such choices [12, 20]. In general, there exists a large
family of admissible power spectra. Bounding the “values” of the spectral density function
at a specific region based on knowledge of a finite set of statistics is an ill-posed problem.
The proper notion of localization is a certain weak notion ofbounding the energy over parts
of the frequency band. Thus, the goal of this paper is to studythe appropriate topology and
develop suitable metrics. These metrics allow localization of power spectra and they can
be used to quantify spectral uncertainty on the basis of estimated statistics.

A typical set of statistics for a stationary stochastic process consists of finitely many
covariance samples. Throughout, we consider such a process{yt : t ∈ Z} to be a discrete-
time, zero-mean, second-order stationary stochastic process. The covariances (equiva-
lently, autocorrelation samples)

ck := E{ytȳt−k}, for k = 0,±1,±2, . . . ,±n,

101



102 PAPER D

whereE{·} denotes the expectation operator, provide moment constraints for the power
spectrumdµ of the process:

ck =
1

2π

∫ π

−π

e−ikθdµ(θ) for k = 0,±1,±2 . . . ,±n. (D.1)

The power spectrum is a non-negative measure on the unit circle T = {z = eiθ : θ ∈
(−π, π]} which, for simplicity, we identify with the interval(−π, π]. We use the symbol
M to denote the class of such measures. The problem of determining dµ from the covari-
ance samples (finitely or infinitely many) is known as the trigonometric moment problem.
Classical theory on this problem originates in the work of Toeplitz and Carathéodory at
the turn of the 20th century and has evolved into a rather deep chapter of functional anal-
ysis and of operator theory [1, 18, 10, 5, 2]. The classical monograph by Geronimus [10]
presents a wide range of results on the asymptotic convergence of solutions to the trigono-
metric moment problem, which include the asymptotic behavior of the maximum entropy
spectrum [10, Theorem5.7] and of spectral envelops [10, Theorem5.7] (c.f. [4, 12, 8]). It
also studies at length the convergence of the correspondingspectral factors.

In the present work we attempt to address certain question ofpractical interest. Invari-
ably, the covariance samples are estimated from a finite observation record of the process,
and are known with limited accuracy. Thus, in a typical experiment, as the observation
record increases so does the accuracy and the length of the covariance estimates. In this
context, we seek quantitative metrics of spectral uncertainty that have the following prop-
erties:

1. given a finite set of covariance samples, the family of consistent power spectra has a
finite diameter,

2. the diameter of the uncertain set of power spectra shrinksto zero as the accuracy of
the covariance samples increases and as their number tends to infinity.

The latter condition is dictated by the fact that the trigonometric moment problem is known
to be determined, i.e., there is a unique power spectrum consistent with an infinite sequence
of covariances. As we will explain, the proper topology which allows for these properties to
hold is the weak∗ topology on measures (cf., [13, page8]). There is a variety of metrics that
can be used to metrize the topology, and thus, in principle, quantify spectral uncertainty.
A main contribution of this work is to present a class of metrics for which the radius of
spectral uncertainty is computable given a finite set of statistics.

In Section D.2 we review the trigonometric moment problem and discuss relevant rela-
tions with complex analysis and functional analysis. In Section D.3 derive the connection
between uncertainty sets and weak∗ continuous metrics and state the main theorem. In
Section D.4 give several examples of weak∗-continuous metrics. In Section D.5 the we
calculate the size of the uncertainty for a metric and show that it satisfies the desired limit
properties. In Section D.6 we study an identification example and in Section D.7 discuss
conclusions and further directions.
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D.2 On the trigonometric moment problem

The covariancesck, k = 0,±1,±2, . . ., of the random process{yt : t ∈ Z} are the
Fourier coefficients of the spectral measuredµ as in (D.1). These are characterized by the
non-negativity of the Toeplitz matrices [11, 12]

Tn =











c0 c−1 · · · c−n
c1 c0 · · · c−n+1

...
...

. . .
...

cn cn−1 · · · c0











,

for n = 0, 1, . . .. WhenTn ≥ 0 and singular for a particular valuen, then rank(Tn+ℓ) =
rank(Tn) for all ℓ ≥ 1. In this case,dµ is singular with respect to the Lebesgue measure
and consists of finitely many “spectral lines,” equal in number to rank(Tn) [11, page 148].
Becausedµ is a real measure,ck = c̄−k for k = 0, 1, . . ., hence we use only positive
indices and we will refer by

c0:n := (c0, c1, . . . , cn)

to the vector of the first(n+ 1) moments, and by

c := (c0, c1, . . .)

to the infinite sequence. The sequencec is said to bepositiveif Tn > 0 for all n. Similarly
c0:n is said to bepositiveif Tn > 0. Accordingly, the termnon-negativeis used when the
relevant Toeplitz matrices are non-negative definite.

As noted in the introduction, the power spectrum of a discrete-time stationary process
is a bounded non-negative measure on the unit circle. The derivative (of its absolutely con-
tinuous part) is referred to as the spectral density function, while the singular part typically
contains jumps (spectral lines) associated with the presence of sinusoidal components. In
general, the singular part may have a more complicated mathematical structure that al-
locates “energy” on a set of measure zero without the need fordistinct spectral lines [11,
page 5]. From a mathematical viewpoint such spectra are important as they represent limits
of more palatable spectra, and hence, represent a form of completion. Non-negative mea-
sures are naturally associated with analytic and harmonic functions—a connection which
has profitably been exploited in classical circuit theory inthe context of passivity. More
specifically, power spectra are, in a very precise sense, boundary limits of the (harmonic)
real parts of so-called “positive-real functions.” Below we summarize relevant concepts.

Herglotz’ theorem [1] states that ifdµ is a bounded non-negative measure onT, then

H [dµ](z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
dµ(θ)

is analytic inD := {z : |z| < 1} and the real part is non-negative. Such functions are
referred to as either “positive-real” or, as Carathèodory functions. Conversely, any positive-
real function can be represented (modulo an imaginary constant) by the above formula for
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a suitable non-negative measure. The Poisson integral of a non-negative measuredµ

P [dµ](z) :=
1

2π

∫ π

−π

Pr(t− θ)dµ(θ), z = reit,

wherePr(θ) = 1−r2

|1−reiθ|2
is the Poisson kernel, is a harmonic function which is non-

negative inD and is equal to the real part ofH [dµ](z).
We denote byC(T) the class of real valued continuous functions onT. It is quite stan-

dard that the dual space ofC(T), i.e the space of bounded linear functionalsΛ : C(T) →
R, can be identified with the space of bounded measures onT ([13, page7], [16, page 374].
This is the Riesz representation theorem, which asserts theexistence of bounded measure
dµ such that

Λ(f) =

∫

T

f(t)dµ(t)

for all f ∈ C(T). Thus, for any two measures that are different, there existsa continuous
function that the two measures integrate to different values. In other words, continuous
functions serve as “test functions” to differentiate between measures, and bounds on such
integrals define the weak∗ topology. A sequence of measuresdµn, n = 1, 2, . . ., converges
to dµ in the weak∗ topology if

∫

fdµn →
∫

fdµ for everyf ∈ C(T). The limit, when it
exists, is defined uniquely by the sequence.

Given either a positive-real functionH(z), or its real partP (z), the measuredµ such
thatH(z) = H [dµ](z) andP (z) = P [dµ](z) is uniquely determined by the limit of
P (reiθ)dθ → dµ asr → 1 in the weak∗ topology [13, page 33]. Similarly, given a positive
sequencec, the measuredµ can be determined as the limit in the weak∗ topology of finite
Fourier sums or Cesaro means [13, page 24], to which we will return in Section D.6.

D.3 Localization of power spectra

We postulate a situation where covariancesc0:n of the stochastic process{yk}k∈Z, which
has power spectrumdµ, are estimated with an absolute error bounded byǫn. Typical
assumptions on the nature of power spectra such as, autoregressive or smooth, may in
general not be justified. In the absence of such information,dµmay be any power spectrum
in the uncertainty set

Fc0:n,ǫn =

{

dµ ≥ 0 :

∣

∣

∣

∣

ck −

∫ π

−π

e−ikθdµ

∣

∣

∣

∣

< ǫn, k = 0, 1, . . . , n

}

.

In the limit, as the number of covariances increases and as the measurement errors decrease
to zero, the uncertainty set shrinks to a unique power spectrum. This is due to the fact
that an infinite limit sequencec defines a unique power spectrum, since the trigonometric
problem is determined.

Thus, we seek suitable metricsδ on the space of positive measuresM that provide a
meaningful and computationally tractable notion of “diameter”

ρδ(Fc0:n,ǫn) := sup{δ(dµ0, dµ1) : dµ0, dµ1 ∈ Fc0:n,ǫn},
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so as to quantify “modeling uncertainty” and determine the size ofFc0:n,ǫ in the appropriate
topology. The diameter should reflect shrinkage to a singelton via

ρδ(Fc0:n,ǫn) → 0 asn→ ∞, ǫn → 0. (D.2)

This condition forces the underlying metric to be weak∗ continuous, as we will se next.

Theorem D.1. The metricδ satisfies(D.2) if and only if it δ is weak∗ continuous.

Proof. See the Appendix.

