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Abstract—A quite comprehensive theory of analytic (i) the a priori bound|| f|l. < ~, and
interpolation with degree constraint, dealing with rational  (iii) the condition thatf be rational of degree at most
analytic interpolants with an a priori bound, has been n,
developed in recent years. In this paper we consider . S
the IimF:t case when ¥his bound is r%rr?oved, and only wherez, z1,..., z, € D are dIStInCt.(fOI‘ simplicity) and
stable interpolants with a prescribed maximum degree are @0, w1, - --,wn € C. It was shown in [7] that, for each
sought. This leads to weighted, minimization, where the Such f, there is a rational function(z) of the form
interpolants are parameterized by the weights. The inverse ) n
problem of determining the weight given a desired inter- _ plz L -
polant profile is considered, and a rational approximation o(2) 7(2) = H(l = Z2),
procedure based on the theory is proposed. This provides a
tool for tuning the solution to specifications. The basic ida where p(z) is a polynomial of degree: with p(0) >
could also be applied to the case with bounded analytic ( gnd p(z) # 0 for z € D such thatf is the unique

interpolants. minimizer of the generalized entropy functional

m(2) ey

" o ipvn.dO
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TABILITY-PRESERVING model reduction is asubject to the interpolation conditions (1). In fact, there
opic of major importance in systems and controls a complete parameterization of the class of all inter-
and over the last decades numerous such approximati@lants satisfying (i)—(iii) in terms of the zeros of
procedures have been developed; see, e.g., [5], [18], [Adhich also are the spectral zeros fifi.e., the zeros of
[2] and references therein. In this paper we introducg — f(z)f*(z) located in the complement of the unit
a novel approach to stability- preserving model redugisc. It can also be shown that this parameterization is
tion that also accommodates interpolation constraingmooth, in fact a diffeomorphism [8].
a requirement not uncommon in systems and control.Thijs smooth parameterization in terms of spectral
By choosing the weights appropriately in a family oferos is the center piece in the theory of analytic
weighted H, minimization problems, the minimizer will interpolation with degree constraints; see [6], [7] and
both have low degree and match the original system.reference therein. By tuning the spectral zeros one can
As we shall see in this paper, stable interpolation wihbtain an interpolant that better fulfills additional desig
degree constraint can be regarded as a limit casespkcifications. However, one of the stumbling-blocks in
bounded analytic interpolation under the same degr@® application of this theory has been the lack of a
constraint — a topic that has been thoroughly researchg@tematic procedure for achieving this tuning. In fact,
in recent years; see [7], [11]. the relation between the spectral zerog @ind f itself is
More precisely, letf be a function in (D), the space nontrivial, and how to choose the spectral zeros in order
of functions analytic in the unit dis® = {z : |z| <1}, to obtain an interpolant which satisfy the given design

satisfying specifications is a partly open problem.
(i) the interpolation condition In order to understand this problem better, we will in
this paper focus on the limit case as— oo; i.e., the
f(zk) =wg, k=0,....n, (1) case when condition (ii) is removed. We shall refer to this

problem — which is of considerable interest in its own
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and hence (see Proposition 2), positive real interpolation [6].
™ do ™ do The paper is outlined as follows. In Section Il we
—/ lo|24% log(1 — 42| f)— — / lof|*~=.  show that the problem of stable interpolation is the limit,
- 27 - 27 as the bound tend to infinity, of the bounded analytic

For the case = 1, this connection between thi#, norm interpolation problem stated above. In Section Il we
and the corresponding entropy functional have beeerive the basic theory for how all stable interpolants
studied in [16]. Consequently, the stable interpolanigith a degree bound may be obtained as weighted
with degree constraint turn out to be minimizers off;-norm minimizers. In Section IV we consider the
weightedH; norms. Indeed, thé/, norm plays the sameinverse problem ofH; minimization, and in Section
role in stable interpolation as the entropy functional do&s the inverse problem is used for model reduction
in bounded interpolation. Stable interpolation af@d of interpolants. The inverse problem and the model
norms are considerably easier to work with than boundegtluction procedure are closely related to the theory in
analytic interpolation and entropy functionals, but mar#2]. A model reduction procedure where no a priori
of the concepts and ideas are similar. interpolation conditions are required are derived in Sec-

The purpose of this paper is twofold. First, we want tion VI. This is motivated by a weighed relative error
provide a stability-preserving model reduction procedut®und of the approximant and gives a systematic way
that admits interpolation constraints and error bounds. choose the interpolation points. This approximation
Secondly, this theory is the simplest and most transpar@nbcedure is also tunable so as to give small error in
gateway for understanding the full power of boundesklected regions. In the Appendix we describe how the
analytic interpolation with degree constraint. In factr owcorresponding quasi-convex optimization problems can
paper provides, together with the results in [12], thiee solved. Finally, in Section VII we illustrate our new
key to the problem of how to settle an important opesppproximation procedures by applying them to a simple
question in the theory of bounded analytic interpolatioexample and conclude with a control design example.
with degree constraint, namely how to choose spectral

zZeros. o _ _ N [I. BOUNDED INTERPOLATION AND STABLE
In many applications, no interpolation conditions are INTERPOLATION

given a priorl. Th.'S. allows us to use the |r_1terpola— In this section we show that thE5 norm is the limit
tion points as additional tuning variables, available for, : R
f a sequence of entropy functionals. From this limit,

satlsfy!ng deS|gn_ specifications. S.UCh an approach {t%){e relation between stable interpolation and bounded
passivity-preserving model reduction was proposed in

