Optimization problems containing optimal transport costs： examples and computational methods

$$
\text { Axel Ringh }
$$

${ }^{1}$
${ }^{1}$ Department of Electronic and Computer Engineering,
The Hong Kong University of Science and Technology.
$10^{\text {th }}$ of December 2019
Workshop：Computational optimal transport for applications in control and estimation $58^{\text {th }}$ Conference on Decision and Control（CDC），Nice，France

THE HONG KONG
UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Outline

- Optimal transport recap
- Optimization problems with an optimal transport cost and generalized Sinkhorn iterations
- Variable splitting and the proximal operator of entropy-regularized optimal transport
- Example: variational regularization of inverse problems

Optimal transport recap

Optimal transport distance between two functions $f_{0}(x)$ and $f_{1}(x)$ is defined as

$$
T\left(f_{0}, f_{1}\right):= \begin{cases}\min _{M \geq 0} & \int_{X \times X} c\left(x^{(0)}, x^{(1)}\right) M\left(x^{(0)}, x^{(1)}\right) d x^{(0)} d x^{(1)} \\ \text { s.t. } & f_{0}\left(x^{(0)}\right)=\int_{X} M\left(x^{(0)}, x^{(1)}\right) d x^{(1)}, x^{(0)} \in X \\ & f_{1}\left(x^{(1)}\right)=\int_{X} M\left(x^{(0)}, x^{(1)}\right) d x^{(0)}, x^{(1)} \in X .\end{cases}
$$

for some cost function $c: X \times X \rightarrow \mathbb{R}_{+}$.

Optimal transport recap

Optimal transport distance between two functions $f_{0}(x)$ and $f_{1}(x)$ is defined as

$$
T\left(f_{0}, f_{1}\right):= \begin{cases}\min _{M \geq 0} & \int_{X \times X} c\left(x^{(0)}, x^{(1)}\right) M\left(x^{(0)}, x^{(1)}\right) d x^{(0)} d x^{(1)} \\ \text { s.t. } & f_{0}\left(x^{(0)}\right)=\int_{X} M\left(x^{(0)}, x^{(1)}\right) d x^{(1)}, x^{(0)} \in X \\ & f_{1}\left(x^{(1)}\right)=\int_{X} M\left(x^{(0)}, x^{(1)}\right) d x^{(0)}, x^{(1)} \in X .\end{cases}
$$

for some cost function $c: X \times X \rightarrow \mathbb{R}_{+}$.
Discretized version: - vectors $f_{0} \in \mathbb{R}^{n}, f_{1} \in \mathbb{R}^{n}$

- cost matrix $C=\left[c_{i j}\right] \in \mathbb{R}^{n \times n}$, where $c_{i j}$ is the transportation cost $c\left(x_{i}, x_{j}\right)$
- transportation plan $M=\left[m_{i j}\right] \in \mathbb{R}^{n \times n}$.

$$
T\left(f_{0}, f_{1}\right):= \begin{cases}\min _{m_{i j} \geq 0} & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} m_{i j} \\ \text { s.t. } & \sum_{j=1}^{n} m_{i j}=f_{0}(i), i=1, \ldots, n \\ & \sum_{i=1}^{n} m_{i j}=f_{1}(j), j=1, \ldots, n .\end{cases}
$$

Optimal transport recap

Optimal transport distance between two functions $f_{0}(x)$ and $f_{1}(x)$ is defined as

$$
T\left(f_{0}, f_{1}\right):= \begin{cases}\min _{M \geq 0} & \int_{X \times X} c\left(x^{(0)}, x^{(1)}\right) M\left(x^{(0)}, x^{(1)}\right) d x^{(0)} d x^{(1)} \\ \text { s.t. } & f_{0}\left(x^{(0)}\right)=\int_{X} M\left(x^{(0)}, x^{(1)}\right) d x^{(1)}, x^{(0)} \in X \\ & f_{1}\left(x^{(1)}\right)=\int_{X} M\left(x^{(0)}, x^{(1)}\right) d x^{(0)}, x^{(1)} \in X .\end{cases}
$$

for some cost function $c: X \times X \rightarrow \mathbb{R}_{+}$.
Discretized version: - vectors $f_{0} \in \mathbb{R}^{n}, f_{1} \in \mathbb{R}^{n}$