We now consider the case where the finite covariance samplec0:n is known. Ifc0:n is
positive, then the uncertainty set

Fc0:n := {dµ : dµ ≥ 0, and(D.1) holds}

contains infinitely many power spectra. Ifc0:n is only non-negative, and henceTn is
singular, then the familyFc0:n consists of a single power spectrumdµ [11, page 148]. The
following two results are corollaries of Theorem D.1.

Corollary D.2. Let c be a non-negative sequence and letδ(·, ·) be a weak*-continuous
metric. Then, asn→ ∞, ρδ(Fc0:n) → 0.

Proof. The corollary follows by virtue of the fact that

Fc0:n ⊂ Fc0:n,ǫn ,

or independently from [10, §1.16] in view of Proposition D.5.

Corollary D.3. Let c0:n be a non-negative sequence such thatTn is a singular Toeplitz
matrix, and letδ(·, ·) be a weak*-continuous metric. If̂c0:n(k) (k = 1, 2, . . .) are non-
negative(n+ 1)-sequences of moments tending toc0:n, thenρδ(Fĉ0:n(k)) → 0 ask → ∞.

For an independent proof, see [15].

RemarkD.1. The total variation (
∫

|dµ0−dµ1|) is not weak∗ and therefore the conclutions
of the two corollaries would fail if this was used as the metric. To see this, note that ifc0:n

is positive, thenFc0:n contains infinitely many measures and among them at least two
singular measures with non-overlapping support, i.e., supp(dµ0) ∩ supp(dµ1) = ∅ [18].
The total variation of their difference is2c0. 2

D.4 Weak∗-continuous metrics

In general, a finite set of second order statistics cannot dictate the precise value of the power
spectrum locally. Indeed, given any finite positive sequence c0:n and anyθ0 ∈ (−π, π],
then for any valueα ≥ 0 there exists anǫ > 0 and an absolutely continuous measure
dµ = fdθ ∈ Fc0:n such that

f(θ) = α for θ ∈ (θ0 − ǫ, θ0 + ǫ).
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What can be said instead, is that the range of values

{
∫

T

gdµ : dµ ∈ Fc0:n

}

, (D.3)

for any particular test functiong ∈ C(T), is bounded. Furthermore, asn → ∞, this
range tends to zero. In fact, due to weak∗-continuity, the range of values tend to zero
for any of the scenarios in Theorem D.1 and its two corollaries. Finding the maximum
and the minimum of (D.3) is a linear programming problem on aninfinite dimensional
domain. Providedg is symmetric around0 and the covariance sequencec0:n is real, the
dual problems, which give the lower and upper bounds of (D.3), are

max {c0:nλ :
∑n

k=0 λk cos(kθ) ≤ g(θ), θ ∈ (−π, π]} ,

min {c0:nλ : g(θ) ≤
∑n

k=0 λk cos(kθ), θ ∈ (−π, π]} ,

whereλT = (λ0, λ1, . . . , λn).
A class of weak∗-continuous metrics can be sought in the form

δ(dµ0, dµ1) = sup
ξ∈K

∣

∣

∣

∣

∫

T

gξ(dµ0 − dµ1)

∣

∣

∣

∣

, (D.4)

for {gξ}ξ∈K ⊂ C(T), provided the family{gξ}ξ∈K is sufficiently rich to distinguish be-
tween measures and yet, small enough so that continuity is ensured. The precise conditions
are given next.

Proposition D.4. The functionalδ(dµ0, dµ1) defined in(D.4) is a weak∗-continuous met-
ric if and only if the following two conditions hold:

1. for any two measuresdµ0, dµ1 ∈ M, there is aξ ∈ K such that
∫

T
gξdµ0 6=

∫

T
gzdµ1, and

2. the set{gξ}ξ∈K is relatively compact inC(T).

Proof. It is clear that condition1 holds if and only ifδ(dµ0, dµ1) is positive whenever
dµ0 6= dµ1. The triangle inequality and symmetry always holds for suchδ, so we only
need to show that condition2 holds if and only ifδ is weak∗-continuous.

We will show that condition 2 implies thatδ is weak∗-continuous by contradiction.
Assume therefore that condition2 holds, but thatδ is not weak∗. Then there existsdµk →
dµ in weak∗ such thatδ(dµk, dµ) > ǫ, k = 1, 2, . . . , and hence there existsgξk

, ξk ∈ K,
such that

ǫ <

∣

∣

∣

∣

∫

T

gξk
(dµk − dµ)

∣

∣

∣

∣

, k = 1, 2, . . . .
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Since the set{gξ}ξ∈K is relatively compact inC(T), there is a subsequence(gℓ, dµℓ) of
(gξk

, dµk) such thatgℓ → g ∈ C(T). A contradiction follows, since

ǫ <

∣

∣

∣

∣

∫

T

gℓ(dµℓ − dµ)

∣

∣

∣

∣

≤ ‖gℓ − g‖∞

∫

T

|dµℓ − dµ| +

∣

∣

∣

∣

∫

T

g(dµℓ − dµ)

∣

∣

∣

∣

→ 0 asℓ→ ∞,

and henceδ is weak∗-continuous whenever condition2 holds.
A well known result of Arzelà (see e.g., [16, page 102]) is that a set of functions is

relatively compact inC(T) if and only if the set of functions is uniformly bounded and
equicontinuous. If{gξ}ξ∈K is not equicontinuous, then there exists anǫ > 0 such that for
anyk = 1, 2, . . . one can findθk, φk ∈ T, andξk ∈ K, that satisfies

|θk − φk| <
1

k
and|gξk

(θk) − gξk
(φk)| > ǫ. (D.5)

Let (θℓ, φℓ) be a subsequence of(θk, φk) such thatθℓ → θ0 ∈ T asℓ → ∞, and letdµℓ
anddνℓ be the measurs that consist of a unit mass inθℓ andφℓ, respectively. From (D.5) it
follows thatφℓ → θ0, and hence thatdµℓ → dµ0 anddνℓ → dµ0 in weak∗, wheredµ0 is
the measure that consist of a unit mass inθ0. From (D.5) it follows that

δ(dµℓ, dµ0) + δ(dνℓ, dµ0) ≥ δ(dµℓ, dνℓ)

≥ |gξℓ
(θℓ) − gξℓ

(φℓ)| > ǫ.

From this, it is evident thatδ is not weak∗-continuous since bothδ(dµℓ, dµ0) andδ(dνℓ, dµ0)
cannot converge to0.

Similarly, if {gξ}ξ∈K is not uniformly bounded, then for anyk = 1, 2, . . . one can find
θk ∈ T andξk ∈ K such that

|gξk
(θk)| > k. (D.6)

Let dµk be the measures that consist of a unit mass inθk. the metricδ is not weak∗-
continuous since1kdµk → 0 in weak∗, butδ( 1

kdµk, 0) > 1 for all k.

Condition1 ensures positivity and condition2 ensures weak∗-continuity. The triangle
inequality and symmetry always holds for suchδ.

D.4.1 Metrics based on smoothing

A simple way to devise weak∗-continuous metrics on measures is by first smoothing the
measures via convolution with a fixed suitable continuous function, and then compare
the spectral density functions of the smoothed spectra. Thefunction must have non-zero
Fourier coefficients, otherwise it will not differentiate between certain measures. Thus, if
g ∈ C(T) is such a function, then

δsmooth,g(dµ0, dµ1) = ‖g ∗ (dµ0 − dµ1)‖∞,
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is a weak∗-continuous metric. Here,

(g ∗ dµ)(ξ) =

∫ π

−π

g(ξ − θ)dµ(θ),

denotes the circular convolution and‖ · ‖∞ theL∞ norm. It follows from Proposition D.4
thatδsmooth,g(dµ0, dµ1) is a weak∗-continuous metric. To see this, note that

‖g ∗ (dµ0 − dµ1)‖∞ = sup
ξ∈(−π,π]

∣

∣

∣

∣

∫ π

−π

g(ξ − θ)(dµ0(θ) − dµ1(θ))

∣

∣

∣

∣

,

and hence, condition2) of the proposition holds. Then, ifg(θ) =
∑∞

k=−∞ gke
ikθ and if

(. . . , a−1, a0, , a1, . . .) are the Fourier coefficients ofdµ0(θ) − dµ1(θ), then

g ∗ (dµ0 − dµ1)(ξ) =
∞
∑

k=−∞

g−kake
ikξ.

Sincegk 6= 0 for all k ∈ Z, the above expression cannot vanish identically unless allthe
ak ’s are zero, in which casedµ0 = dµ1.