1 an0 ortvr cevloped (0], In (0] e ponie"POLED [ esalaned and s shour et some o
out that the procedure in [1], [20] can be regardeg P P

: - o . .match.
as a special case of Nevanlinna-Pick interpolation with _. . . .
. . First consider one of the main results of bounded inter-
degree constraint [6], namely the central solution COolation: a complete parameterization of all interpolants
responding to the choice = 1. We demonstrated in P ) P P P

[10] that using the full power of the latter theory allowé’vIth a degree bound [71' For this, we will need two key
. . . c?ncepts in that theory; the entropy functional
us the tune the approximant to specifications withou

increasing the degree. A similar situation occurs in theg~ _ /’T 215 () 2 log(1 — ~—2| £(£)[2 do
context of prediction-error approximation with a finite |C’|2(f) _WV o (€™)" log (1 =771 f ()] )277’
set of basis functions [13], [23], which together with

o e . where we takeK] := oo whenever thef,, norm
prefiltering leads to the minimization of generalize lo| (£) = o0 o
entropy functionals [3].

ﬂf”oo > ~, and the co-invariant subspace

A problem left open in [10] and in [13] was how to p(2) n -
actually select spectral zeros and interpolation poings in ~* = () 7(2) = H (1= Zkz),p € Pol(n) ¢ .
systematic way in order to obtain the best approximation. k=0 @)

It is precisely this problem, here in the context Olf—|erePol
stability-preserving model reduction, that is the topic %ostn

this paper. Unlike the procedures in [1], [20], [10], we In fact, any interpolantf of degree at most with

shall also be able to provide error bounds. Moreoveﬂr lo < 7 is a minimizer ofK} ,(f) subject to (1) for
although the procedures presented in this paper are jn. - — i |of? )
g P P pap sOomeo € Ky, where

the setting of stable interpolation, they will also give
insight into both bounded analytic interpolation [7] and Ko={oce€X :o(0)>0,0 outer.

(n) denotes the set of polynomials of degree at
, and{z}}_, are the interpolation points.



Furthermore, all such interpolants are parameterized jpgintwise inT except forc with poles inT. There are
o € Ky. This is one of the main results for boundetlvo cases of importance. First, ¢f has no poles irf,
interpolation in [7] and is stated more precisely asr if a pole of o coincided with a zero off of at least

follows. the same multiplicity, then-|o|?~v2log(1 — v 2|f|?) is
Theorem 1:Let {z;}7_, C D,{w}}_, € C, and bounded, and (ii) follows from bounded convergence.
~v € R4. Suppose that the Pick matrix Secondly, ifo has a pole inT at a point in whichf
2 o oqn does not have a zero, then bdthi .(f), and|of|?* are
7T wgwy o o]
P=|——— (3) infinite for any~. [
L =22 Jj0—0

The condition|| f||« < oo is needed in Proposition 2.
is positive definite, and let be an arbitrary function in Otherwise, if||f||.c = oo, then K?o\z(f) is infinite for
Ko. Then there exists a unique pair of elemefats)) €  any ~, while ||o £||> may be finite ifoc has zeros in the

Ko x X such that poles of f on T.
() f(z) =0b(2)/a(z) € H>® with || fllc <~ The next proposition shows that stable interpolation
(i) f(zx) =wy, k=0,1,...,n, and may be seen as the limit case of bounded interpolation
(i) |a(2)]> —y72b(2)|?> = |o(2)|? for z € T, when the boundy tend to infinity.

whereT := {z : |z| = 1}. Conversely, any paifa,b) € Proposition 3: Let o be any outer function such that
Ko x X satisfying (i) and (ii) determines, via (iii), athe minimizerf of
uniqueo € Xy. Moreover, the optimization problem min o f|| such thatf (z¢) = wy. k= 0,....n  (4)
inK/ , s.t. =wg, k=0,..., - L
min K. (f) Flzk) = wr " satisfies|| f||o < co. Let f, be the minimizer of
has a unique solutiorf that is precisely the uniqué R
satisfying conditions (i), (i) and (iii). min K .(fy) such thatfy(zx) = wy, k = 0,...,n
The es.sential content_of_this theorem is that thgr o ¢ R, large enough so that the Pick matrix (3) is
class of interpolants satisfyingf|l.c < v may be positive definite. Therlo(f — )| — 0 asy — .
parameterized in terms of the zerosagfand that these Proof: By Proposition 2, and sinc¢ and £, are
zeros are the same as thpectral zerof f; i.e., the minimizers of the respective functional, we have
zeros of the spectral outer factor(z) of w(z)w*(z) = , , ) )
V2 — f(2)f*(2), where f*(z) = f(z-1). Kop(f) 2K () = llofy[I7 = [l f]7.
Let ||f|| = v/< f, f > denote the norm in the Hilbert

Moreover, sinc& . (f) — ||of||*> asy — oo it follows

ith o]
spaceH;(D) with inner TOdUCt that||o f,||> — || f||?, and hence, by Lemma 8, we have
< fg>= f(eiG)Md_e’ lo(f = fy)l — 0 asy — 0o, as claimed. o [

-7 2m Note that Proposition 3 holds for amywhich is outer
and letRH (D) denote the rational functions analytic ind not only foro € Xo. However, ifo < Xo, then
D. As the boundy tend to infinity, deg f, < n for any~. Therefore, sincgo(f — f,)| — 0

) L ) asy — oo, for o € Ky the minimizer f of (4) will be
=y log(1 —~[f]) — [fI" a stable interpolant of degree at mastWe will return

Therefore, the entropy functional] . (f) converge to 1 this in the next section.
the weightedH> norm ||o f||2. It is interesting to note how concepts in the two types

