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Stability-Preserving Rational Approximation Subject
to Interpolation Constraints

Johan Karlsson and Anders Lindquist

Abstract—A quite comprehensive theory of analytic
interpolation with degree constraint, dealing with rational
analytic interpolants with an a priori bound, has been
developed in recent years. In this paper we consider
the limit case when this bound is removed, and only
stable interpolants with a prescribed maximum degree are
sought. This leads to weightedH2 minimization, where the
interpolants are parameterized by the weights. The inverse
problem of determining the weight given a desired inter-
polant profile is considered, and a rational approximation
procedure based on the theory is proposed. This provides a
tool for tuning the solution to specifications. The basic idea
could also be applied to the case with bounded analytic
interpolants.

I. INTRODUCTION

STABILITY-PRESERVING model reduction is a
topic of major importance in systems and control,

and over the last decades numerous such approximation
procedures have been developed; see, e.g., [5], [18], [27],
[2] and references therein. In this paper we introduce
a novel approach to stability- preserving model reduc-
tion that also accommodates interpolation constraints,
a requirement not uncommon in systems and control.
By choosing the weights appropriately in a family of
weightedH2 minimization problems, the minimizer will
both have low degree and match the original system.

As we shall see in this paper, stable interpolation with
degree constraint can be regarded as a limit case of
bounded analytic interpolation under the same degree
constraint – a topic that has been thoroughly researched
in recent years; see [7], [11].

More precisely, letf be a function inH(D), the space
of functions analytic in the unit discD = {z : |z| < 1},
satisfying

(i) the interpolation condition

f(zk) = wk, k = 0, . . . , n, (1)
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(ii) the a priori bound‖f‖∞ ≤ γ, and
(iii) the condition thatf be rational of degree at most

n,

wherez0, z1, . . . , zn ∈ D are distinct (for simplicity) and
w0, w1, . . . , wn ∈ C. It was shown in [7] that, for each
suchf , there is a rational functionσ(z) of the form

σ(z) =
p(z)

τ(z)
, τ(z) :=

n
∏

k=0

(1 − z̄kz),

where p(z) is a polynomial of degreen with p(0) >
0 and p(z) 6= 0 for z ∈ D such thatf is the unique
minimizer of the generalized entropy functional

−
∫ π

−π

|σ(eiθ)|2γ2 log(1 − γ−2|f(eiθ)|2)dθ

2π

subject to the interpolation conditions (1). In fact, there
is a complete parameterization of the class of all inter-
polants satisfying (i)–(iii) in terms of the zeros ofσ,
which also are the spectral zeros off ; i.e., the zeros of
γ2 − f(z)f∗(z) located in the complement of the unit
disc. It can also be shown that this parameterization is
smooth, in fact a diffeomorphism [8].

This smooth parameterization in terms of spectral
zeros is the center piece in the theory of analytic
interpolation with degree constraints; see [6], [7] and
reference therein. By tuning the spectral zeros one can
obtain an interpolant that better fulfills additional design
specifications. However, one of the stumbling-blocks in
the application of this theory has been the lack of a
systematic procedure for achieving this tuning. In fact,
the relation between the spectral zeros off andf itself is
nontrivial, and how to choose the spectral zeros in order
to obtain an interpolant which satisfy the given design
specifications is a partly open problem.

In order to understand this problem better, we will in
this paper focus on the limit case asγ → ∞; i.e., the
case when condition (ii) is removed. We shall refer to this
problem – which is of considerable interest in its own
right – as stable interpolation with degree constraint.
Note that, asγ → ∞,

−γ2 log(1 − γ−2|f |2) → |f |2,
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and hence (see Proposition 2),

−
∫ π

−π

|σ|2γ2 log(1 − γ−2|f |2)dθ

2π
→

∫ π

−π

|σf |2 dθ

2π
.

For the caseσ ≡ 1, this connection between theH2 norm
and the corresponding entropy functional have been
studied in [16]. Consequently, the stable interpolants
with degree constraint turn out to be minimizers of
weightedH2 norms. Indeed, theH2 norm plays the same
role in stable interpolation as the entropy functional does
in bounded interpolation. Stable interpolation andH2

norms are considerably easier to work with than bounded
analytic interpolation and entropy functionals, but many
of the concepts and ideas are similar.

The purpose of this paper is twofold. First, we want to
provide a stability-preserving model reduction procedure
that admits interpolation constraints and error bounds.
Secondly, this theory is the simplest and most transparent
gateway for understanding the full power of bounded
analytic interpolation with degree constraint. In fact, our
paper provides, together with the results in [12], the
key to the problem of how to settle an important open
question in the theory of bounded analytic interpolation
with degree constraint, namely how to choose spectral
zeros.

In many applications, no interpolation conditions are
given a priori. This allows us to use the interpola-
tion points as additional tuning variables, available for
satisfying design specifications. Such an approach for
passivity-preserving model reduction was proposed in
[1] and further developed in [20]. In [10] we pointed
out that the procedure in [1], [20] can be regarded
as a special case of Nevanlinna-Pick interpolation with
degree constraint [6], namely the central solution cor-
responding to the choiceσ ≡ 1. We demonstrated in
[10] that using the full power of the latter theory allows
us the tune the approximant to specifications without
increasing the degree. A similar situation occurs in the
context of prediction-error approximation with a finite
set of basis functions [13], [23], which together with
prefiltering leads to the minimization of generalized
entropy functionals [3].

A problem left open in [10] and in [13] was how to
actually select spectral zeros and interpolation points ina
systematic way in order to obtain the best approximation.
It is precisely this problem, here in the context of
stability-preserving model reduction, that is the topic of
this paper. Unlike the procedures in [1], [20], [10], we
shall also be able to provide error bounds. Moreover,
although the procedures presented in this paper are in
the setting of stable interpolation, they will also give
insight into both bounded analytic interpolation [7] and

positive real interpolation [6].
The paper is outlined as follows. In Section II we

show that the problem of stable interpolation is the limit,
as the bound tend to infinity, of the bounded analytic
interpolation problem stated above. In Section III we
derive the basic theory for how all stable interpolants
with a degree bound may be obtained as weighted
H2-norm minimizers. In Section IV we consider the
inverse problem ofH2 minimization, and in Section
V the inverse problem is used for model reduction
of interpolants. The inverse problem and the model
reduction procedure are closely related to the theory in
[12]. A model reduction procedure where no a priori
interpolation conditions are required are derived in Sec-
tion VI. This is motivated by a weighed relative error
bound of the approximant and gives a systematic way
to choose the interpolation points. This approximation
procedure is also tunable so as to give small error in
selected regions. In the Appendix we describe how the
corresponding quasi-convex optimization problems can
be solved. Finally, in Section VII we illustrate our new
approximation procedures by applying them to a simple
example and conclude with a control design example.