D.4.2 Metrics based on transportation

The Monge-Kantorovic transportation problem, can be put into this framework. The prob-
lem amounts to minimizing the cost of transportation between two distributions of equal
mass, e.g.,dµ0 anddµ1 where

∫

T
dµ0 =

∫

T
dµ1. In this, a transportation plandπ(θ, φ) is

sought which corresponds to a non-negative distribution onT × T and is such that
∫

θ∈T

dπ(θ, φ) = dµ0(φ) and
∫

φ∈T

dπ(θ, φ) = dµ1(θ). (D.7)

Then, the minimal cost

min

{∫

T×T

|θ − φ|dπ(θ, φ) : dπ satisfies (D.7)

}

is the Wasserstein-1 distance betweendµ0 anddµ1, and is a weak∗-continuous metric (see
e.g., [22, chapter7]). This problem admits a dual formulation, referred to as the Kantorovic
duality (see [22]):

W1(dµ0, dµ1) = max
‖g‖L≤1

∫

g(dµ0 − dµ1),

where‖f‖L = supθ,φ
|f(θ)−f(φ)

|θ−φ| denotes the Lipschitz norm.
Power spectra, in general, cannot be expected to have the same total mass. In this case,

δ1,κ(dµ0, dµ1) defined by

inf
R

dν0=
R

dν1
W1(dν0, dν1) + κ

1
∑

i=0

∫

T

|dµi − dνi|, (D.8)
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is a weak∗-continuous metric for an arbitrary but fixedκ > 0. The interpretation is that
dµ0 anddµ1 are perturbations of the two measuresdν0 anddν1, respectively, with equal
mass. Then, the cost of transportingdµ0 anddµ1 to one another can be thought of as the
cost of transportingdν0 anddν1 to one another plus the size of the respective perturbations.
This is introduced in [6] and the metric admits a dual formulation

δ1,κ(dµ0, dµ1) = max
‖g‖∞ ≤ κ
‖g‖L ≤ 1

∫

g(dµ0 − dµ1),

which is in the form of the Proposition D.4. Various other generalizations of transportation
distance that apply to power spectra are also being proposedand studied in [6].

D.4.3 Metrics based on the Poisson kernel

In this section we define metrics based on the Poisson integral,

P [dµ](z) =
1

2π

∫ π

−π

Pr(t− θ)dµ(θ), z = reit,

which allow computation of explicit bounds on uncertainty sets (see Section D.5). It is easy
to see that weak∗-convergence of measures is equivalent to certain types of convergense of
their harmonic counterpart, as stated next.

Proposition D.5. Let {dµk}∞k=1 be a sequence of uniformly bounded signed measures on
T, let dµ be a bounded measure onT, and letu(z) = P [dµ](z), uk(z) = P [dµk](z) be
their corresponding Poisson integrals. The following statements are equivalent:

1. dµk → dµ weak*,

2. uk(z) → u(z) pointwise∀z ∈ D,

3. uk(z) → u(z) in L1(D),

4. uk(z) → u(z) uniformly on compact subsets ofD.

Proof. See Appendix.

The maximal distance between the harmonic functions, on a compact non-finite set
K ⊂ D, gives rise to a weak∗-continuous metric

δK(dµ0, dµ1) = sup
z∈K

|P (dµ0 − dµ1)(z)|. (D.9)

This is clear, since the resulting family of the Poisson kernels satisfies the properties in
Proposition D.4.
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RemarkD.2. In practice, it is often the case that one is interested in comparing spetra over
selected frequency bands. To this end, various schemes havebeen consider which rely on
pre-processing with a choice of “weighting” filters and filter banks (see e.g., [4], [21], and
[3, 9]). The choice of the point-setK in (D.9) can be used to dictate the resolution of the
metric over such frequency bands. To see how this can be done,considerK to designate
an arc{ξ = reiθ : θ ∈ [θ0−ǫ, θ0+ǫ]}. This satisfies the condtions of Proposition D.4 and
thus,δK is a weak∗ metric. At the same time, the valuesP (dµ](ξ), with ξ ∈ K, represent
the variance at the output of a filter with transfer functionz/(z − ξ). These are bandpass
filters with a center frequencyarg(ξ) and bandwidth which depends on the choice ofr.
Thus, the metric compares the respective variance after thespectra have been weighed by
a continium (forξ ∈ K) of such frequency selective bank of filters. 2

D.5 The size of the uncertainty set

The size of the uncertainty set with respect to the distanceδK turns out to be especially easy
to compute. Indeed, the diameter is attained on a special subset of the essential boundary
which corresponds to measures with onlyn + 1 points of increase (i.e., support). This is
the content of the following proposition.

Proposition D.6. Let c0:n be a positive covariance sequence and letK ⊂ D be closed.
Then

ρδK
(Fc0:n) = max

z∈K
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where

bz =











z−1

z−2

...
z−n−1











, dz =











z−1(c0)
z−2(c0 + 2c1z)
...
z−n−1(c0 + 2c1z + · · · + 2cnz

n)











,

and(x, y) denote the inner producty∗T−1
n x. Furthermore,ρδK

(Fc0:n) is attained as the
distance between two elements ofFc0:n which are both singular with support containing at
mostn+ 1 points.

Proof. See appendix.

Both claims in Proposition D.6 can be used separately for computingρδK
(Fc0:n). The

first one suggests finding the maximum of a real valued function overK. The second
claim suggests search for a maximum forδK(dµ1, dµ2) over a rather small subset of
ext(Fc0:n), namely nonnegative sequencesc0:(n+1) parametrized bycn+1 being a solu-
tion of the quadratic equation

det(Tn+1) = 0.
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Figure D.1:ρδK
as a function ofγ1, γ2 whenc0 = 1. K = {z : |z| ≤ 0.5}

The corresponding values forcn+1 lie on a circle in the complex plane, and hence, com-
putation ofρδK

(Fc0:n) will require search on a torus (each of the two extremaldµ1, dµ2

where the diameter is attained can be thought of as points on the circle).
As an example, Figure D.1 showsρδK

(Fc0:n) for

c0:2 = (1, c1, c2)

as a function of the corresponding Schur parameters [10]

−1 < γ1 := c1 < 1,

−1 ≤ γ2 :=

det

0

@

c1 c2
1 c1

1

A

det

0

@

1 c1
c̄1 1

1

A

≤ 1,

andK is taken as{z : |z| ≤ 0.5} ⊂ D.
The plot confirms that the diameter decreases to zero as the parameters or, alternatively,

the covariancesc1 and c2, tend to the boundary of the “positive” region (which in the
Schur coordinates corresponds to the unit square). However, it is interesting to note that
the diameter ofFc0:n as a function ofc0:n has several local maxima.
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RemarkD.3. Computation of the diameterρδ(Fc0:n) of the uncertainty set amounts to
solving the infinite-dimensional optimization problem

sup{δ(dµ1, dµ2) : dµ1, dµ2 ∈ Fc0:n}. (D.10)

If δ is a weak*-continuous and jointly convex function, then thediameter is attained as the
precise distance between two elements which are extreme pointsFc0:n . Extreme points are
the points with the property that they are not a nontrivial convex combination of elements
in the set, denoted ext(·). Then,dµ ∈ ext(Fc0:n) if and only if dµ ∈ Fc0:n and the
support ofdµ consists of at most2n+ 1 points (see [15]). Thus, ext(Fc0:n) admits a finite
dimensional characterization and (D.10) reduces to a finitedimensional problem.

D.6 Identification in weak∗

In this example we consider identification of a spectrum based on covariances. Although
the uncertainty set contains a large set of spectra which mayhave considerably different
qualitatively properties, they are all close in the weak∗-topology. In this context, the trade-
off between variance and resolution can be studied. The resolution is specified by the
metric (in this case by the setK), and then sufficient data has to be provided to ensure that
the size of the uncertainty set is small.

Consider the stochastic process

yt = cos(0.5t+ ϕ1) + cos(t+ ϕ2) + wt +
1

3
wt−1

wherewt is a white noise process andϕ1, ϕ2 are random variables with uniform distri-
bution on(−π, π]. The power spectrumdµ is depicted in Figure D.2 and the spectrum
has both an absolutely continuous part and a singular part. We would like to identify this
spectrum based on covariance estimates and show bounds on the estimation errors. We
will use the metricδK whereK = {z : |z| = 0.9}, i.e.,

δK(dµ0, dµ1) = sup
|z|=0.9

|P (dµ0 − dµ1)(z)|.

Let c be the covariance sequence ofdµ and letdµ5 anddµ20 be the power spectra
with highest entropy in the setsFc0:5 andFc0:20 , respectively. Figure D.3 compare the
spectradµ5 anddµ. The first subplot shows the spectra, and the second subplot show
P [dµ5](0.9e

iθ), P [dµ](0.9eiθ), and bounds onP [dν](0.9eiθ) whenν ∈ Fc0:5 . The spec-
trumdµ5 does not distinguish the two peaks and the bounds on the spectra consistent with
c0:5 are quite large. For identifying the two spectral lines, theinformation fromc0:5 is
clearly not enough, and this data does not provide enough information for the variance to
be small in the resolution implied by the metricδK .

Figure D.4 comparesdµ20 anddµ similarly. The spectrumdµ20 has two peaks close
to the spectral lines andP [dµ20](0.9e

iθ) resemblesP [dµ](0.9eiθ) closely. In fact, as
can be seen from the bounds, for any spectrumν ∈ Fc0:20 , P [dν](0.9eiθ) is close to
P [dµ](0.9eiθ), i.e., that the diameter of the uncertainty set is rather small. The spectra
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Figure D.2:The true spectrumdµ.
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Figure D.3:The true spectrumdµ, the maximum entropy spectrumdµ5, and bounds, based
on the covariancesc0:5.
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Figure D.4: The true spectrumdµ, the maximum entropy spectrumdµ20, and bounds,
based on the covariancesc0:20.

dµdet is the (unique) power spectrum inFc0:20 with shur parameterγ21 = 1. This is a
deterministic spectrum and is depicted in Figure D.5. The figure show that the spectrum
respect the bound onP [dµdet](0.9e

iθ).
The spectradµ, dµ20, anddµdet are very different in terms of their singular and ab-

solutely continuous part. Nevertheless they represent similar distribution of mass and are
hence close to each other in the weak∗-topology.