Proposition 2: Let f,o € RH (D) with o outer and of interpolation are reIatqu. First of_ all, the vyeightH@I
I1£]lc < 0. Then norm pIays_ the same _role in stabl(_a mterpolgﬂon as the en-
tropy functional does in bounded interpolation. Secondly,
the spectral zeros, which play an major role in degree
constrained bounded interpolation, simply correspond to

Proof: It clearly suffices to consider only > he poles in stable interpolation. This may be seen from
| f|loo- Then the derivative of-2log(1 —~2|f|?) with (iii) in Theorem 1.

respect toy is non-positive for|f| < ~, and hence
K| ,(f) is non-increasing. To establish (i), note that i

o

@ ]KVUP(f) is a non-increasing function of, and,
(i) K .(f) = llof]* asy — co.

|

. RATIONAL INTERPOLATION AND Hy
—*log(1 = 72| f ) = |f 2 + O(y £ ), | MINIMIZATION o
In the previous section we have seen that minimizers
of a specific class off, norms are stable interpolants of
—|o|*y“log(1 — ~~ — o egree at mosk. This, and also the fact that this class
242 log(1 212 2 d t most. Th d also the fact that this cl

and therefore



may be parameterized by € K, can be proved using belong to H (D) and is rational of a degree at mast
basic Hilbert space concepts. This will be done in thidore precisely,

section. fo b (®)
To this end, first consider the minimization problem o
min || f]| s. t. f(z) = w, k= 0,...,7n 5 whereb € K is the unique solution of the linear system

of equations
without any weighto. Let f, € Hy(D) satisfy the inter-
polation condition (1). Then any € Hy(D) satisfying b(z) = o(zk)wg, k=0,1,...,n. ©)

(1) can be written ag = fo+v, whereB = [[;_, {225 i ifi
andv € BH,. Therefore, (5) is equivalent to Conversely, 1 / satisfies () for some € X and

the interpolation condition (1), therf is the unique
min || fo + v minimizer of (7).
CBH: In other words, the set of interpolants il (D) of
By the Projection Theorem (see, e.g., [14]), there existslegree at mosk: may be parameterized in terms of
unique solutionf = fy+ v to this optimization problem, weights o € X,. Another way to look at this is that
which is orthogonal taBH», i.e. f € X := Hy © BH,. the poles of the minimizer (8) are specified by the zeros
Conversely, if f € X and f(zx) = wyg, for & = of o and that the numeratér= 3/7 is determined from
0,...,n, then f is the unique solution of (5). To seethe interpolation condition by solving the linear system
this, note that any interpolant iff2(ID) may be written of equations
as f + v wherev € BH,. However, sinces € BH, |
K > f, we havellf +v|2 = | f|2+|[v|% and hence the  B(z) = T(z)o(zk)wr, k=0,1,....,n  (10)
minimizer is f, obtained by setting = 0.
We summarize this in the following proposition.
Proposition 4: The unique minimizer of (5) belongs
to K. Conversely, iff € KX and f(z;) = wy, for k =
0,...,n, then f is the minimizer of (5).

for then-+1 coefficientssy, 51, . . ., 8, of the polynomial
B(z). This is a Vandermonde system that is known to
have a unigue solution (as long as the interpolation point
Zoy 21, - - , 2y are distinct as here).
T ) , . Note that this parameterization is not necessarily injec-
Consequently, in view of (2)f is a rational function ..

cttlve' If, for exampleg, = 1 for k = 0,...,n, then there

with its p_oleg fixed in th? Mirror Images (with reSPeCs a unique functiory’ of degree at most that satisfies
to the unit circle) of the interpolation points. By intro-

. . : : .rq(zk) = wg,k = 0,...,n. No matter howo € X is
ducing weighted norms, any interpolant with poles i L .
e . ) . chosenp = o, and hence the minimizer of (6) will be
prespecified points may be constructed in a similar wa]y.: 1
In fact, the set of interpolantg of degree< n may be * =

parameterized in this way. One way to see this is by
considering IV. THE INVERSE PROBLEM

(6) In [12] we considered thaverse problem of analytic
interpolation i.e., the problem of choosing an entropy

where o € Xy. Sinceo is invertible in H(D), (6) is functional whose unique minimizer is a prespecified in-
equivalent to terpolant. In this section we will consider the counterpart
of this problem for stable interpolation.

Supposef € RH (D) satisfies the interpolation condi-
According to Proposition 4, this has the optimal solutiotion (1). Then, when does there existe RH (D) which
of = b e XK, and hence the solution of (6f, = g is is outer such thaf is the minimizer of
rational of degree at most. To see that any solution
of degree at most can be obtained in this way, note

. . b
that any such interpolanf is of the form f = 7.b € \ve refer to this as thénverse problem ofH, min-
K,0 € Ko. Sinceo f = b € X holds together with the jni;ation and its solution is given in the following
interpolation condition (1) if and only i&(z)f(2x) = proposition.
o(zx)wg fork =0,...,n, fisthe unique solution of (6), " Thegrem 6:Let f € RH (D) satisfy the interpolation
by Proposition 4. This proves the following proposition. ,ngition F(21)

; i z) = wi,k = 0,...,n. Then f is the
Theorem 5:Let o € Ko. Then the unique minimizer .nimizer of
of

min ||of| s. t. f(2x) = wk, k=0,...,n,

min ||of|| s. t. (o f)(2x) = o(zk)wg, k =0,...,n.

min |[of]| s. t. f(zx) = wi, k=0,...,n?

min |lof| s. t. f(zx) =wg, k=0,...,n, (7) min |[of|| s. t. f(zx) = wg, k=0,...,n, (11)



whereo is outer if and only ifof € X, in which case Then it seems reasonable that the minimigeof the
the minimizer is unique. Such @ exists if and only if optimization problem
f has no more than zeros inD.