II. B OUNDED INTERPOLATION AND STABLE

INTERPOLATION

In this section we show that theH2 norm is the limit
of a sequence of entropy functionals. From this limit,
the relation between stable interpolation and bounded
interpolation is established, and it is shown that some of
the important concepts in the two different frameworks
match.

First consider one of the main results of bounded inter-
polation: a complete parameterization of all interpolants
with a degree bound [7]. For this, we will need two key
concepts in that theory; the entropy functional

K
γ
|σ|2(f) = −

∫ π

−π

γ2|σ(eiθ)|2 log(1 − γ−2|f(eiθ)|2)dθ

2π
,

where we takeKγ
|σ|2(f) := ∞ whenever theH∞ norm

‖f‖∞ > γ, and the co-invariant subspace

K =

{

p(z)

τ(z)
: τ(z) =

n
∏

k=0

(1 − z̄kz), p ∈ Pol(n)

}

.

(2)
HerePol(n) denotes the set of polynomials of degree at
mostn, and{zk}n

k=0 are the interpolation points.
In fact, any interpolantf of degree at mostn with

‖f‖∞ ≤ γ is a minimizer ofKγ
|σ|2(f) subject to (1) for

someσ ∈ K0, where

K0 = {σ ∈ K : σ(0) > 0, σ outer}.
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Furthermore, all such interpolants are parameterized by
σ ∈ K0. This is one of the main results for bounded
interpolation in [7] and is stated more precisely as
follows.

Theorem 1:Let {zk}n
k=0 ⊂ D, {wk}n

k=0 ⊂ C, and
γ ∈ R+. Suppose that the Pick matrix

P =

[

γ2 − wkw̄ℓ

1 − zkz̄ℓ

]n

k,ℓ=0

(3)

is positive definite, and letσ be an arbitrary function in
K0. Then there exists a unique pair of elements(a, b) ∈
K0 × K such that

(i) f(z) = b(z)/a(z) ∈ H∞ with ‖f‖∞ ≤ γ
(ii) f(zk) = wk, k = 0, 1, . . . , n, and
(iii) |a(z)|2 − γ−2|b(z)|2 = |σ(z)|2 for z ∈ T,

whereT := {z : |z| = 1}. Conversely, any pair(a, b) ∈
K0 × K satisfying (i) and (ii) determines, via (iii), a
uniqueσ ∈ K0. Moreover, the optimization problem

min K
γ
|σ|2(f) s.t. f(zk) = wk, k = 0, . . . , n

has a unique solutionf that is precisely the uniquef
satisfying conditions (i), (ii) and (iii).

The essential content of this theorem is that the
class of interpolants satisfying‖f‖∞ ≤ γ may be
parameterized in terms of the zeros ofσ, and that these
zeros are the same as thespectral zerosof f ; i.e., the
zeros of the spectral outer factorw(z) of w(z)w∗(z) =
γ2 − f(z)f∗(z), wheref∗(z) = f(z̄−1).

Let ‖f‖ =
√

< f, f > denote the norm in the Hilbert
spaceH2(D) with inner product

< f, g >=

∫ π

−π

f(eiθ)g(eiθ)
dθ

2π
,

and letRH(D) denote the rational functions analytic in
D. As the boundγ tend to infinity,

−γ2 log(1 − γ−2|f |) → |f |2.
Therefore, the entropy functionalK

γ

|σ|2
(f) converge to

the weightedH2 norm ‖σf‖2.
Proposition 2: Let f, σ ∈ RH(D) with σ outer and

‖f‖∞ < ∞. Then
(i) K

γ
|σ|2(f) is a non-increasing function ofγ, and,

(ii) K
γ
|σ|2(f) → ‖σf‖2 asγ → ∞.

Proof: It clearly suffices to consider onlyγ ≥
‖f‖∞. Then the derivative of−γ2 log(1−γ−2|f |2) with
respect toγ is non-positive for |f | ≤ γ, and hence
K

γ

|σ|2(f) is non-increasing. To establish (ii), note that

−γ2 log(1 − γ−2|f |2) = |f |2 + O(γ−2|f |2),
and therefore

−|σ|2γ2 log(1 − γ−2|f |2) → |σf |2

pointwise inT except forσ with poles inT. There are
two cases of importance. First, ifσ has no poles inT,
or if a pole ofσ coincided with a zero off of at least
the same multiplicity, then−|σ|2γ2 log(1 − γ−2|f |2) is
bounded, and (ii) follows from bounded convergence.
Secondly, ifσ has a pole inT at a point in whichf
does not have a zero, then bothK

γ

|σ|2(f), and‖σf‖2 are
infinite for anyγ.

The condition‖f‖∞ < ∞ is needed in Proposition 2.
Otherwise, if‖f‖∞ = ∞, then K

γ

|σ|2(f) is infinite for
any γ, while ‖σf‖2 may be finite ifσ has zeros in the
poles off on T.

The next proposition shows that stable interpolation
may be seen as the limit case of bounded interpolation
when the boundγ tend to infinity.

Proposition 3: Let σ be any outer function such that
the minimizerf of

min ‖σf‖ such thatf(zk) = wk, k = 0, . . . , n (4)

satisfies‖f‖∞ < ∞. Let fγ be the minimizer of

min K
γ
|σ|2(fγ) such thatfγ(zk) = wk, k = 0, . . . , n

for γ ∈ R+ large enough so that the Pick matrix (3) is
positive definite. Then‖σ(f − fγ)‖ → 0 asγ → ∞.

Proof: By Proposition 2, and sincef and fγ are
minimizers of the respective functional, we have

K
γ
|σ|2(f) ≥ K

γ
|σ|2(fγ) ≥ ‖σfγ‖2 ≥ ‖σf‖2.