D.7 Conclusions and further directions

The choice of metric is essential in every quantitative scientific theory. Identification of
power spectra is based on measured covariances and we therefore require that the metric
on power spectra is continuous and robust wich respect to uncertainty in the covariances.
We show that any such metric need to localize “spectral mass,” or equivalently the met-
ric need to be weak∗-continuous. For the metricδK , we explicitly quantize the size of
the uncertainty set, i.e., the set of all spectra consistentwith an covariance estimate. This
provides the tools needed for robust identification and where the distances in spectra cor-
respond well to our intuition (see e.g. example 10 in [6]).

There are many directions in which this work could be expanded for further develop-
ing the theory. One example of this is approximation in weak∗-continuous metrics. It is
well known that the Periodogram converges in weak∗ as the sample size goes to infinity
(see e.g., [19]). This makes the Periodogram a suitable candidate for approximations. We
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Figure D.5:The spectrumdµdet.

expect that the MA-approximation problem can be formulatedusing standard LMIs. How-
ever, optimal ARMA-approximation is more interesting, butalso more difficult so solve.
This will be subject to further research.

An other direction relate more to the usefullness of the chosen metric for particular
applications and is treated in [6]. Here the Monge-Kantorovic transportation distance is
exploited in depth, it is weak∗ and satisfies several additional desirable properties. In
particular, it is interesting to study the geodesics of these metrics. It turns out that the
geodesics preserve lumpedness of the spectra, and they can therefore model smooth mass
transfer [14]. To understand how this preservation of lumpedness relate to the choice of
metric will also be studied further.

Appendix

Proof of Theorem D.1.The cannonical neighborhood basis for a pointdν in the weak∗

topology onM is the sets of the type

N(dν, {gk}
n
k=1, ǫ) =

{

dµ ≥ 0 :

∣

∣

∣

∣

∫

T

gk(dν − dµ)

∣

∣

∣

∣

< ǫ, k = 0, 1, . . . , n
}

,

wheregk are continuous functions onT for k = 0, . . . , n. To show the theorem we will
prove that the neighborhood basis

N(dν) = {N(dν, {gk}
n
k=0, ǫ) : ǫ > 0, n ∈ N, {gk}

n
k=0 ⊂ C(T)}
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is equivalent to the neighborhood basis

F(dν) =

{

Fc0:n,ǫ : ǫ > 0, n ∈ N, ck =

∫

T

z−kdν, k = 0, . . . , n

}

.

First note thatN(dν) ⊃ F(dν), and hence the weak∗-topology is at least as strong as
the topology induced byF(dν). To show the other direction, letN(dν, {gk}nk=0, ǫ) be an
arbitrary set inN(dν). To show the equivalence, it is enough to show that there exists
ǫ′ > 0, n′ ∈ N such that

Fc
0:n′ ,ǫ′ ⊂ N(dν, {gk}

n
k=1, ǫ). (D.11)

If ǫk > 0, nk ∈ N are such thatFc0:nk
,ǫk ⊂ N(dν, gk, ǫ) holds fork = 1, . . . , n, then

ǫ′ = min
k=1,...,n

ǫk, n′ = max
k=1,...,n

nk

will satisfy (D.11). We therefore only need to consider the casen = 1, and to simplify
notation, letg = g1. The functiong is continuous and may be approximated uniformly by
pseudopolynomials. LetN ′ ∈ N andαk for −N ′ ≤ k ≤ N be such that

∣

∣

∣

∣

∣

∣

g(z) −
N ′

∑

ℓ=−N ′

αℓz
ℓ

∣

∣

∣

∣

∣

∣

<
ǫ

4ν(T) + 2
for z ∈ T,

and letǫ′ = min
(

1, ǫ
2

P

|αℓ|

)

. Letdµ ∈ Fc
0:n′ ,ǫ′ , then

∣

∣

∣

∣

∫

T

g(dµ− dν)

∣

∣

∣

∣

≤

∫

T

∣

∣

∣

∣

∣

∣

g −
N ′

∑

ℓ=−N ′

αℓ

∣

∣

∣

∣

∣

∣

|dµ− dν| +
N ′

∑

ℓ=−N ′

∣

∣αℓz
ℓ
∣

∣

∣

∣

∣

∣

∫

T

(dµ− dν)

∣

∣

∣

∣

<
ǫ

4ν(T) + 2
(2ν(T) + ǫ′) +

N ′

∑

ℓ=−N ′

|αℓ| ǫ
′

≤
ǫ

2
+
ǫ

2
= ǫ,

and hencedµ ∈ N(dν, g, ǫ). We have shown that the topology induced by the neighbor-
hood basisF(dν) is the weak∗-topology, and henceδ is weak∗-continuous if and only if
(D.2) holds.

Proof of Proposition D.6.There exists an analytic functionf(z) = H [dµ](z), dµ ∈ Fc0:n ,
such thatf(z) = wz if and only if its associated Pick matrix is nonnegative [17], i.e.

(

2Tn bzwz − dz
w̄zb

∗
z − d∗z

wz+w̄z

1−zz̄

)

≥ 0. (D.12)

By using Schur’s lemma and completing the squares we arrive at
∣

∣

∣

∣

∣

wz−
2

1−zz̄+(dz, bz)

(bz, bz)

∣

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

∣

2
1−zz̄+(bz, dz)

(bz, bz)

∣

∣

∣

∣

∣

2

−
(dz , dz)

(bz, bz)
, (D.13)
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where equality holds if and only if the Pick matrix (D.12) is singular. From this, the first
part of Proposition D.6 follows. Since the maximum is obtained when equality holds in
Equation D.13, the associated Pick matrices are singular. Hence the solutions are unique
and correspond to measures with support onn+ 1 points [7, prop. 2].

D.8 Bibliography

[1] N. I. Akhiezer.The classical moment problem. Hafner Publishing, Translation 1965.
Oliver and Boyd.

[2] J. Ball, I. Gohberg, and L. Rodman.Interpolation of rational matrix functions, vol-
ume 45 ofOperator Theory: Advances and Applications. Boston, Birkhaüser, 1990.

[3] C. I. Byrnes, T. T. Georgiou, and A. Lindquist. A generalized entropy criterion for
Nevanlinna-Pick interpolation with degree constraint.IEEE Trans. Automat. Control,
46(6):822–839, June 2001.

[4] J. Capon. High-resolution frequency-wave number spectrum analysis.IEEE Proc.,
57:1408–1418, 1969.

[5] C. Foias and A.E. Frazho.The commutant lifting approach to interpolation problems.
Advances and Applications. Birkhauser Verlag, 1990.

[6] T. T. Georgiou, J. Karlsson, and M. S. Takyar. Metrics forpower spectra: an ax-
iomatic approach. Submitted to IEEE Trans on Signal Processing.

[7] T.T. Georgiou. Spectral estimation via selective harmonic amplification: Music, re-
dux. IEEE Trans. on Signal Proc., 48(3):780–790, March 2000.

[8] T.T. Georgiou. Spectral estimation via selective harmonic amplification.IEEE Trans.
on Automatic Contr., 46(1):29–42, January 2001.

[9] T.T. Georgiou. Spectral analysis based on the state covariance: the maximum entropy
spectrum and linear fractional parameterization.IEEE Trans. on Automatic Control,
47(11):1811–1823, November 2002.

[10] Ya. L. Geronimus.Orthogonal Polynomials. Consultants Bureau, 1961.

[11] U. Grenander and G. Szegö.Toeplitz Forms and their Applications. Chelsea, 1958.

[12] S. Haykin. Nonlinear Methods of Spectral Analysis. Springer-Verlag, New York,
1979.

[13] K. Hoffman. Banach Spaces of Analytic Functions. Dover Publications, 1962.

[14] X. Jiang, S. Takyar, and T.T. Georgiou.Metrics and morphing of power spectra,
chapter in Lecture Notes in Control and Information Sciences. Springer Verlag, 2008.
to appear.



118 PAPER D

[15] J. Karlsson and T.T. Georgiou. Signal analysis, momentproblems & uncertainty
measures. InIEEE Proc. CDC, pages 5710– 5715, December 2005.

[16] A. N. Kolmogorov and S. V. Fomin.Introductory Real Analysis. Dover Publications,
1970.

[17] I.V. Kovalishina and V.P. Potapov.Integral Representation of Hermitian Positive
Functions. Khark’hov Railway Engineering Inst., 1981. English translation by T.
Ando, Sapporo, Japan.

[18] M.G. Krein and A.A. Nudel’man.The Markov Moment Problem and Extremal Prob-
lems. American Mathematical Society, Providence, 1977.

[19] E. Parzen. Mathematical considerations in the estimation of spectra.Technometrics,
3(2), May 1961.