Proof: The function f is the minimizer of (11) if
and only ifb = o f is the minimizer (necessarily unique)s close to f. This is the statement of the following
of theorem.

Theorem 7:Let f € RH(D) satisfy the interpolation
condition f(z;) = wi,k = 0,...,n, and letoc € Wy.
which, by Proposition 4, holds if and only iff = b € Moreover, letp be an outer function such that
XK. Such as only exists if f has less or equal to zeros
insideD. To see this, first note that, jf has more than
n zeros inD, theno f has more tham zeros inD and . o
can therefore not be of the formy~ with p € Pol(n). and letg be the corresponding minimizer of (14). Then
On the other hand, if has less or equal te zeros in 9 4e 9
D, then letp = [[(z — px) Wherep;, are the zeros of, lolf = 9)lI” = =l fII™ (16)
and setr := £-. Theno is outer and satisfiesf € X. For the proof we need the following useful lemma.

u Lemma 8:Let letg € RH (D) satisfyg(zx) = wy, for
Theorem 6 defines a mapthat sends to the unique i =0,...,n, and letf be the minimizer of (11). Then,
minimizer f of the optimization problem (11); i.e., if
oc— f=F(0). (12) HUQHQ (1+5)|"7fH2
Let W, denote the set of weights that give f as a we have 2 < o8 9
minimizer of (11); i.e., the inverse imagé—!(f) of f. lo(f = 9)II" < 20llo £
By Theorem 6, Proof: From the parallelogram law we have,

Wi = F7Yf)={o outer:of € K} (3 1 f+9 f—
! 5 (o f11? + llogl®) o

p p
= —:p € Pol 0}, = outerp, .
{0 fr b ol(n) ~ {0} f } Therefore, sincef is the minimizer of (11), and hence
i.e., W; may be parameterized in terms of the polyndlo fIl < llo(f +g)/2]|, it follows that

IHIHHng S. L. g(zk) =wg, k=0,...,n, (14)

min [|b]| s. t.b(2x) == wro(zx), k=0,...,n

= (15)

mials p € Pol(n). For the condition thapf~! is outer lo(f = 9|1 < 2(logl® = o fI1?) < 26|l f12,

to hold for somep € Pol(n), it is necessary that has at

mostn zeros inD. This is in accordance with Theorem gWhich concludes the proof of the lemma. u
It is interesting to note that the dimensionid; depends Proof of Theorem 7In view of (15) we have

on the number of zeros of insideD. The more zeros (1—e)|o(e 29)|2 < |ple 29)|2 1+ €)|o(e Ze)|2

f has insideD, the more restricted is the claBg;. One _ _ o
extreme case is whefi has no zeros insid®. Thenp for all 0 € [, 7]. Therefore, sincg is the minimizer
could be any stable polynomial of degree The other Of (14), by (15), we have

extreme is whery hasn zeros inD, in which casep is logl? < ” 12 < H £I2

uniquely determined up to a multiplicative constant. g = T eglle = P

1 + € ) 2
1+9)||o
V. RATIONAL APPROXIMATION WITH ” fH ( )H f”
INTERPOLATION CONSTRAINTS where ¢ = 2/(1 — ¢). Conse-

In this section the solution of the inverse problerguently ~ (16)  follows  from  Lemma 8.
(Theorem 6) will be used to develop an approximation
procedure for interpolants. L¢tc RH (D) be a function ~ We have thus shown that lmz% is close tol
satisfying the interpolation condition (1). We want tdor z € T, then |o(f — ¢)|| is small. This suggests
construct another function € RH (D) of degree at most the following approximation procedure, illustrated in
n satisfying the same interpolation condition such thatFigure 1. By Theorem 5, the functiof’, defined by
is as close as possible o (12), maps the subsgd, into the space of interpolants of

Let 0 € Wy, i.e, leto be a weight and such thatdegree at most. In Figure 1 these subsets are depicted
f is the minimizer of (11), and lep be close too. by fatlines. The basic idea is to replace the hard problem

IN




One should note that, the more zerphas insideD,

/ the smaller is the choice gf. Therefore one expects
approximations of non-minimum phase plants to be
-, F worse than approximations of plants without unstable
[ N
T zeros.

VI. RATIONAL APPROXIMATION

In applications where there are no a priori interpola-
\ tion constraints, the choice of interpolation points serve
as additional design parameters. It is then important to
choose them so that a good approximation is obtained.
There are some general guidelines that one could use
for manual tuning. The main strategy previously used is
to chose interpolation points close to the regions of the

o _ unit circle where good fit is desired. The closer to the
of approximatingf by a functiong of degree at most ypjt circle the points are placed, the better fit, but the

n by the simpler problem of approximating an oute§mgjler is the region where good fit is ensured; see [10]
function o by a functionp € Xo. for further discussions on this. However, in this paper
Theorem 7 suggests various strategies for choosing {0g shall provide a systematic procedure for choosing the
functionsp € Xy ando € Wy depending on the def5i9ninterpolation points, based on quasi-convex optimization
preferences. If a small error bound fgo(f — g)[| IS As we have seen in the previous section the choice
desired for a particulas < Wy, this o should be used of interpolation points does not affeetgiven by (17).
together with they € Ko that minimizes (15). However, sinces = %, the weightedH, error bound