Moreover, sinceKγ
|σ|2(f) → ‖σf‖2 asγ → ∞ it follows

that‖σfγ‖2 → ‖σf‖2, and hence, by Lemma 8, we have
‖σ(f − fγ)‖ → 0 asγ → ∞, as claimed.

Note that Proposition 3 holds for anyσ which is outer
and not only forσ ∈ K0. However, if σ ∈ K0, then
deg fγ ≤ n for anyγ. Therefore, since‖σ(f −fγ)‖ → 0
as γ → ∞, for σ ∈ K0 the minimizerf of (4) will be
a stable interpolant of degree at mostn. We will return
to this in the next section.

It is interesting to note how concepts in the two types
of interpolation are related. First of all, the weightedH2

norm plays the same role in stable interpolation as the en-
tropy functional does in bounded interpolation. Secondly,
the spectral zeros, which play an major role in degree
constrained bounded interpolation, simply correspond to
the poles in stable interpolation. This may be seen from
(iii) in Theorem 1.

III. R ATIONAL INTERPOLATION AND H2

MINIMIZATION

In the previous section we have seen that minimizers
of a specific class ofH2 norms are stable interpolants of
degree at mostn. This, and also the fact that this class
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may be parameterized byσ ∈ K0 can be proved using
basic Hilbert space concepts. This will be done in this
section.

To this end, first consider the minimization problem

min ‖f‖ s. t. f(zk) = wk, k = 0, . . . , n, (5)

without any weightσ. Let f0 ∈ H2(D) satisfy the inter-
polation condition (1). Then anyf ∈ H2(D) satisfying
(1) can be written asf = f0+v, whereB =

∏n
k=0

zk−z
1−z̄kz

andv ∈ BH2. Therefore, (5) is equivalent to

min
v∈BH2

‖f0 + v‖.

By the Projection Theorem (see, e.g., [14]), there exists a
unique solutionf = f0 +v to this optimization problem,
which is orthogonal toBH2, i.e. f ∈ K := H2 ⊖ BH2.

Conversely, if f ∈ K and f(zk) = wk, for k =
0, . . . , n, then f is the unique solution of (5). To see
this, note that any interpolant inH2(D) may be written
asf + v wherev ∈ BH2. However, sincev ∈ BH2 ⊥
K ∋ f , we have‖f + v‖2 = ‖f‖2 +‖v‖2, and hence the
minimizer isf , obtained by settingv = 0.

We summarize this in the following proposition.
Proposition 4: The unique minimizer of (5) belongs

to K. Conversely, iff ∈ K and f(zk) = wk, for k =
0, . . . , n, thenf is the minimizer of (5).

Consequently, in view of (2),f is a rational function
with its poles fixed in the mirror images (with respect
to the unit circle) of the interpolation points. By intro-
ducing weighted norms, any interpolant with poles in
prespecified points may be constructed in a similar way.
In fact, the set of interpolantsf of degree≤ n may be
parameterized in this way. One way to see this is by
considering

min ‖σf‖ s. t. f(zk) = wk, k = 0, . . . , n, (6)

where σ ∈ K0. Since σ is invertible in H(D), (6) is
equivalent to

min ‖σf‖ s. t. (σf)(zk) = σ(zk)wk, k = 0, . . . , n.

According to Proposition 4, this has the optimal solution
σf = b ∈ K, and hence the solution of (6),f = b

σ
, is

rational of degree at mostn. To see that any solution
of degree at mostn can be obtained in this way, note
that any such interpolantf is of the formf = b

σ
, b ∈

K, σ ∈ K0. Sinceσf = b ∈ K holds together with the
interpolation condition (1) if and only ifσ(zk)f(zk) =
σ(zk)wk for k = 0, . . . , n, f is the unique solution of (6),
by Proposition 4. This proves the following proposition.

Theorem 5:Let σ ∈ K0. Then the unique minimizer
of

min ‖σf‖ s. t. f(zk) = wk, k = 0, . . . , n, (7)

belong toH(D) and is rational of a degree at mostn.
More precisely,

f =
b

σ
(8)

whereb ∈ K is the unique solution of the linear system
of equations

b(zk) = σ(zk)wk, k = 0, 1, . . . , n. (9)

Conversely, if f satisfies (8) for someb ∈ K and
the interpolation condition (1), thenf is the unique
minimizer of (7).

In other words, the set of interpolants inH(D) of
degree at mostn may be parameterized in terms of
weights σ ∈ K0. Another way to look at this is that
the poles of the minimizer (8) are specified by the zeros
of σ and that the numeratorb = β/τ is determined from
the interpolation condition by solving the linear system
of equations

β(zk) = τ(zk)σ(zk)wk, k = 0, 1, . . . , n (10)

for then+1 coefficientsβ0, β1, . . . , βn of the polynomial
β(z). This is a Vandermonde system that is known to
have a unique solution (as long as the interpolation point
zo, z1, . . . , zn are distinct as here).

Note that this parameterization is not necessarily injec-
tive. If, for example,wk = 1 for k = 0, . . . , n, then there
is a unique functionf of degree at mostn that satisfies
f(zk) = wk, k = 0, . . . , n. No matter howσ ∈ K0 is
chosen,b = σ, and hence the minimizer of (6) will be
f ≡ 1.

IV. T HE INVERSE PROBLEM

In [12] we considered theinverse problem of analytic
interpolation; i.e., the problem of choosing an entropy
functional whose unique minimizer is a prespecified in-
terpolant. In this section we will consider the counterpart
of this problem for stable interpolation.

Supposef ∈ RH(D) satisfies the interpolation condi-
tion (1). Then, when does there existσ ∈ RH(D) which
is outer such thatf is the minimizer of

min ‖σf‖ s. t. f(zk) = wk, k = 0, . . . , n?

We refer to this as theinverse problem ofH2 min-
imization, and its solution is given in the following
proposition.

Theorem 6:Let f ∈ RH(D) satisfy the interpolation
condition f(zk) = wk, k = 0, . . . , n. Then f is the
minimizer of

min ‖σf‖ s. t. f(zk) = wk, k = 0, . . . , n, (11)
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whereσ is outer if and only ifσf ∈ K, in which case
the minimizer is unique. Such aσ exists if and only if
f has no more thann zeros inD.