[20] P. Stoica and R. Moses.Introduction to Spectral Analysis. Prentice Hall, 1997.

[21] P. P. Vaidyanathan.Multirate Systems and Filter Banks. Prentice-Hall, Englewood
Cliffs, NJ, 1993.

[22] C. Villani. Topics in Optimal Transportation, volume 58. Graduate studies in Math-
ematics, AMS, 2003.



Metrics for Power Spectra: an
Axiomatic Approach

Tryphon Georgiou, Johan Karlsson, and Mir Shahrouz Takyar

Abstract

We present an axiomatic framework for seeking distances between power spectral density func-
tions. The axioms require that the sought metric respects the effects of additive and multiplicative
noise in reducing our ability to discriminate spectra, as well as they require continuity of statistical
quantities with respect to perturbations measured in the metric. We then present a particular metric
which abides by these requirements. The metric is based on the Monge-Kantorovich transportation
problem and is contrasted with an earlier Riemannian metricbased on the minimum-variance pre-
diction geometry of the underlying time-series. It is also being compared with the more traditional
Itakura-Saito distance measure, as well as the aforementioned prediction metric, on two representa-
tive examples.

E.1 Introduction

A key element of any quantitative scientific theory is a well-defined and natural metric.
A model for the development of such metrics is provided, in the context of information
theory and statistics, in the work of Fisher, Rao, Amari, Centsov and many others, via an
axiomatic approach where the sought metric is identified on the basis of a natural set of
axioms—the main one being the contractiveness of stochastic maps. The subject of the
present paper is not the geometry of information, but instead, the possibility of analogous
geometries for power spectra starting from a similar axiomatic rationale. Specifically, we
seek a metric between power spectra which is contractive when noise is introduced, since
intuitively, noise impedes our ability to discriminate. Further, we require that statistics are
continuous with respect to spectral uncertainty quantifiedby the sought metric. We build
on [17] where a variety of potential metrics were studied using complex analysis. The focus
of the current paper is twofold, firstly to propose a natural set of axioms that geometries for
power spectra must satisfy, and secondly to present a particular candidate which abides by
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the stated axioms. This metric is based on the Monge-Kantorovich transportation problem
and represents a relaxation of Wasserstein distances so as to be applicable to power spectra.

In Section E.2 we outline and discuss the axiomatic framework. In Section E.3 we
contrast the present setting with two alternatives, first the axiomatic basis of Information
Geometry and then with a geometry that is inherited by linearprediction theory. In Section
E.4 we present basic facts of the Monge-Katnorovich transportation problem which are
then utilized in Section E.5 in order to develop a suitable family of metrics satisfying the
axioms of the sought spectral geometry.

E.2 Morphisms on power spectra

We consider power spectra of discrete-time stochastic processes. These are bounded posi-
tive measures on the intervalI = [−π, π] (with the end points identified) or, in the case of
real-valued processes, onI = [0, π] and the set of such measures is denoted by

M := {dµ : dµ ≥ 0 on I} .

The physics of signal interactions suggests certain natural morphisms between spectra that
model mixing in the time-domain. The most basic such interactions, additive and multi-
plicative, adversely affect the information content of signals. It is our aim to devise metrics
that respect such a degradation in information content. Another property that ought to be
inherent in a metric geometry for power spectra is the continuity of statistics. More specif-
ically, since modeling and identification is often based on statistical quantities, it is natural
to demand that “small’ changes in the spectral content, as measured by suitable metrics,
result in small changes in any relevant statistical quantity.

Consider a discrete-time stationary (in general complex-valued) zero-mean stochastic
process{y(k), k ∈ Z}, or simplyy for short, with corresponding power spectrumdµ ∈
M. The sequence of covariances

R(ℓ) := E{y(m)y(m− ℓ)}, ℓ = 0, 1, 2, . . . ,

whereE{·} denotes expectation and “ ” denotes complex conjugation, are the Fourier
coefficients ofdµ, i.e.,

R(ℓ) =

∫

I

e−jℓθdµ(θ).

In general, second order statistics are integrals of the form

R =

∫

I

G(θ)dµ(θ)

for an arbitrary vectorial integration kernelG(θ) which is continuous inθ ∈ R and periodic
with period2π. For future reference we denote the set of such functions byCperio(I).

Now, suppose thatdµa represents the power spectrum of an “additive-noise” process
ya which is independent ofy. Then the power spectrum ofy + ya is simplydµ + dµa.
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Similarly, if dµm represents the power spectrum of a “multiplicative-noise”processym,
the power spectrum of the point-wise producty · ym is the circular convolution

dν = dµ ∗ dµm.

I.e.,dν satisfies
∫

x∈S

dν(x) :=

∫

x∈S

∫

t∈I

dµ(t)dµa(x − t) for all S ⊆ I,

where the arguments are interpreted modulo2π.
We postulate situations where we need to discriminate between two signals on the

basis of their power spectra and of their statistics. In suchcases, additive or multiplicative
noise may impede our ability to differentiate between the two. Thus, we consider noise
spectra as morphisms onM that transform power spectra accordingly. Thus, additive and
multiplicative noise morphisms are defined as follows:

Adµa : dµ 7→ dµ+ dµa

for anydµa ∈ M, and
Mdµm : dµ 7→ dµ ∗ dµm

for anydµm ∈ M, normalized so that
∫

I
dµm = 1. The normalization is such that multi-

plicative noise is perceived to affect the spectral contentbut not the total energy of under-
lying signals.

The effect of additive independent noise on the statistics of a process is also additive,
e.g., covariances of the process are transformed accordingto

Âdµa : R(ℓ) 7→ R(ℓ) +Ra(ℓ),

whereRa(ℓ) denotes the corresponding covariances of the noise process. Similarly, multi-
plicative noise transforms the process statistics by pointwise multiplication (Schur product)
as follows

M̂dµm : R(ℓ) 7→ R(ℓ) · Rm(ℓ).

More generally,M̂dµm : R 7→ R • Rm for statistics with respect to an arbitrary kernel
G(θ), where• denotes point-wise multiplication of the vectorsR, Rm.

Consistent with the intuition that noise masks differencesbetween two power spectra,
it is reasonable to seek a metric topology, where distances between power spectra are non-
increasing when they are transformed by any of the above two morphisms. More precisely,
we seek a notion of distanceδ(·, ·) onM with the following properties:
Axiom i) δ(·, ·) is a metric onM.
Axiom ii) For anydµa ∈ M, Adµa is contractive onM with respect to the metricδ(·, ·).
Axiom iii) For anydµm ∈ M with

∫

I
dµm ≤ 1,Mdµm is contractive onM with respect to

the metricδ(·, ·).

The property of a map being contractive refers to the requirement that the distance between
two power spectra does not increase when the transformationis applied.
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An important property for the sought topology of power spectra is that small changes
in the power spectra are reflected in correspondingly small changes in statistics. More
precisely, any topology induces a notion of convergence, and the question is whether
this topology is compatible with the topology of the Euclidean vector-space where (fi-
nite) statistics take their values. Continuity of statistics to changes in the power spectra is
necessary for quantifying spectral uncertainty based on statistics. The property we require
is referred to as weak∗-continuity and is abstracted in the following statement.
Axiom iv) Let dµ ∈ M and a sequencedµk ∈ M for k ∈ N. Thenδ(dµk, dµ) → 0 as
k → ∞, if and only if

∫

I

Gdµk →

∫

I

Gdµ ask → ∞,

for anyG ∈ Cperio(I).

E.3 Reflections and contrast with information geometry

The search for natural metrics between density functions can be traced back to the early
days of statistics, probability and information theory. According to Chentsov [8, page 992]
(ref. [1]), Kolmogorov was “always interested in findinginformationdistances” between
probability distributions. In his notes he emphasized the importance of the total variation

dTV(dµ0, dµ1) :=

∫

|µ0(dx) − µ1(dx)|

as a metric, and he independently arrived at and discussed the relevance of the Bhat-
tacharyya [5] distance

dB(dµ0, dµ1) := 1 −

∫

√

µ0(dx)µ1(dx) (E.1)

as a measure of unlikeness of two measuresdµ0, dµ1. Both suggestions reveal great in-
tuition and foresight. The total variation admits the following interpretation (cf. [11]) that
will turn out to be particularly relevant in our context: thetotal variation represents the
least “energy” of perturbations of two power spectradµ0 anddµ1 that render the two in-
distinguishable, i.e.,

dTV(dµ0, dµ1) = min{

∫

dν0 +

∫

dν1 :

dν0, dν1 ∈ M, anddµ0 + dν0 = dµ1 + dν1}. (E.2)

On the other hand the Bhattacharyya distance turned out to have deep connections with
Fisher information, the Kullback-Leibler divergence, andthe Cramér-Rao inequality. These
connections underlie a body of work known as Information Geometry which was advanced
by Amari, Nagaoka, Chentsov and others [18, 7, 2]. At the heart of the subject is the
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Fisher information metric on probability spaces and the closely related spherical Fisher-
Bhattacharyya-Rao metric

dFBR(dµ0, dµ1) := arccos

∫

√

µ0(dx)µ1(dx). (E.3)

This latter metric is precisely the geodesic distance between two distributions in the ge-
ometry of the Fisher metric. One of the fundamental results of the subject is Chentsov’s
theorem. This theorem states that stochastic maps are contractive with respect to the Fisher
information metric and moreover, that this metric is in facttheunique(up to constant multi-
ple) Riemannian metric with this property [7]. Stochastic maps represent the most general
class of linear maps which map probability distributions tothe same. Stochastic maps
model coarse graining of the outcome of sampling, and thus, form a semi-group. Thus, it
is natural to require that any natural notion of distance between probability distributions
must be monotonic with respect to the action of stochastic maps.