fr

However, obtaining a small value of (15) is often morgy g) in Theorem 7 becomes
important than the choice of. Therefore, in general it
is more natural to choose the péir, p) € (Wy, Ky) that
minimizese. For such a pair, setting:= 7p, we can be
see from (2) and (13) that

et

/4
Interpolants of degree n

Fig. 1. The mapF sending weighting functions to interpolants.
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which depends o and hence on the choice of inter-
polation points. In fact, this is a weighdd, bound on
the relative error(f — g)/f. If a specific part of the
unit circle is of particular interest, interpolation pant
whereq € Pol(n) andp € Pol(n) . {0} needs to be may be placed close to that part, which gives a bound
chosen so thagt/f is outer. It is interesting to note thaton the weighted relative error with high emphasis on
(17) is independent of (z) := []}._,(1—Zxz) and hence that specific region. (For a method to do this by convex
of the interpolation pointsgyg, z1, . . ., 2n. optimization, see Remark 2 in the next section.) If no
Now suppose thatf has v zeros inD; i.e., v particular partis more important than the rest, we suggest
nonminimum-phase zeros. Thegh= = fy, where f; is to selectr as the outer part op; i.e., |7(2)| = |p(2)]
outer (minimum phase) andis an unstable polynomial for z € T. This gives a natural choice of interpolation
of degreer < n. Settingp = mpy, our optimization points that are the mirror images of the roots «f
problem to minimizee reduces to the problem to find aFurthermore, this choice gives the relative error bound
pair (po,q) € Pol(n — v) x Pol(n) that minimizes I(f —9g)/fll < 4¢/(1 —¢€). This is summarized in the

gf—gH2< 4e

2

- |2
p

, @A

(e}

following theorem.
—|[1— '@ (18)  Theorem 9:Letp andq be polynomials of degrees at
Do mostn such thatpf~! is outer, and set
for a given nonminimum-phaseg,. This is a quasi- af I?
convex optimization problem, which can be solved as €:=|1- ‘? (19)
described in the Appendix (see also [21], [24]). The 0
optimal ¢ yields the optimap = ¢/7. The approximant | et », z,....,z, € D and let

g is then obtained by solving the optimization problem
(14) as described in Theorem 5. g = argmin ||pg|| S. t.g(zx) = f(zx),k=0,...,n,



wherep = ¢/ and7 = [[;_,(1 — Zxz). Then

L ! EE]
A L .
T f 1—ellr o .
In particular, if the interpolation points, 21, ..., z, are | - o
chosen so thatr(z)| = |p(z)| for z € T, then gore e s
2 = ‘o
— 4 xo_ ox
F—g|" o 4 (21)
f 1—ce¢
Remark 1:Note that the choicér| = |p| in Theorem Al ‘
9 implies that the unstable zeros pecome interpola- e 28
tion points. Therefore, foe < 1, (f — g)/f belongs to
H,. Fig. 2. Poles and zeros of in Examplesl, 2, and3.

VIl. THE COMPUTATIONAL PROCEDURE ANDSOME

c (i) Choose zg, 21,...,2, SO thatr is the outer
ILLUSTRATIVE EXAMPLES

(minimum-phase) factor gf. This yields a solution (22)
Next we summarize the computational procedure sugd the bound (21) for the relativé, error.
gested by the theory presented above and apply it toRemark 2:1f a bound on the weighted errdju(f —
some examples. g)|l is desired in Step (i) it is natural to choose so
Given a functionf € RH (D) with at mostn zeros that T’if is as close tav as possible. This may be done
in D, we want to construct a functiop € RH (D) by solving the convex optimization problem to find a
of degree at most that approximates as closely as 7 € Pol(n) that minimizes
possible. We consider two versions of this problem. First
we assume thaf satisfies the interpolation condition —
(1), and we requiregy to satisfy the same interpolation p
conditions. Secondly, we relax the problem by removings in the Appendix. If instead we need a bound on the
the interpolation constraints. weighted relative errofjw(f — g)/f||, we modify the
Suppose thaf hasy < n zeros inD. Thenf = wfy, optimization problem accordingly.

where fy is minimum-phase, and is a polynomial of  We apply these procedures to some numerical exam-
degreev with zeros inD. The approximany can then ples.

1 wa2

)

be determined in two steps: Example 1:Let
(i) Solve the quasi-convex optimization problem to b()
find a pair(po, ¢) € Pol(n —v) x Pol(n) that minimizes f(z) = )
(18), as outlined in the Appendix. This yields optinal
po andg. Setp := mpo. be the stable system of ordé&s given by
(i) Solve the optimization problem (14) with= ¢/, b(z) = 302" +902'% +128.62'" 4 114.62'°

as described in Theorem 5. Exchangindor p in (10)

— 9 _ 8 _ 7 6
we solve the Vandermonde system 187.42" — 322.32" — 3714z +10.82

+1005.82° + 2428.72% + 3967.02% + 4189.722

Blzk) = q(zk)wy, k=0,1,...,n, +2800.6z + 726.2,
for the 3 € Pol(n), which yields a(z) = 4.0z —13.42'% —44.22' — 144,520
3 +83.52" + 363.72° + 791.427 + 340.12°
9=74 (22) +TT0.72° + 877.321 — 93.62° — 4767.822

and the bound (20), where(z) := []"_o(1 — 7). —0349.3z = 4532.7.

For the problem without interpolation condition, weThis system has one minimum-phase zero. The poles and
replace step (ii) by one of the following steps. zeros are given in Figure 2.

(i) Choosexzg, z1,...,2, arbitrarily, or as in Re- Consider the problem to approximageby a function
mark 2 below. This yields a solution (22) and a boung of degree six while preserving the values in the points
(20). (20,21, --,2n) = (0,0.3,0.5,—0.1,—0.7, —0.3 £ 0.34).