Proof: The functionf is the minimizer of (11) if
and only ifb = σf is the minimizer (necessarily unique)
of

min ‖b‖ s. t. b(zk) := wkσ(zk), k = 0, . . . , n,

which, by Proposition 4, holds if and only ifσf = b ∈
K. Such aσ only exists iff has less or equal ton zeros
insideD. To see this, first note that, iff has more than
n zeros inD, thenσf has more thann zeros inD and
can therefore not be of the formp/τ with p ∈ Pol(n).
On the other hand, iff has less or equal ton zeros in
D, then letp =

∏

(z − pk) wherepk are the zeros off ,
and setσ := p

fτ
. Thenσ is outer and satisfiesσf ∈ K.

Theorem 6 defines a mapF that sendsσ to the unique
minimizer f of the optimization problem (11); i.e.,

σ 7→ f = F (σ). (12)

Let Wf denote the set of weightsσ that give f as a
minimizer of (11); i.e., the inverse imageF−1(f) of f .
By Theorem 6,

Wf := F−1(f) = {σ outer : σf ∈ K} (13)

=

{

σ =
p

fτ
: p ∈ Pol(n) r {0}, p

f
outer

}

,

i.e., Wf may be parameterized in terms of the polyno-
mials p ∈ Pol(n). For the condition thatpf−1 is outer
to hold for somep ∈ Pol(n), it is necessary thatf has at
mostn zeros inD. This is in accordance with Theorem 6.
It is interesting to note that the dimension ofWf depends
on the number of zeros off inside D. The more zeros
f has insideD, the more restricted is the classWf . One
extreme case is whenf has no zeros insideD. Thenp
could be any stable polynomial of degreen. The other
extreme is whenf hasn zeros inD, in which casep is
uniquely determined up to a multiplicative constant.

V. RATIONAL APPROXIMATION WITH

INTERPOLATION CONSTRAINTS

In this section the solution of the inverse problem
(Theorem 6) will be used to develop an approximation
procedure for interpolants. Letf ∈ RH(D) be a function
satisfying the interpolation condition (1). We want to
construct another functiong ∈ RH(D) of degree at most
n satisfying the same interpolation condition such thatg
is as close as possible tof .

Let σ ∈ Wf ; i.e., let σ be a weight and such that
f is the minimizer of (11), and letρ be close toσ.

Then it seems reasonable that the minimizerg of the
optimization problem

min ‖ρg‖ s. t. g(zk) = wk, k = 0, . . . , n, (14)

is close tof . This is the statement of the following
theorem.

Theorem 7:Let f ∈ RH(D) satisfy the interpolation
condition f(zk) = wk, k = 0, . . . , n, and letσ ∈ Wf .
Moreover, letρ be an outer function such that

∥

∥

∥

∥

1 −
∣

∣

∣

ρ

σ

∣

∣

∣

2
∥

∥

∥

∥

∞

= ǫ, (15)

and letg be the corresponding minimizer of (14). Then

‖σ(f − g)‖2 ≤ 4ǫ

1 − ǫ
‖σf‖2. (16)

For the proof we need the following useful lemma.
Lemma 8:Let let g ∈ RH(D) satisfyg(zk) = wk for

k = 0, . . . , n, and letf be the minimizer of (11). Then,
if

‖σg‖2 ≤ (1 + δ)‖σf‖2,

we have
‖σ(f − g)‖2 ≤ 2δ‖σf‖2.

Proof: From the parallelogram law we have,

1

2

(

‖σf‖2 + ‖σg‖2
)

=

∥

∥

∥

∥

σ
f + g

2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

σ
f − g

2

∥

∥

∥

∥

2

.

Therefore, sincef is the minimizer of (11), and hence
‖σf‖ ≤ ‖σ(f + g)/2‖, it follows that

‖σ(f − g)‖2 ≤ 2(‖σg‖2 − ‖σf‖2) ≤ 2δ‖σf‖2,

which concludes the proof of the lemma.
Proof of Theorem 7:In view of (15) we have

(1 − ǫ)|σ(eiθ)|2 ≤ |ρ(eiθ)|2 ≤ (1 + ǫ)|σ(eiθ)|2

for all θ ∈ [−π, π]. Therefore, sinceg is the minimizer
of (14), by (15), we have

‖σg‖2 ≤ 1

1 − ǫ
‖ρg‖2 ≤ 1

1 − ǫ
‖ρf‖2

≤ 1 + ǫ

1 − ǫ
‖σf‖2 = (1 + δ)‖σf‖2,

where δ := 2ǫ/(1 − ǫ). Conse-
quently (16) follows from Lemma 8.

�

We have thus shown that if
∣

∣

∣

ρ(z)
σ(z)

∣

∣

∣
is close to 1

for z ∈ T, then ‖σ(f − g)‖ is small. This suggests
the following approximation procedure, illustrated in
Figure 1. By Theorem 5, the functionF , defined by
(12), maps the subsetK0 into the space of interpolants of
degree at mostn. In Figure 1 these subsets are depicted
by fat lines. The basic idea is to replace the hard problem
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ρ σ

K0

g f

F

Interpolants of degree≤ n

Fig. 1. The mapF sending weighting functions to interpolants.

of approximatingf by a functiong of degree at most
n by the simpler problem of approximating an outer
function σ by a functionρ ∈ K0.

Theorem 7 suggests various strategies for choosing the
functionsρ ∈ K0 andσ ∈ Wf depending on the design
preferences. If a small error bound for‖σ(f − g)‖ is
desired for a particularσ ∈ Wf , this σ should be used
together with theρ ∈ K0 that minimizes (15).

However, obtaining a small value of (15) is often more
important than the choice ofσ. Therefore, in general it
is more natural to choose the pair(σ, ρ) ∈ (Wf ,K0) that
minimizesǫ. For such a pair, settingq := τρ, we can be
see from (2) and (13) that

ǫ =

∥

∥

∥

∥

1 −
∣

∣

∣

ρ

σ

∣

∣

∣

2
∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

1 −
∣

∣

∣

∣

qf

p

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

∞

, (17)

where q ∈ Pol(n) and p ∈ Pol(n) r {0} needs to be
chosen so thatp/f is outer. It is interesting to note that
(17) is independent ofτ(z) :=

∏n
k=0(1− z̄kz) and hence

of the interpolation pointsz0, z1, . . . , zn.
Now suppose thatf has ν zeros in D; i.e., ν

nonminimum-phase zeros. Thenf = πf0, wheref0 is
outer (minimum phase) andπ is an unstable polynomial
of degreeν ≤ n. Setting p = πp0, our optimization
problem to minimizeǫ reduces to the problem to find a
pair (p0, q) ∈ Pol(n − ν) × Pol(n) that minimizes

ǫ =

∥

∥

∥

∥

∥

1 −
∣

∣

∣

∣

qf0

p0

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

∞

(18)

for a given nonminimum-phasef0. This is a quasi-
convex optimization problem, which can be solved as
described in the Appendix (see also [21], [24]). The
optimal q yields the optimalρ = q/τ . The approximant
g is then obtained by solving the optimization problem
(14) as described in Theorem 5.