An alternative justification for the Fisher information metric is based on the Kullback-
Leibler divergence

dKL (dµ0, dµ1) :=

∫

dµ0

dµ1
log(

dµ0

dµ1
)dµ1 =

∫

log(
dµ0

dµ1
)dµ0

betweenprobability distributions. The Kullback-Leibler divergence is not a metric, but
quantifies in a very precise sense the difficulty in distinguishing the two distributions [20].
In fact, it may be seen to quantify, in source coding for discrete finite probability distribu-
tions, the increase in the average word-length when a code isoptimized for one distribution
and used instead for encoding symbols generated according to the other. The distance be-
tween infinitesimal perturbations, measured usingdKL , is precisely the Fisher information
metric. It is quite remarkable that both lines of reasoning,degradation of coding efficiency
and ability to discriminate on one hand and contractivenessof stochastic maps on the other,
lead to the same geometry on probability spaces.

Turning again to power spectra, we observe thatdTV can be used as a metric and has
a natural interpretation as explained earlier. The metricdFBR on the other hand can also
be used, if suitably modified to account for scaling, but lacks an intrinsic interpretation. A
variety of other metrics can also be placed onM (cf. [14, 16, 21]), mostly borrowed from
functional analysis, which may similarly lack an intrinsicinterpretation. Thus, the signal
processing community focused instead on other metric-likequantities, as the so-called
Itakura-Saito distance [14, Equation (16)]

dIS(f0dθ, f1dθ) :=

∫ (

f0
f1

− ln(
f0
f1

) − 1

)

dθ,

which have been motivated in the context of linear prediction [22, 14]. This relates is
intimately related to the probability structure of underlying processes for the Gaussian
case and to their distance in the Kullback-Leibler divergence (see for instance [19, 23]).
A closely related metric was presented in [10, 12] which quantifies in a precise way the
degradation of predictive error variance –in analogy with the latter argument that led to
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the Fisher metric. More specifically, a one-step optimal linear predictor for an underlying
random process is obtained based on a given power spectrum, and then, this predictor is
applied to a random process with a different spectrum. The degradation of predictive error
variance, when the perturbations are infinitesimal, gives rise to a Riemannian metric. In
this metric, the geodesic distance between two power spectra is

dpr(dµ0, dµ1) :=

√

∫

(log
dµ0

dµ1
)2dθ − (

∫

log
dµ0

dµ1
dθ)2, (E.4)

which effectively depends on the ratio of the correspondingspectral densities. Interest-
ingly, this metric is a “normalized version” of the so-called log-spectral distance [21, Equa-
tion (78)]

dLS(dµ0, dµ1) :=

√

∫

(log
dµ0

dµ1
)2dθ

which is commonly used without any intrinsic justification.A similar rationale that lead
to (E.4) can be based on degradation of smoothing-variance instead of prediction (see [10,
12]), and this also leads to expressions that weigh in ratiosof the corresponding spectral
density functions, i.e., it is the ratios of the absolutely continuous part of the measures that
play any role.

A possible justification for such metrics which weigh in onlythe ratio of the corre-
sponding density functions can be sought in interpreting the effect of linear filtering as a
kind of processing that needs to be addressed in the axioms. More specifically, the power
spectrum at the output of a linear filter relates to the power spectrum of the input via multi-
plication by the modulus square of the transfer function. Thus, a metric that respects such
“processing” ought to be contractive (and possibly invariant). However, it turns out that
such a property is incompatible with the spectral properties that we would like to have, and
in particular it is incompatible with the ability of the metric to localize a measure based on
its statistics (cf. Axiom iv). This incompatibility is shown next.

Consider morphisms onM that correspond to processing by a linear filter:

Fh : dµ 7→ |h|2dµ

for anyh ∈ H∞. Here,h is thought of as the transfer function of the filter,µ the power
spectrum of the input, and|h|2dµ the power spectrum of the output.

Proposition E.1. Assume thatδ(·, ·) is a weak∗-continuous metric onM. Then there exists
h ∈ H∞ such thatFh is not contractive with respect toδ(·, ·).

Proof. We will prove the claim by showing that wheneverδ is a weak∗-continuous metric
that is a contraction with respect toFh, we may derive a contradiction. Denote byµt,
t ≥ 0 the measure with a unit mass in the pointt and letǫ = δ(dµ0, dµ0/2). By weak∗-
continuity, there existst0 > 0 such thatδ(dµ0, dµt0) < ǫ/3. Let h ∈ H∞ be such that
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|h(0)|2 = 1/2 and|h(t0)|2 = 1. Then we have that

ǫ = δ(dµ0, dµ0/2) ≤ δ(dµ0, dµt0) + δ(dµt0 , dµ0/2)

= δ(dµ0, dµt0) + δ(|h|2µt0 , |h|
2µ0)

≤ 2δ(dµ0, dµt0) <
2

3
ǫ.

Which is a contradiction, and hence the proposition holds.

It is important to point out that none of the above (i.e., neither (E.3) nor (E.4)) is a
weak*-continuous metric. In particular, the metric in (E.4) is impervious to spectral lines
as only the absolutely continuous part of the spectra plays any role. Similarly, neither the
metric in (E.2) nor the one in (E.3) can localize distributions because they are not weak*-
continuous. Thus, in this paper, we follow a line of reasoning analogous to the axiomatic
framework of the Chentsov theorem, but for power spectra, requiring a metric to satisfy
Axioms i)-iv).

E.4 The Monge-Kantorovich problem

A natural class of metrics on measures are transport metricsbased on the ideas of Monge
and Kantorovich. The Monge-Kantorovich distance represents a cost of moving a nonneg-
ative measuredµ0 ∈ M(X) to another nonnegative measuredµ1 ∈ M(X), given that
there is an associated costc(x, y) of moving mass from the pointx to the pointy. The
theory may be formulated for rather general spacesX , but in this paper we restrict our
attention to compact metric spacesX .Every possible way of moving the measuredµ0 to
dµ1 corresponds to a transference planπ ∈ M(X ×X), which satisfies

∫

y∈X

dπ(x, y) = dµ0 and
∫

x∈X

dπ(x, y) = dµ1,

or more rigorously, that

π[A×X ] = µ0(A) andπ[X ×B] = µ1(B) (E.5)

wheneverA,B ⊂ X are measurable. Such a plan exists only if the measuresdµ0 anddµ1

have the same mass, i.e.µ0(X) = µ1(X). Denote byΠ(dµ0, dµ1) the set of all such
transference plans, i.e.

Π(dµ0, dµ1) = {π ∈ M(X ×X) : (E.5) holds for allA,B} .

To each such transference plan, the associated cost is

I[π] =

∫

X×X

c(x, y)dπ(x, y)

and consequently, the minimal transportation cost is

Tc(dµ0, dµ1) := min {I(π) : π ∈ Π(dµ0, dµ1)} . (E.6)
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The optimal transportation problem admits a dual formulation, referred to as the Kan-
torovich duality, which we state below without a proof. For aderivation and an insightful
exposition we refer the reader to [25, page 19].

Theorem E.2. Let c be a lower semi-continous (cost) function, let

Φc := {(φ, ψ) ∈ L1(dµ0) × L1(dµ1) : φ(x) + ψ(y) ≤ c(x, y)},

and let

J (φ, ψ) =

∫

X

φdµ0 + ψdµ1.

Then
Tc(dµ0, dµ1) = sup

(φ,ψ)∈Φc

J (φ, ψ).

A rather simple consequence is the following lemma.

Lemma E.3. Let c be a lower semi-continous (cost) function withc(x, x) = 0 for x ∈ X .
ThenAdµa is contractive with respect toTc.

Proof. Contractiveness ofAdµa follows from the dual representation. Any pair(φ, ψ) ∈
Φc satisfiesφ(x) + ψ(x) ≤ 0, and hence

∫

X

φdµ0 + ψdµ1 ≥

∫

X

φdµ0 + ψdµ1 + (φ+ ψ)dµa.

Monge-Kantorovich distances are not metrics, in general, but they readily give rise to
a class of the so-called Wasserstein metrics as explained next.

Theorem E.4. Assume that the (cost) functionc(·, ·) is of the formc(x, y) = d(x, y)p

whered is a metric andp ∈ (0,∞). Then the Wasserstein distance

Wp(dµ0, dµ1) = Tc(dµ0, dµ1)
min(1, 1

p
)

is a metric on the subspace ofM(X) with fixed mass and metrizes the weak∗ topology.

Proof. See [25, Chapter 7]. Note that sinceX is compact, the weak∗ topology onM(X)
coincides with the weak topology.