- cost matrix $C=\left[c_{i j}\right] \in \mathbb{R}^{n \times n}$, where $c_{i j}$ is the transportation cost $c\left(x_{i}, x_{j}\right)$
- transportation plan $M=\left[m_{i j}\right] \in \mathbb{R}^{n \times n}$.

$$
T\left(f_{0}, f_{1}\right):=\left\{\begin{array}{ll}
\min _{m_{i j} \geq 0} & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} m_{i j} \\
\text { s.t. } & \sum_{j=1}^{n} m_{i j}=f_{0}(i), i=1, \ldots, n, \\
& \sum_{i=1}^{n} m_{i j}=f_{1}(j), j=1, \ldots, n .
\end{array} \quad \Longleftrightarrow \quad T\left(f_{0}, f_{1}\right):= \begin{cases}\min ^{n} \begin{array}{ll}
& \operatorname{trace}\left(C^{T} M\right) \\
\text { s.t. } & M \mathbf{M}=f_{0}
\end{array} \\
& M^{T} \mathbf{1}=f_{1}\end{cases}\right.
$$

Optimal transport recap

Recently proposed to solve via entropy regularization [1]: $D(M)=\sum_{i, j}\left(m_{i j} \log \left(m_{i j}\right)-m_{i j}+1\right)$,

$$
\begin{array}{ll}
T_{\epsilon}\left(f_{0}, f_{1}\right):=\min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
\text { subject to } & f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} \mathbf{1}
\end{array}
$$

Optimal transport recap

Recently proposed to solve via entropy regularization [1]: $D(M)=\sum_{i, j}\left(m_{i j} \log \left(m_{i j}\right)-m_{i j}+1\right)$,

$$
\begin{array}{ll}
T_{\epsilon}\left(f_{0}, f_{1}\right):=\min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
& \\
& \\
& f_{1}=M^{T} \mathbf{1}
\end{array}
$$

- Let $\exp (\cdot), \log (\cdot), . /, \odot$ denotes the element-wise function.

[^0] 2292-2300, 2013.

Optimal transport recap

Recently proposed to solve via entropy regularization [1]: $D(M)=\sum_{i, j}\left(m_{i j} \log \left(m_{i j}\right)-m_{i j}+1\right)$,

$$
\begin{array}{rll}
T_{\epsilon}\left(f_{0}, f_{1}\right):=\min _{M \geq 0} & \operatorname{trace}\left(C^{\top} M\right)+\epsilon D(M) \\
\text { subject to } & f_{0}=M \mathbf{1} \\
& f_{1}=M^{\top} \mathbf{1} .
\end{array}
$$

- Let $\exp (\cdot), \log (\cdot), . /, \odot$ denotes the element-wise function.
- For $K=\exp (-C / \epsilon)$, the solution is of the form

$$
M=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

[^1] 2292-2300, 2013.

Optimal transport recap

Recently proposed to solve via entropy regularization [1]: $D(M)=\sum_{i, j}\left(m_{i j} \log \left(m_{i j}\right)-m_{i j}+1\right)$,

$$
\begin{array}{ll}
T_{\epsilon}\left(f_{0}, f_{1}\right):=\min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
\text { subject to } & f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} \mathbf{1}
\end{array}
$$

- Let $\exp (\cdot), \log (\cdot), . /, \odot$ denotes the element-wise function.
- For $K=\exp (-C / \epsilon)$, the solution is of the form

$$
M=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

Theorem (Sinkhorn iterations [2])

For any matrix K with positive elements there are diagonal matrices $\operatorname{diag}\left(u_{0}\right)$, $\operatorname{diag}\left(u_{1}\right)$ such that $M=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)$ has prescribed row- and column-sums f_{0} and f_{1}. The vectors u_{0} and u_{1} can be obtained by alternating marginalization: $u_{0}=f_{0} . /\left(K u_{1}\right)$

$$
u_{1}=f_{1} . /\left(K^{T} u_{0}\right)
$$

[^2]Consider problems of the form:

$$
\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)
$$

where \mathcal{G} proper, convex and lower semicontinuous.