One should note that, the more zerosf has insideD,
the smaller is the choice ofp. Therefore one expects
approximations of non-minimum phase plants to be
worse than approximations of plants without unstable
zeros.

VI. RATIONAL APPROXIMATION

In applications where there are no a priori interpola-
tion constraints, the choice of interpolation points serve
as additional design parameters. It is then important to
choose them so that a good approximation is obtained.
There are some general guidelines that one could use
for manual tuning. The main strategy previously used is
to chose interpolation points close to the regions of the
unit circle where good fit is desired. The closer to the
unit circle the points are placed, the better fit, but the
smaller is the region where good fit is ensured; see [10]
for further discussions on this. However, in this paper
we shall provide a systematic procedure for choosing the
interpolation points, based on quasi-convex optimization.

As we have seen in the previous section the choice
of interpolation points does not affectǫ given by (17).
However, sinceσ = p

fτ
, the weightedH2 error bound

(16) in Theorem 7 becomes
∥

∥

∥

∥

p

τ

f − g

f

∥

∥

∥

∥

2

≤ 4ǫ

1 − ǫ

∥

∥

∥

p

τ

∥

∥

∥

2
,

which depends onτ and hence on the choice of inter-
polation points. In fact, this is a weighedH2 bound on
the relative error(f − g)/f . If a specific part of the
unit circle is of particular interest, interpolation points
may be placed close to that part, which gives a bound
on the weighted relative error with high emphasis on
that specific region. (For a method to do this by convex
optimization, see Remark 2 in the next section.) If no
particular part is more important than the rest, we suggest
to selectτ as the outer part ofp; i.e., |τ(z)| = |p(z)|
for z ∈ T. This gives a natural choice of interpolation
points that are the mirror images of the roots ofτ .
Furthermore, this choice gives the relative error bound
‖(f − g)/f‖ ≤ 4ǫ/(1 − ǫ). This is summarized in the
following theorem.

Theorem 9:Let p andq be polynomials of degrees at
mostn such thatpf−1 is outer, and set

ǫ :=

∥

∥

∥

∥

∥

1 −
∣

∣

∣

∣

qf

p

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

∞

. (19)

Let z0, z1, . . . , zn ∈ D and let

g = arg min ‖ρg‖ s. t. g(zk) = f(zk), k = 0, . . . , n,
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whereρ = q/τ andτ =
∏n

k=0(1 − z̄kz). Then
∥

∥

∥

∥

p

τ

f − g

f

∥

∥

∥

∥

2

≤ 4ǫ

1 − ǫ

∥

∥

∥

p

τ

∥

∥

∥

2
. (20)

In particular, if the interpolation pointsz0, z1, . . . , zn are
chosen so that|τ(z)| = |p(z)| for z ∈ T, then

∥

∥

∥

∥

f − g

f

∥

∥

∥

∥

2

≤ 4ǫ

1 − ǫ
. (21)

Remark 1:Note that the choice|τ | = |p| in Theorem
9 implies that the unstable zeros off become interpola-
tion points. Therefore, forǫ < 1, (f − g)/f belongs to
H2.

VII. T HE COMPUTATIONAL PROCEDURE ANDSOME

ILLUSTRATIVE EXAMPLES

Next we summarize the computational procedure sug-
gested by the theory presented above and apply it to
some examples.

Given a functionf ∈ RH(D) with at mostn zeros
in D, we want to construct a functiong ∈ RH(D)
of degree at mostn that approximatesf as closely as
possible. We consider two versions of this problem. First
we assume thatf satisfies the interpolation condition
(1), and we requireg to satisfy the same interpolation
conditions. Secondly, we relax the problem by removing
the interpolation constraints.

Suppose thatf hasν ≤ n zeros inD. Thenf = πf0,
wheref0 is minimum-phase, andπ is a polynomial of
degreeν with zeros inD. The approximantg can then
be determined in two steps:

(i) Solve the quasi-convex optimization problem to
find a pair(p0, q) ∈ Pol(n− ν)×Pol(n) that minimizes
(18), as outlined in the Appendix. This yields optimalǫ,
p0 andq. Setp := πp0.

(ii) Solve the optimization problem (14) withρ = q/τ ,
as described in Theorem 5. Exchangingσ for ρ in (10)
we solve the Vandermonde system

β(zk) = q(zk)wk, k = 0, 1, . . . , n,

for the β ∈ Pol(n), which yields

g =
β

q
(22)

and the bound (20), whereτ(z) :=
∏n

k=0(1 − z̄kz).
For the problem without interpolation condition, we

replace step (ii) by one of the following steps.
(ii) ′ Choosez0, z1, . . . , zn arbitrarily, or as in Re-

mark 2 below. This yields a solution (22) and a bound
(20).

−2 −1 0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

Re

Im

 

 
Zeros
Poles

Fig. 2. Poles and zeros off in Examples1, 2, and3.

(ii) ′′ Choose z0, z1, . . . , zn so that τ is the outer
(minimum-phase) factor ofp. This yields a solution (22)
and the bound (21) for the relativeH2 error.

Remark 2: If a bound on the weighted error‖w(f −
g)‖ is desired in Step (ii)′, it is natural to chooseτ so
that p

τf
is as close tow as possible. This may be done

by solving the convex optimization problem to find a
τ ∈ Pol(n) that minimizes

∥

∥

∥

∥

∥

1 −
∣

∣

∣

∣

τfw

p

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

∞

,

as in the Appendix. If instead we need a bound on the
weighted relative error‖w(f − g)/f‖, we modify the
optimization problem accordingly.

We apply these procedures to some numerical exam-
ples.