E.5 Metrics based on transportation

The Monge-Kantorovich theory deals with measures of equal mass. As we have just seen,
it provides metrics that have some of the properties that we seek to satisfy. The purpose of
this section is to develop a metric based on similar principles, that applies to measures of
possibly unequal mass.
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Given two nonnegative measuresdµ0 anddµ1 on I, we postulate that these are pertur-
bations of two other measuresdν0 anddν1, respectively, which have equal mass. Then,
the cost of transportingdµ0 anddµ1 to one another can be thought of as the cost of trans-
portingdν0 anddν1 to one another plus the size of the respective perturbations. Thus we
define

T̃c,κ(dµ0, dµ1) := inf
ν0(I)=ν1(I)

Tc(dν0, dν1) + κ

1
∑

i=0

dTV(dµi, dνi), (E.7)

whereκ is a suitable parameter that weighs the relative contribution of perturbation and
transportation. Define

c(x, y) = |(x− y)mod2π|
p (E.8)

where(x)mod2π is the element in the equivalence classx+ 2πZ which belongs to(−π, π].
The main result of the section is the following theorem.

Theorem E.5. Letκ > 0 andc(x, y) defined as in(E.8), wherep ∈ (0,∞). Then

δp,κ(dµ0, dµ1) :=
(

T̃c,κ(dµ0, dµ1)
)min(1, 1

p
)

is a metric onM which satisfies Axiom i) - iv).

The proof uses the fact that (E.7) has an equivalent formulation as a transportation
problem, and a corresponding dual stated below.

Theorem E.6. Letc be a lower semi-continuous (cost) function, let

Φc,κ :=
{

(φ, ψ) ∈ L1(dµ0) × L1(dµ1) : φ(x) ≤ κ,

ψ(y) ≤ κ , φ(x) + ψ(y) ≤ c(x, y)
}

,

and let

J (φ, ψ) =

∫

I

φdµ0 + ψdµ1.

Then
T̃c,κ(dµ0, dµ1) = sup

(φ,ψ)∈Φc,κ

J (φ, ψ). (E.9)

RemarkE.1. Definition (E.7) does not provide a direct way to computeT̃c,κ(dµ0, dµ1),
whereas the dual formulation in Theorem E.6 is amenable to numerical implementation.
Indeed, (E.9) is a linear optimization problem which can be computed using standard meth-
ods.

Proof. The problem (E.7) can be thought of as a transportation problem on the setX =
I ∪ {∞}, where a mass is added at∞ as needed to normalize the measures so that they
have equal mass, e.g.,

µ̂i(S) = µi(S) for S ⊂ I

µ̂i(∞) = M − µi(I)
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for someM ≥ max{µi(I) : i = 0, 1}. Accordingly, the (cost) function is modified as
follows

ĉ(x, y) =















min(c(x, y), 2κ) for x, y ∈ I,
κ for x ∈ I, y = ∞,
κ for x = ∞, y ∈ I,
0 for x = ∞, y = ∞.

(E.10)

First we prove that
Tĉ(dµ̂0, dµ̂1) = sup

(φ,ψ)∈Φc,κ

J (φ, ψ),

henceTĉ(dµ̂0, dµ̂1) is independent ofM , and then we conclude the proof by showing that

T̃c,κ(dµ0, dµ1) = Tĉ(dµ̂0, dµ̂1). (E.11)

According to Theorem E.2,Tĉ(dµ̂0, dµ̂1) is equal to the supremum of

Ĵ (φ, ψ) :=

∫

X

φdµ̂0 + ψdµ̂1

subject to

φ(x) + ψ(y) ≤ ĉ(x, y) for x, y ∈ I, (E.12)

φ(x) + ψ(∞) ≤ κ for x ∈ I, (E.13)

φ(∞) + ψ(y) ≤ κ for y ∈ I, (E.14)

φ(∞) + ψ(∞) ≤ 0. (E.15)

Our first claim now follows by showing that there is no added restriction imposed by re-
quiring thatφ(∞) = ψ(∞) = 0. Indeed,Φc,κ is essentially identical to the set

{(φ, ψ) : (E.12)− (E.15) hold andφ(∞) = ψ(∞) = 0},

with (φ, ψ) extended to have support at∞ as well. To this end, let(φ, ψ) be an arbi-
trary pair of functions satisfying (E.12)-(E.15). Since additive scaling of(φ,−ψ) does not
change the constraints nor the value ofĴ (φ, ψ), we may assume thatφ(∞) = 0. There
are two cases that we need to consider. Ifsupx∈I φ(x) ≤ κ, then define

φ̂(x) = φ(x) for x ∈ X, ψ̂(x) =

{

ψ(x) x ∈ I

0 x = ∞,

and if supx∈I φ(x) = ǫ+ κ > κ, then define

φ̂(x) =

{

φ(x) − ǫ x ∈ I

0 x = ∞
, ψ̂(x) =

{

ψ(x) + ǫ x ∈ I

0 x = ∞.

In both cases we have that̂J (φ, ψ) ≤ Ĵ (φ̂, ψ̂) as well as that the pair(φ̂, ψ̂) satisfies
(E.12)-(E.15). In the second case, the constraint (E.14) isnot violated; ĉ(x, y) ≤ 2κ
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implies thatsupx∈I φ(x) + supy∈I ψ(y) ≤ 2κ, and hencesupy∈I ψ(y) ≤ κ− ǫ. Note that
(E.13) implies thatψ(∞) ≤ −ǫ. Thus, in both cases, from an arbitrary pair(φ, ψ), we have
constructed a pair(φ̂, ψ̂) for which the constraints (E.12)-(E.15) hold,φ̂(∞) = ψ̂(∞) = 0
holds, and the value of̂J (φ, ψ) has not decreased. Therefore we may without loss of
generality letφ(∞) = ψ(∞) = 0.

It remains to show that̃Tc,κ(dµ0, dµ1) = Tĉ(dµ̂0, dµ̂1). We start by showing that
Tĉ(dµ̂0, dµ̂1) ≥ T̃c,κ(dµ0, dµ1). Let π̂ ∈ Π(dµ̂0, dµ̂1) and let

∫

y∈I

dπ̂(x, y) = dν0 and
∫

x∈I

dπ̂(x, y) = dν1.

Then for any transference plan̂π we have that

I[π̂] =

∫

I×I

ĉ(x, y)π̂(x, y) + κ

∫

I

dπ̂(x,∞) + κ

∫

I

dπ̂(∞, y)

=

∫

I×I

ĉ(x, y)π̂(x, y) + κ

1
∑

i=0

∫

I

(dµi − dνi)

≥ Tc(dν0, dν1) + κ

1
∑

i=0

dTV(dµi, dνi)

≥ T̃c,κ(dµ0, dµ1),

by noting thatdµi − dνi is positive and hence
∫

I
(dµi − dνi) = dTV(dµi, dνi). Therefore

Tĉ(dµ̂0, dµ̂1) ≥ T̃c,κ(dµ0, dµ1) always holds. To show that the reverse inequality also
holds letdν0, dν1 be two non-negative measures withν0(I) = ν1(I). By introducing
f0 = max(−κ, φ), f1 = max(−κ, ψ) and using the dual formulation we get

Tĉ(dµ̂0, dµ̂1) = sup
(φ,ψ)∈Φc,κ

J (φ, ψ)

≤ sup
(φ,ψ)∈Φc,κ

∫

I

f0dµ0 + f1dµ1

≤ sup
(φ,ψ)∈Φc,κ

1
∑

i=0

∫

I

fidνi + fi(dµi − dνi)

≤ sup
(φ,ψ)∈Φc,κ

1
∑

i=0

∫

I

fidνi + κ

1
∑

i=0

dTV(dµi, dνi)

≤ Tc(dν0, dν1) + κ

1
∑

i=0

dTV(dµi, dνi).

Here we use the fact thatκdTV(dµi, dνi) = sup‖f‖∞≤κ

∫

f(dµi − dνi). Since the above
inequality holds for any measuresdν0, dν1 we get the reversed inequalityTĉ(dµ̂0, dµ̂1) ≤
T̃c,κ(dµ0, dµ1), and hence we conclude thatTĉ(dµ̂0, dµ̂1) = T̃c,κ(dµ0, dµ1).
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The final step to proving Theorem E.5 will be provided by the following lemma.

Lemma E.7. Letc(x, y) be a function of|x− y|. Then for anydµm ∈ M with
∫

I
dµm ≤ 1,

Mdµm is contractive onM with respect toT̃c,κ.

Proof. Note that
∫

x∈I

φ(x)(dµm ∗ dµ0)(x)

=

∫

x∈I

φ(x)

∫

τ∈I

dµm(x − τ)dµ0(τ)

=

∫

τ∈I

(∫

x∈I

φ(x)dµm(x− τ)

)

dµ0(τ)

=

∫

τ∈I

(φ(x) ∗ dµm(−x))|τ dµ0(τ),

and denote

φm(τ) = φ(x) ∗ dµm(−x)|τ
ψm(τ) = ψ(x) ∗ dµm(−x)|τ .