" ‘ ‘ ‘ ‘ — smallest relativel . -error forn = 6 andn = 8. As can

o= _ =~ Fixed interpolation points be seen in the following tables, listing the relative and
_ZO\X/\/\ absolute errors of the three methods, the approximants

Magnitude (db)
i
o

= - : - . o : of roughly the same quality.
Angle (6)
32 | | | | ] Relative Ly Error Degree
“4///\M Approximation method 4 6 8
& a " . . . . . Proposed method 0.4736 0.0764 0.0194

Angle (6) Balanced truncation 0.4727 0.0785 0.0220
‘ ‘ 0 ‘ Stoch. Bal. truncation 0.7958 0.0656 0.0334

o
~

Relative Error
o
N

S e e SR H, Error Degree
’ o T e *e : Approximation method 4 6 8
Proposed method 0.1918 0.0422 0.0100

Balanced truncation 0.0746 0.0451 0.0057

Fig. 3. Bod lots of dgt th ith th lati .
'9- 3. Bode plots of andy together with the relative error Stoch. Bal. truncation  0.3073 0.0506 0.0213

Such an interpolation condition occurs in certain appli- In the present example, the error bound (21) is quite
cations. conservative. In fact, the bound 19.4735,0.8765, and

Step (i) to solve the quasi-convex optimization protp-‘3994’ for n equal t°4’6' and 8 respect.ively, Whigh
lem to minimize (18) yields optimal, p andg, and Step should be compafed with the co_rrespondlng errors in the
(i) the approximany, the Bode plot of which is depictedtable' By comparison, the relative,, bound ony, is

in Figure 3 together with that of. The third subplot in 3'9288’(.)'3562’ a_nd O.'O573 for n equal_ 04,6, and8
the picture shows the relative error respectively, which is also conservative far= 4,6.

Although these bounds are measured in different norms,
f(e?) — g(e?) it is still interesting to compare them. How to improve
' f(e®) our bound will be subject to further studies.
o ] o In Figure 7 the approximang from Example 1 is
It is important to note that. the function, whlc_:h |s_ compared togs. The interpolation points fory are
guaranteed to be stable, satisfies the prespecified inf@fzsen according to (i) and the interpolation condition

polation conditions and the error bound (20). Figure % g is prespecified. It can be seen from Figure 7 that

shows thay r'natchesf quite well. g matchesf better than doeg. This is because the
Example 2:Next we approximate the functioi in  jnserpolation points could be chosen freely fay

Example 1 without imposing any interpolation condition. Note that the problem of stable approximation could

Forn = 4,6 'and8 we _determme an.approan_argg be approached directly by nonconvex optimization to
of degreen via Steps (i) and (if}. This approximant g,y |ocal optima by gradient methods (see e.g. [15] and
satisfies the relative error bound (21). Then we COMP3iGa ences therein). If a sufficiently good starting point i
gn 10 an approxmanfn of the same degree obtained b3f)rovided then even the global optima could be reached.
ba""?”ced truncation [19], _[26]'_ In this example it is possible to find, using such methods,
Since balance truncation imposes a bound on 8, o imations with relative errorg.11, 0.0656, and
absolute, rather than the relative, error, it is reasonablg s of degreet, 6, ands, respectively: These errors
to also compare it with the approximahy of degreen  ,mpares fovourable to all the above methods. However,
obtained by stochastically balanced truncation [25], [22},r goal has been to provide an alternative framework
which comes with a relative error bound. based only on convex and quasi-convex optimization. An
The respective Bode plots and relative errors for thgyantage with this approach is that the method does not
three methods are depicted in Figures 4, 5, and &y on a good starting point for the algorithm which is
Stochastically balanced truncation gives the best appryfren difficult to find. It will be subject to further research
imation close to the valleys of the plant, and balancgg investigate in which way optimal approximations of

truncation gives best approximation close to the peak§sights relate to optimal approximations of interpolants.
The proposed method performs somewhere in between

and has a more uniform _relative _er_ror- In fact, as (_:an beThe authors would like to thank professor Martine Olivi for
seen from Figure 5 and Figure 6, it is the method with thgoviding us with this comparison.

for 6 € [0, 7].
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errors.
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errors.
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Example 3:We continue to approximate the function
in Example 1, but this time we move the interpolation
points to get a better fit in a selected frequency band. In
computinggs the interpolation points were determined
via (ii)” to be

(0,—0.5,—0.8841, —0.0380+0.72214, —0.7021+£0.64887),

thus yielding the weightp(ei?)/7(e??)| = 1 for 0 ¢
[0, 7]. In order to get a better fit close o(i.e. atd = 0)
we replace the interpolation point0.5 with the point
0.9, thus producing the weight

p(e”)
7(et?)

Denote by gs the minimizer (14) corresponding to
the interpolation points(0,0.9,—0.8841,—0.0380 +
0.72217,—0.7021 £ 0.64887). The functionsgs and gs

are depicted in Figure 8. In the selected region close to
1, g¢ approximates the original system better than does
gs, but this is at the expense of the approximation in
other regions of the unit circle.

0,067 for 6 € [0, 7).

B ‘ 1+ 0.5¢"
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Finally we show how the model reduction procedur
may be applied for designing a low-degree controller.
Example 4 (Sensitivity shaping)n robust control,
given a plantP, a controller is often designed by shapin:

the sensitivity function

1
S=1pe

where P and C are the transfer functions of the plan
and the controller respectively. In fact, the design spe
ifications may often be translated into conditions on tt
sensitivity function.