Example 1:Let

f(z) =
b(z)

a(z)

be the stable system of order13 given by

b(z) = 30z13 + 90z12 + 128.6z11 + 114.6z10

−137.4z9 − 322.3z8 − 371.4z7 + 10.8z6

+1005.8z5 + 2428.7z4 + 3967.0z3 + 4189.7z2

+2800.6z + 726.2,

a(z) = 4.0z13 − 13.4z12 − 44.2z11 − 144.5z10

+83.5z9 + 363.7z8 + 791.4z7 + 340.1z6

+770.7z5 + 877.3z4 − 93.6z3 − 4767.8z2

−6349.3z − 4532.7.

This system has one minimum-phase zero. The poles and
zeros are given in Figure 2.

Consider the problem to approximatef by a function
g of degree six while preserving the values in the points
(z0, z1, . . . , zn) = (0, 0.3, 0.5,−0.1,−0.7,−0.3 ± 0.3i).
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Fig. 3. Bode plots off andg together with the relative error.

Such an interpolation condition occurs in certain appli-
cations.

Step (i) to solve the quasi-convex optimization prob-
lem to minimize (18) yields optimalǫ, p andq, and Step
(ii) the approximantg, the Bode plot of which is depicted
in Figure 3 together with that off . The third subplot in
the picture shows the relative error

∣

∣

∣

∣

f(eiθ) − g(eiθ)

f(eiθ)

∣

∣

∣

∣

for θ ∈ [0, π].

It is important to note that the functiong, which is
guaranteed to be stable, satisfies the prespecified inter-
polation conditions and the error bound (20). Figure 3
shows thatg matchesf quite well.

Example 2:Next we approximate the functionf in
Example 1 without imposing any interpolation condition.
For n = 4, 6 and 8 we determine an approximantgn

of degreen via Steps (i) and (ii)′′. This approximant
satisfies the relative error bound (21). Then we compare
gn to an approximant̂fn of the same degree obtained by
balanced truncation [19], [26].

Since balance truncation imposes a bound on the
absolute, rather than the relative, error, it is reasonable
to also compare it with the approximanthn of degreen
obtained by stochastically balanced truncation [25], [22],
which comes with a relative error bound.

The respective Bode plots and relative errors for the
three methods are depicted in Figures 4, 5, and 6.
Stochastically balanced truncation gives the best approx-
imation close to the valleys of the plant, and balanced
truncation gives best approximation close to the peaks.
The proposed method performs somewhere in between
and has a more uniform relative error. In fact, as can be
seen from Figure 5 and Figure 6, it is the method with the

smallest relativeL∞-error for n = 6 andn = 8. As can
be seen in the following tables, listing the relative and
absolute errors of the three methods, the approximants
of roughly the same quality.

Relative L2 Error Degree
Approximation method 4 6 8
Proposed method 0.4736 0.0764 0.0194
Balanced truncation 0.4727 0.0785 0.0220
Stoch. Bal. truncation 0.7958 0.0656 0.0334

H2 Error Degree
Approximation method 4 6 8
Proposed method 0.1918 0.0422 0.0100
Balanced truncation 0.0746 0.0451 0.0057
Stoch. Bal. truncation 0.3073 0.0506 0.0213

In the present example, the error bound (21) is quite
conservative. In fact, the bound is10.4735, 0.8765, and
0.3994, for n equal to4, 6, and 8 respectively, which
should be compared with the corresponding errors in the
table. By comparison, the relativeL∞ bound onhn is
3.9288, 0.3562, and 0.0573 for n equal to4, 6, and 8
respectively, which is also conservative forn = 4, 6.
Although these bounds are measured in different norms,
it is still interesting to compare them. How to improve
our bound will be subject to further studies.

In Figure 7 the approximantg from Example 1 is
compared tog6. The interpolation points forg6 are
chosen according to (ii)′′, and the interpolation condition
of g is prespecified. It can be seen from Figure 7 that
g6 matchesf better than doesg. This is because the
interpolation points could be chosen freely forg6.

Note that the problem of stable approximation could
be approached directly by nonconvex optimization to
find local optima by gradient methods (see e.g. [15] and
references therein). If a sufficiently good starting point is
provided then even the global optima could be reached.
In this example it is possible to find, using such methods,
approximations with relative errors0.11, 0.0656, and
0.0105 of degree4, 6, and8, respectively.1 These errors
compares fovourable to all the above methods. However,
our goal has been to provide an alternative framework
based only on convex and quasi-convex optimization. An
advantage with this approach is that the method does not
rely on a good starting point for the algorithm which is
often difficult to find. It will be subject to further research
to investigate in which way optimal approximations of
weights relate to optimal approximations of interpolants.

1The authors would like to thank professor Martine Olivi for
providing us with this comparison.
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Fig. 4. Bode plot off , g4, f̂4, and h4 together with the relative
errors.

0 0.5 1 1.5 2 2.5 3
−30

−20

−10

0

10

Angle (θ)

M
ag

ni
tu

de
 (

db
)

0 0.5 1 1.5 2 2.5 3
2

4

6

8

Angle (θ)

P
ha

se
 (

R
ad

)

 

 

Plant
Proposed Method
Balanced Truncation
Stoch. Bal. Truncation

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

Angle (θ)

R
el

at
iv

e 
E

rr
or

Fig. 5. Bode plot off , g6, f̂6, and h6 together with the relative
errors.

0 0.5 1 1.5 2 2.5 3
−30

−20

−10

0

10

Angle (θ)

M
ag

ni
tu

de
 (

db
)

0 0.5 1 1.5 2 2.5 3
2

4

6

8

Angle (θ)

P
ha

se
 (

R
ad

)

 

 

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

Angle (θ)

R
el

at
iv

e 
E

rr
or

Plant
Proposed Method
Balanced Truncation
Stoch. Bal. Truncation

Fig. 6. Bode plot off , g8, f̂8, and h8 together with the relative
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Fig. 7. Bode plot off , g6, andg together with the relative errors.
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Example 3:We continue to approximate the function
in Example 1, but this time we move the interpolation
points to get a better fit in a selected frequency band. In
computingg6 the interpolation points were determined
via (ii)′′ to be

(0,−0.5,−0.8841,−0.0380±0.7221i,−0.7021±0.6488i),

thus yielding the weight|p(eiθ)/τ(eiθ)| = 1 for θ ∈
[0, π]. In order to get a better fit close to1 (i.e. atθ = 0)
we replace the interpolation point−0.5 with the point
0.9, thus producing the weight

∣

∣

∣

∣

p(eiθ)

τ(eiθ)

∣

∣

∣

∣

=

∣

∣

∣

∣

1 + 0.5eiθ

1 − 0.9eiθ

∣

∣

∣

∣

for θ ∈ [0, π].