From this it follows that

J(dµm∗dµ0,dµm∗dµ1)(φ, ψ) = J(dµ0,dµ1)(φm, ψm),

where the subscript specifies the measures used in the definition of the dual functional.
Now let (φ, ψ) ∈ Φc,κ. Then

φ(x− τ) + ψ(y − τ) ≤ min (c(x− τ, y − τ), 2κ)

= min (c(x, y), 2κ) ,

and by integrating with respect todµm(−τ) overτ ∈ I, we arrive at

φm(x) + ψm(y) ≤ min(c(x, y), 2κ).

Furthermore, it is immediate thatφ(x) ≤ κ andψ(y) ≤ κ implies thatφm(x) ≤ κ and
thatψm(y) ≤ κ, and hence(φm, ψm) ∈ Φc,κ follows. Finally

T̃c,κ(Mdµm
(dµ0),Mdµm

(dµ1))

= sup
(φ,ψ)∈Ψc,κ

J(dµm∗dµ0,dµm∗dµ1)(φ, ψ)

= sup
(φ,ψ)∈Ψc,κ

J(dµ0,dµ1)(φm, ψm)

≤ sup
(φ,ψ)∈Ψc,κ

J(dµ0,dµ1)(φ, ψ)

= T̃c,κ(dµ0, dµ1)
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We now recap the proof of our main theorem.

Proof. [Proof of Theorem E.5]:From the formulation (E.11),̃Tc,κ can be viewed as the
cost of a transportation problem. Since the associated costfunction ĉ from (E.10) is of the
form dp, whered is a metric, Axioms i) follows from Theorem E.4. Axiom iv) follows
by noting that if a sequence of measuresdµn converges todν in weak∗, then in particular
µn(I) → ν(I). Therefore, for anyM > sup{µn(I), n ∈ N}, it readily follows thatµ̂n
converges tôν in weak∗, and hence Theorem E.4 ensures weak∗ continuity ofδp,κ. From
the above formulation, Axiom ii) follows from Lemma E.3. Finally Axiom iii) follows
from Lemma E.7.

RemarkE.2. It is interesting to note that for the casep = 1

δ1,κ(dµ0, dµ1) = max
‖g‖ ≤ κ
‖g‖L ≤ 1

∫

g(dµ0 − dµ1),

where‖f‖L = sup |f(x)−f(y)|
|x−y| the Lipschitz norm. Furthermore, in general, for anyp,

1

κ
δ1,κ(dµ0, dµ1) → dTV(dµ0, dµ1) asκ→ 0.

RemarkE.3. The transportation problem has indeed some very nice properties that relate
to the weak∗ continuity of the corresponding distance metrics. In particular smoothness
with respect to translations and small deformations is an intrinsic property. For this reason
it has been used in conjunction with other notions of distance, in a similar fashion as in
the current paper, to link density functions of unequal mass. In particular, Benamou and
Brenier [4] have introduced a mixedL2/Wasserstein optimal mapping to link such density
functions, while in other relevant literature, Caffarelliand McCann [6] and more recently,
Figalli [9] study the transportation of a portion of two unequal masses onto each other.

E.6 Examples

We present two examples that highlight the relevance of the proposed metrics in spectral
analysis. The first example compares how different distancemeasures perform on spectra
which contain spectral lines. The second compares how thesemeasures distinguish voiced
sounds of different speakers. The distance measures we consider, besides the transporta-
tion distance (hereδ1,1), are the prediction metric and the Itakura-Saito distance. In both
examples the time-series are normalized to have the same variance.

Example E.1. We consider a random processyk = cos(kθ + φ) + wk which consists of
a sinusoidal component and a zero-mean, unit-variance, white-noise componentwk. Here,
θ is taken as a constant, whereasφ is assumed random, independent ofwk, and uniformly
distributed on(−π, π]. Figure E.1 shows three samples of such a random process for
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Figure E.1: Stochastic processyk in time and frequency domain forθ = 1, 1.2, and2

respective values ofθ ∈ {1, 1.2, 2}, along with their respective power spectra. Based on
a set of 500 independent simulations, Table I shows the average distance of the respective
power spectra when measured using i) the transport distance, ii) the prediction distance
[12], and iii) the Itakura-Saito distance (see e.g., [14]).Comparison of these values reveals
that only the transportation-based metric can reliably distinguish between spectral lines.
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Figure E.2: Relative distances between line spectra

The schematic in Figure E.2 compares the relative distancesin these three cases with
the smallest value normalized to one. The respective distances for the case of the prediction
metric are relatively insensitive to the actual location ofthe spectral line, as in the limit of a
long observation record all three distances ought to be equal to one. Recall that the predic-



METRICS FORPOWER SPECTRA: AN AXIOMATIC APPROACH 133

Table E.1: Comparison of distance measures on spectral lines+ noise

Distance between line spectra at

θ1 = 1 θ2 = 1.2 θ1 = 1

θ2 = 1.2 θ3 = 2 θ3 = 2

Transportation:δ1,1 0.3077 0.8832 1.0690
Predictive:dpr 1.8428 1.8390 1.8517

Itakura Saito:dIS 22.7279 472.6690 134.1707

tion metric does not detect deterministic components. On the other hand the Itakura-Saito
distance gives a rather distorted view of reality. In the transportation metric the respective
distances are consistent with “physical” location of the spectral lines. Further, the consis-
tency in the ability to discriminate between such spectra isdramatically different in the
three cases. Consider the proportion of the simulations forwhich the distance between
the first two spectra(θ = 1, 1.2) is smaller than any of the other distances(θ = 1.2, 2 or
θ = 1, 2). For the transport distance in all500 iterations the distance between the first two
power spectra with lines at{1, 1.2} was smaller than the distance between the other two
possibilities. On the other hand, the corresponding percentages for the prediction distance
and for the Itakura-Saito distance were34.4% and33.8%, respectively. Thus, the trans-
portation correctly identifies the two spectra that are intuitively closest (i.e., having spectral
lines closest to each other), whereas the other distance measures succeed about one third
of the times (practically a random pick).

To be fair, neither the prediction metric nor the Itakura-Saito distance were designed,
or claimed, to have such discrimination capabilities. As the sample size tends to infinity
power spectra computed via the periodogram method convergeto the true spectrum in
weak∗, and since the transportation distance is weak∗-continuous, transportation distances
converge to the true values. On the other hand, this is not thecase for either of the other
two distances. 2

Example E.2. Figure E.3 (left side column) shows time samples corresponding to the
phoneme “a” spoken by three individuals, speakers A (Alice), B (Bob), and C (Colin),
respectively. Speakers B and C were chosen to be males whereas speaker A was chosen
to be a female and, accordingly, the dominant formant of the first speaker has higher pitch
than the other two, as seen in the estimated power spectra shown in Figure E.3 (right hand
side column). The distance between these three power spectra in the transportation metric,
the prediction metric, and the Itakura-Saito distance are compared in Figure E.4 as before.
The shortest distance in all three cases is normalized to one.

It is seen that all three distance measures are consistent inthat the power spectrum
corresponding to Bob is always between that of Alice and Colin. However, the respective
distances are highly skewed, especially when it comes to theItakura-Saito distance. 2

In the second example, all three distance measures appear togive qualitatively similar
results. However, in general, visual comparison of two power spectra appears to be more



134 PAPER E

 

Figure E.3: phoneme “a” for Alice, Bob, and Colin (top to bottom) in time and frequency
domain
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Figure E.4: Relative distances between spectra of the voiced sounds in Figure E.3

easily correlated with respective distances in the transportation metric. This is rather evi-
dent in the first example and the reasons are traceable to the physical interpretation of the
metric with regard to mass transfer. Moreover, we should point out that in neither example
did the Itakura-Saito distance respect the triangular inequality (and of course, it has never
been claimed to satisfy this metric property).

E.7 Concluding remarks

Our goal has been to identify natural notions of distance forquantitative spectral analy-
sis. Historically, there has been a variety of options [14, 16, 21, 22] which were used to
measure distortion, and which were relied upon based on their perceptive qualities, e.g.,
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see [24, 3]. However, in order to quantify spectral uncertainty, the relevant metrics ought
to allow localization of power spectra based on estimated statistics (i.e., being weak∗-
continuous). At the same time, these metrics ought to share certain natural properties with
regard to how noise affects distance between power spectra.In the present paper, we have
presented an axiomatic framework that attempts to capture these intuitive notions and we
have developed a family of metrics that satisfy the stated requirements.

While there are many possibilities for developing weak∗-continuous metrics as sug-
gested, we have chosen to base our approach on the concept of transportation. The reason
is that the resulting metrics have certain additional properties which relate to deformations
of spectra and smoothness with respect to translation. Morespecifically, from experience,
it appears that geodesics (in e.g., the Wasserstein 2-metric) preserve “lumpiness.” A con-
sequence is that when linking power spectra of two similar speech sounds via geodesics of
the metric, the corresponding formants often seem to be “matched” and the power between
those to transfer in a consistent manner. Such a property appears highly desirable in speech
morphing (cf., see [15]). Thus, it will be interesting to expand the set of axioms to include
such desirable properties in a more formal way. Such an exercise may in turn narrow down
the possible choices of metrics and provide further justification for transportation-based
metrics.

Finally, we wish to comment on the need for analogous metricsfor comparing multi-
variable spectra. The ability to localize matricial power spectra is of great significance in
system identification, as for instance, in identification based on joint statistics of the input
and output processes of a system (cf. [13]).
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