For internal stability of the closed loop system, th
sensitivity function S needs to satisfy the following

Magnitude (db)

12

10

w n nu n
N

des

.
0 0.5

1
15

.
2

1
25

Frequency (rad/s)

properties:

(i) S is analytic and bounded i,
(i) S(zr) =1 wheneverz; is an unstable zero aP,
(i) S(pr) = 0 wheneverp; is an unstable pole aP.

Furthermore, in general we require that

Fig. 9. Approximations of degreg 2, and 3

though S;q4 is infinite-dimensional it is possible to find
(iv) S has low degree, and satisfactaory low-dimensional approximants.
Example 5:In [9], the problem of shaping the sensi-

(v) S satisfies additional design specifications.
The degree bound ofi is important for several reasons_tivity function of a flexible beam with transfer function
—6.4750s% + 4.0302s + 175.770

In fact, a low-degree sensitivity function results in a

low-degree controller (see e.g., [17]), and, in some ©(*) = {E T3 5651 139 5091s 1 0.09290)

?‘pp"ca“o'.‘sz the degree of the_sen_3|t|\_/|ty functlo_n I|$5 considered, and a controller is sought so that the

important in its own right. A case in point is an autopilot nsitivity function is close to

for which the feedback system itself is to be controlleé. ty

Conditions (i)-(iv) do not in general uniquely specify _ s(s+1.2)

S, so the additional freedom can be utilized to satisfy 824125+ 17

additional design specifications (v). ~whose Bode plot is depicted in Figure 10. The plant
To examplify the theory, we consider the sensitivity> has an unstable zero m5308, a pole at0 and has

function S = (1 — PC)~" of the feedback system withye|ative degree. For the controller to be strictly proper

plant and the closed loop system to be internally stable, the

id

P(z) = L 5 interpolation condition
z —_—
Since P has one unstable pole 2tand an unstable zero 5(5.5308) = S(o0) =1,
at co, we require that the sensitivity function satisfies S(0) = S(c0) =8(x0)" =0,

needs to be satisfied.

In order to apply our theory as presented in this paper,
We begin with a particular interpolantiqcar Without \ye first transform the domain of the problem frofh.
regard to any constraint on the degree, shown as a s@idp, ysing the bilinear transformation
line in Figure 9. The functiorf (z) = S(z~!) is analytic
in D, and satisfies

f(0)=1andf(1/2) = 0.

S(c0) =1 andS(2) = 0.

So— S
s —zZ=

, Wheresy = 3.1.
So+ S

The constantsy = 3.1 is chosen the corresponding
jlinear transformation maps the area of interdést;

t0 100, onto a large part of the unit circle. Choosigg

too small or too large might cause numerical problems.

This yields

By using the computational procedure in the beginni
of the section we find degree approximationsf, of
fideal(2) = Sigear(271). Then the sensitivity functions
S, are obtained fromf(z) = f(z71).

We computeS, for » = 1,2,3 and display their
magnitudes in Figure 9. It is interesting to note that even

fia(2) = Sia (801 I_ z> ,
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Magnitude (db)
|
Magnitude (db)

Angle (6) Angle (6)

15F 1 ==

Phase (Rad)
Phase (Rad)

D
05f g L S

Angle (6) Angle (6)

Fig. 10. Bode plot of S;; and S Fig. 11. Bode plot of S;; and S

and the problem is then to find a stable functipthat 1 + ¢. We chooses = 0.05, and for thise, § = 0.05
is close tof;q(z) and which satisfies the constraints  works.
B B Then the functiony satisfies f(z)| < 1.05]fiq(z)| for
g(—0.281((15; B gE:B,__l’(_l),, 0 (23) z €T, and, since (23) holds fof it is possible to follow
I -9 —9 - the steps (i) and (i) to reduce the degreefdb 4. That
However, f;; does not satisfy the constraints (23)is, let (p, o) € Ky x W; be the minimizer of

and therefore the method in Section V does not directly o2
1-[7]

g

apply. Instead we would like to find an approximatin

of f;4 which satisfies the interpolation constraints, and

then apply the degree reduction method fon and letg be the unique function satisfying (23) and
Note that it is impossible to obtain an analytic functiopg € X. Finally we transform the domain back to the

f which simultaneously satisfies the interpolation condéontinuous-time setting via

tion (23) and the criterionf(z)| < |fia(z)| for z € T. 1—»

If such a functionf did exist, thenB := f/f;; would Z 8= S0y e

be analytic inT and bounded by one dfi. However,

)
[e.9]

whcih givesS(s) = (ﬁ) as depicted in Figure 11.
B(-0.2816) = f(~0.2816)/ fia(~0.2816) = 1.0269 > 1, Note that since there are interpolation points on the
and henceB violates the maximum principle. Thereforeooundary, the relativeél, bound is not meaningful. In
we need to be content with a functighwhich satisfies fact, o has poles in—1 that are not cancelled by zeros

|f(2)] < |fia(2)](1+e€) for z € T with somee > 0.0269. of f, and hence the right hand side of

If all the interpolation points of were inD, a straight- de
inimi lo(f = 9)lI* < =—llof*
forward method would be to takg as the minimizer of 9 =1 :
f(z) will be infinite, rendering the inequality trivial. How to

subject to (23)

deal with interpolation points on the boundary in a more
rigorous way will be the subject of further research.

It is worth noting that if the main concern is a
ow order controller, one can consider a larger class of
sensitivity functions with a possibility of better design.
For clarity of presentation we will consider a discrete-
time plant P. Briefly, we recall from [17] that

fid(z) ‘oo
Then we would haveg = f;;Ba, whereB is a Blaschke
product anda > 0. But, since there are interpolatio
points on the boundary, a slightly larger region of an
lyticity need to be considered.