Denote by ĝ6 the minimizer (14) corresponding to
the interpolation points(0, 0.9,−0.8841,−0.0380 ±
0.7221i,−0.7021 ± 0.6488i). The functionsg6 and ĝ6

are depicted in Figure 8. In the selected region close to
1, ĝ6 approximates the original system better than does
g6, but this is at the expense of the approximation in
other regions of the unit circle.
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Finally we show how the model reduction procedure
may be applied for designing a low-degree controller.

Example 4 (Sensitivity shaping):In robust control,
given a plantP , a controller is often designed by shaping
the sensitivity function

S =
1

1 − PC
,

whereP and C are the transfer functions of the plant
and the controller respectively. In fact, the design spec-
ifications may often be translated into conditions on the
sensitivity function.

For internal stability of the closed loop system, the
sensitivity function S needs to satisfy the following
properties:

(i) S is analytic and bounded inC+,
(ii) S(zk) = 1 wheneverzk is an unstable zero ofP ,
(iii) S(pk) = 0 wheneverpk is an unstable pole ofP .

Furthermore, in general we require that

(iv) S has low degree, and
(v) S satisfies additional design specifications.

The degree bound onS is important for several reasons.
In fact, a low-degree sensitivity function results in a
low-degree controller (see e.g., [17]), and, in some
applications, the degree of the sensitivity function is
important in its own right. A case in point is an autopilot,
for which the feedback system itself is to be controlled.
Conditions (i)-(iv) do not in general uniquely specify
S, so the additional freedom can be utilized to satisfy
additional design specifications (v).

To examplify the theory, we consider the sensitivity
function S = (1 − PC)−1 of the feedback system with
plant

P (z) =
1

z − 2
.

SinceP has one unstable pole at2 and an unstable zero
at ∞, we require that the sensitivity function satisfies

S(∞) = 1 andS(2) = 0.

We begin with a particular interpolantSideal without
regard to any constraint on the degree, shown as a solid
line in Figure 9. The functionf(z) = S(z−1) is analytic
in D, and satisfies

f(0) = 1 andf(1/2) = 0.

By using the computational procedure in the beginning
of the section we find degreer approximationsfr of
fideal(z) = Sideal(z

−1). Then the sensitivity functions
Sr are obtained fromS(z) = f(z−1).

We computeSr for r = 1, 2, 3 and display their
magnitudes in Figure 9. It is interesting to note that even
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Fig. 9. Approximations of degree1, 2, and3

thoughSid is infinite-dimensional it is possible to find
satisfactaory low-dimensional approximants.

Example 5: In [9], the problem of shaping the sensi-
tivity function of a flexible beam with transfer function

P (s) =
−6.4750s2 + 4.0302s + 175.770

s(5s3 + 3.5682 + 139.5021s + 0.09290)

is considered, and a controller is sought so that the
sensitivity function is close to

Sid =
s(s + 1.2)

s2 + 1.2s + 1
,

whose Bode plot is depicted in Figure 10. The plant
P has an unstable zero in5.5308, a pole at0 and has
relative degree2. For the controller to be strictly proper
and the closed loop system to be internally stable, the
interpolation condition

S(5.5308) = S(∞) = 1,

S(0) = S(∞)′ = S(∞)′′ = 0,

needs to be satisfied.
In order to apply our theory as presented in this paper,

we first transform the domain of the problem fromC+

to D, using the bilinear transformation

s → z =
s0 − s

s0 + s
, wheres0 = 3.1.

The constants0 = 3.1 is chosen the corresponding
bilinear transformation maps the area of interest,0.1i
to 100i, onto a large part of the unit circle. Choosings0

too small or too large might cause numerical problems.
This yields

fid(z) = Sid

(

s0
1 − z

1 + z

)

,
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and the problem is then to find a stable functiong that
is close tofid(z) and which satisfies the constraints

g(−0.2816) = g(−1) = 1,
g(1) = g(−1)′ = g(−1)′′ = 0.

(23)

However, fid does not satisfy the constraints (23),
and therefore the method in Section V does not directly
apply. Instead we would like to find an approximationf
of fid which satisfies the interpolation constraints, and
then apply the degree reduction method onf .

Note that it is impossible to obtain an analytic function
f which simultaneously satisfies the interpolation condi-
tion (23) and the criterion|f(z)| ≤ |fid(z)| for z ∈ T.
If such a functionf did exist, thenB := f/fid would
be analytic inT and bounded by one onT. However,

B(−0.2816) = f(−0.2816)/fid(−0.2816) = 1.0269 > 1,

and henceB violates the maximum principle. Therefore
we need to be content with a functionf which satisfies
|f(z)| ≤ |fid(z)|(1+ǫ) for z ∈ T with someǫ > 0.0269.

If all the interpolation points off were inD, a straight-
forward method would be to takef as the minimizer of

∥

∥

∥

∥

f(z)

fid(z)

∥

∥

∥

∥

∞

subject to (23).

Then we would havef = fidBα, whereB is a Blaschke
product andα > 0. But, since there are interpolation
points on the boundary, a slightly larger region of ana-
lyticity need to be considered.

Note thatfid is analytic in (1 + δ)D := {(1 + δ)z :
|z| < 1} for 0 < δ < 0.44, and letf be the function that
minimizes ∥

∥

∥

∥

f(z)

fid(z)

∥

∥

∥

∥

H∞((1+δ)D)

subject tof satisfying the constraints (23). Now, for any
ǫ > 0.0269 one can find aδ > 0 so that

∥

∥

∥

f(z)
fid(z)

∥

∥

∥

∞
≤
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1 + ǫ. We chooseǫ = 0.05, and for thisǫ, δ = 0.05
works.

Then the functionf satisfies|f(z)| ≤ 1.05|fid(z)| for
z ∈ T, and, since (23) holds forf it is possible to follow
the steps (i) and (ii) to reduce the degree off to 4. That
is, let (ρ, σ) ∈ K0 × Wf be the minimizer of

∥

∥

∥

∥

1 −
∣

∣

∣

ρ

σ

∣

∣

∣

2
∥

∥

∥

∥

∞

,

and let g be the unique function satisfying (23) and
ρg ∈ K. Finally we transform the domain back to the
continuous-time setting via

z → s = s0
1 − z

1 + z
,

whcih givesS(s) = g
(

s0−s
s0+s

)

as depicted in Figure 11.
Note that since there are interpolation points on the

boundary, the relativeH2 bound is not meaningful. In
fact, σ has poles in−1 that are not cancelled by zeros
of f , and hence the right hand side of

‖σ(f − g)‖2 ≤ 4ǫ

1 − ǫ
‖σf‖2.

will be infinite, rendering the inequality trivial. How to
deal with interpolation points on the boundary in a more
rigorous way will be the subject of further research.

It is worth noting that if the main concern is a
low order controller, one can consider a larger class of
sensitivity functions with a possibility of better design.
For clarity of presentation we will consider a discrete-
time plantP . Briefly, we recall from [17] that

deg C ≤ deg P + deg S − np − nz

where np and nz are the number of unstable zeros
and poles respectively of the plantP . Since the theory
guarantees thatdeg S ≤ np + nz − 1, the degree of the
controller is less than the degree of the plantP . We then
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factor the transfer function of the plant into a stable and
an unstable part as

P =
βuβs

αuαs
,

whereβu andαu have roots inD, andβs andαs have
roots in D

C . The idea is to use our knowledge about
the stable part of the plant to construct a larger class of
sensitivity functions for which the controller order is the
same. Let

Kαs
=

{

σ =
b

ταs
, b ∈ Pol(n + deg αs), σ outer

}

,

where

τ(z) =

nz
∏

k=1

(1 − z̄kz)

np
∏

k=1

(1 − z̄pz).

Now for anyσ ∈ Kαs
the minimizer of

min ‖σS‖ s. t.

{

S(zk) = 1, k = 0, . . . , nz

S(pk) = 0, k = 0, . . . , np,

is of the formS = αsa
b

, wherea ∈ Pol(n). Due to the
interpolation constraints we have

αu|a, βu|(αsa − b), (24)

and hence

C =
S − 1

PS
=

αu(αsa − b)

βuβsa
=

αsa−b
βu

βsa
αu

.

In view of (24), αsa−b
βu

and βsa
αu

are polynomials, and
sincedeg αu + deg βu = n, we have

deg
αsa − b

βu
≤ n + deg αs − deg βu = deg αs + deg αu

and

deg
βsa

αu
≤ n + deg βs − deg αu = deg βs + deg βu.

This shows that any choice ofσ in the classKαs
will

produce a controller of a degree less than the degree of
the plant. By utilizing the stable part of the plant, we
have shown that choosing sensitivity functions from a
larger class will not increase the degree of the controller.

VIII. C ONCLUSIONS AND FURTHER WORK

In this paper, we propose a method for degree reduc-
tion of stable systems. The method is based on weighted
H2 minimization under interpolation constraints. By
choosing weights appropriately, the minimizer will both
be of low degree and match the original system. This
gives a model reduction procedure for the case that
both the original system and the degree-reduced system
satisfy prespecified interpolation conditions (Section V).

In the case where no such interpolation conditions are
required, we provide a systematic procedure which uti-
lizes the extra freedom of choosing the interpolation
points (Section VI). The various versions of the model
reduction procedure are then demonstrated on a simple
example, and finally the method is applied to a control
design example from [9].

The study of theH2 minimization problem is mo-
tivated by the relation between theH2 norm and the
entropy functional used in bounded interpolation. There-
fore, new concepts derived in this framework are useful
for understanding entropy minimization. In fact, both
the degree reduction methods proposed in this paper
easily generalize to the bounded case; see [12] for the
method which preserves interpolation conditions. We are
currently working on similar bounds for the positive real
case; also, see [10].
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APPENDIX

A quasi-convex optimization problem is an optimiza-
tion problem for which each sublevel set is convex. The
optimization problem to minimize (19), wherep and q
are polynomials of fixed degree is quasi-convex. For
simplicity, we assume thatf is real and hence thatp
andq are real as well.

As a first step, consider thefeasibility problemof
finding a pair(p, q) of polynomials satisfying

∥

∥

∥

∥

∥

1 −
∣

∣

∣

∣

qf

p

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

∞

≤ ǫ (25)

for a givenǫ, or, equivalently,

−ǫ|p(eiθ)|2 ≤ |p(eiθ)|2 − |q(eiθ)f(eiθ)|2 ≤ ǫ|p(eiθ)|2

for all θ ∈ [−π, π]. Since |p|2 and |q|2 are pseudo-
polynomials, they have representations

|p(eiθ)|2 = 1 +

np
∑

k=1

pk cos(kθ),

|q(eiθ)|2 =

nq
∑

k=0

qk cos(kθ),

where np and nq are the degree bounds onp and q
respectively, and the first coefficient in|p|2 is chosen
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to be one without loss of generality. Hence (25) is
equivalent to

−1 − ǫ ≤ (1 + ǫ)

np
∑

k=1

pk cos kθ − |f(eiθ)|2
nq
∑

k=0

qk cos kθ,

1 − ǫ ≤ (ǫ − 1)

np
∑

k=1

pk cos kθ + |f(eiθ)|2
nq
∑

k=0

qk cos kθ,

for all θ ∈ [−π, π]. There is also a require-
ment on 1 +

∑np

k=1 pk cos(kθ) and
∑nq

k=0 qk cos(kθ)
to be positive. However, ifǫ ∈ (0, 1), then the
above constraints will imply positivity. The set of
p1, p2, . . . , pnp

, q0, q1, . . . , qnq
satisfying this infinite

number of linear constraints is convex.
The most straightforward way to solve this feasibility

problem is to relax the infinite number of constraints to
a finite grid, which is dense enough to yield an appro-
priate solution. Here one must be carefully to check the
positivity of 1 +

∑np

k=1 pk cos(kθ) and
∑nq

k=0 qk cos(kθ)
in the regions between the grid points. Another method
is the Ellipsoid Algorithm, described in detail in [4].

Minimizing (19) then amounts to finding the smallest
ǫ for which the feasibility problem has a solution. This
can be done by the the bisection algorithm, as described
in [4]. Note that forǫ = 1, the trivial solutionq = 0 is
always feasible.
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