Note thatf;; is analytic in(1+ §)D := {(1 + )z :
|z| <1} for 0 < § < 0.44, and letf be the function that

minimizes 1) degC < deg P +degS —n, —n,

fid@) | 1o 140)m) where n, and n, are the number of unstable zeros

and poles respectively of the plaft Since the theor
subject tof satisfying the constraints (ZSH. Now, for an P P y P y

i £(2) %uarantees thateg S < n, + n, — 1, the degree of the
e > 0.0269 one can find & > 0 so that 7:a(@) || oo < controller is less than the degree of the pl&ntwe then
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factor the transfer function of the plant into a stable arld the case where no such interpolation conditions are
an unstable part as required, we provide a systematic procedure which uti-

where 3, and «,, have roots inD, and 5, and o have

roots

the stable part of the plant to construct a larger class o
sensitivity functions for which the controller order is th?ivated by the relation between th:
same. Let >

b
Ko, = {0 = ,b € Pol(n+deg o), o outer},

BulBs lizes the extra freedom of choosing the interpolation
— points (Section VI). The various versions of the model
reduction procedure are then demonstrated on a simple
example, and finally the method is applied to a control
Y sign example from [9].

The study of theH; minimization problem is mo-
norm and the
entropy functional used in bounded interpolation. There-
fore, new concepts derived in this framework are useful
for understanding entropy minimization. In fact, both

P = ,
[e7ner

inDY. The idea is to use our knowledge abo

where the degree reduction methods proposed in this paper
n. n, easily generalize to the bounded case; see [12] for the
7(z) = H(l — Zp2) H(l — Z,2). method which preserves interpolation conditions. We are

1 1 currently working on similar bounds for the positive real

Now for anyo € K,_ the minimizer of

min |[cS]| s. t. {

case; also, see [10].

S(zk) =1, k=0,...,n,
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The authors would like to thank professor Tryphon

is of the form.5' = %, wherea € Pol(n). Due to the Georgiou for many interesting discussions and for sug-

interpolation constraints we have gesting the reference [16]. Some of the ideas that lead
aula,  Bul(asa—b), (24) 1o this paper originated in the join work with professor
Georgiou in [12].
and hence
S—1 aylasa—b) 5= APPENDIX
C = = = Bsa ° . .. . . _—
PS BuBsa =4 A quasi-convex optimization problem is an optimiza-

In view of (24), %ﬂ‘b and % are polynomials, and

tion problem for which each sublevel set is convex. The
optimization problem to minimize (19), whegeand g

sincedeg ay, + deg 3, = n, we have are polynomials of fixed degree is quasi-convex. For
asa —b simplicity, we assume thaf is real and hence that
d < deg as — deg 3, = deg a5 + deg a, '
6 Bu ntdega eg egas +dega andgq are real as well.
and As a first step, consider th&asibility problemof
B.a finding a pair(p, ¢) of polynomials satisfying
deg == < n + deg B, — deg a, = deg Bs + deg 3,,. ,
o . . . 1|4 <e (25)
This shows that any choice of in the classkK,, will P =

produce a controller of a degree less than the degree of

the plant. By utilizing the stable part of the plant, wéor a givene, or, equivalently,

have

shown that choosing sensitivity functions from a ; ; ; ; ;
g Y —elp(e®)? < Ip(e®)? — [q(e?) F(e)]? < elp(e™)]?

larger class will not increase the degree of the controller.

for all € [, 7). Since|p|*> and |q|*> are pseudo-

VIIlI. CONCLUSIONS AND FURTHER WORK polynomials, they have representations
In this paper, we propose a method for degree reduc- np
tion of stable systems. The method is based on weighted p(e”)? = 1+ prcos(kb),
H, minimization under interpolation constraints. By k=1
choosing weights appropriately, the minimizer will both . "
be of low degree and match the original system. This la(e)? = > g cos(kd),
gives a model reduction procedure for the case that k=0

both the original system and the degree-reduced systetmere n,, and n, are the degree bounds gnand q
satisfy prespecified interpolation conditions (Section Vijespectively, and the first coefficient ip|? is chosen
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to be one without loss of generality. Hence (25) ig0] G. Fanizza, J. Karlsson, A. Lindquist and R. Nagamune,

equivalent to

—1-e<(1 +E)Zpkcosk9— \f(ew)lzzchoskﬂ,

[11]

k=1 k=0

1—e<(e—1) Zpk cos kb + ]f(eie)IQ qu cos k0, [12]
k=1 k=0

for all & € [-m n]. There is also a require-[13]

ment on1 + Y77, pycos(kf) and > 77 g cos(kb)
to be positive. However, ife € (0,1),

then the

above constraints will imply positivity. The set of

P1, P25+ Pn,> 40,41, - -, qn, Satisfying this
number of linear constraints is convex.

infinite [14]

(15]
The most straightforward way to solve this feasibility
problem is to relax the infinite number of constraints to

a finite grid, which is dense enough to yield an apprél-

priate solution. Here one must be carefully to check the

positivity of 1+ >, p cos(kf) and "', g, cos(k#)

[17]

in the regions between the grid points. Another method

is the Ellipsoid Algorithm, described in detail in [4].

Minimizing (19) then amounts to finding the smallesfsg;
e for which the feasibility problem has a solution. This

can be done by the the bisection algorithm, as descri

in [4]. Note that fore = 1, the trivial solutiong = 0 is
always feasible.
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