Optimization problems with an optimal transport cost

Consider problems of the form:

$$
\begin{array}{rll}
\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)=\min _{\substack{M \geq 0, f_{1} \\
\text { subject to }}} \begin{array}{ll}
& \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\mathcal{G}\left(f_{1}\right) \\
& f_{1}=M^{T} \mathbf{1}
\end{array}
\end{array}
$$

where \mathcal{G} proper, convex and lower semicontinuous.

Optimization problems with an optimal transport cost

Consider problems of the form:

$$
\begin{array}{rll}
\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)=\min _{\substack{M \geq 0, f_{1} \\
\text { subject to }}} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\mathcal{G}\left(f_{1}\right) \\
& f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} 1
\end{array}
$$

where \mathcal{G} proper, convex and lower semicontinuous.

Problem well-posed if there exists $f_{1} \geq 0$ such that

- $\mathbf{1}^{T} f_{1}=1^{T} f_{0}$,
- $\mathcal{G}\left(f_{1}\right)<\infty$.

In this case, the problem is convex and there exists an optimal solution.

Optimization problems with an optimal transport cost

Consider problems of the form:

$$
\begin{array}{rll}
\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)=\min _{\substack{M \geq 0, f_{1} \\
\text { subject to }}} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\mathcal{G}\left(f_{1}\right) \\
& f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} 1
\end{array}
$$

where \mathcal{G} proper, convex and lower semicontinuous.

Problem well-posed if there exists $f_{1} \geq 0$ such that

- $\mathbf{1}^{T} f_{1}=1^{T} f_{0}$,
- $\mathcal{G}\left(f_{1}\right)<\infty$.

In this case, the problem is convex and there exists an optimal solution.

How to solve this problem?

Optimization problems with an optimal transport cost

Recap on how to derive the Sinkhorn iterations for

$$
\begin{array}{ll}
T_{\epsilon}\left(f_{0}, f_{1}\right):=\min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
& \text { subject to }
\end{array} f_{0}=M \mathbf{1} 1 .
$$

Optimization problems with an optimal transport cost

Recap on how to derive the Sinkhorn iterations for

$$
\begin{array}{lll}
T_{\epsilon}\left(f_{0}, f_{1}\right):= & \min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
& \text { subject to } & f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} \mathbf{1} .
\end{array}
$$

- Using Lagrangian relaxation gives

$$
L\left(M, \lambda_{0}, \lambda_{1}\right)=\operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\lambda_{0}^{T}\left(f_{0}-M 1\right)+\lambda_{1}^{T}\left(f_{1}-M^{T} \mathbf{1}\right)
$$

Optimization problems with an optimal transport cost

Recap on how to derive the Sinkhorn iterations for

$$
\begin{array}{lll}
T_{\epsilon}\left(f_{0}, f_{1}\right):= & \min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
& \text { subject to } & f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} \mathbf{1} .
\end{array}
$$

- Using Lagrangian relaxation gives

$$
L\left(M, \lambda_{0}, \lambda_{1}\right)=\operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\lambda_{0}^{T}\left(f_{0}-M 1\right)+\lambda_{1}^{T}\left(f_{1}-M^{T} \mathbf{1}\right)
$$

- Given dual variables λ_{0}, λ_{1}, the minimum $m_{i j}$ is

$$
0=\frac{\partial L\left(M, \lambda_{0}, \lambda_{1}\right)}{\partial m_{i j}}=c_{i j}+\epsilon \log \left(m_{i j}\right)-\lambda_{0}(i)-\lambda_{1}(j)
$$

Optimization problems with an optimal transport cost

Recap on how to derive the Sinkhorn iterations for

$$
\begin{array}{lll}
T_{\epsilon}\left(f_{0}, f_{1}\right):= & \min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
& \text { subject to } & f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} \mathbf{1} .
\end{array}
$$

- Using Lagrangian relaxation gives

$$
L\left(M, \lambda_{0}, \lambda_{1}\right)=\operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\lambda_{0}^{T}\left(f_{0}-M \mathbf{1}\right)+\lambda_{1}^{T}\left(f_{1}-M^{T} \mathbf{1}\right)
$$

- Given dual variables λ_{0}, λ_{1}, the minimum $m_{i j}$ is

$$
0=\frac{\partial L\left(M, \lambda_{0}, \lambda_{1}\right)}{\partial m_{i j}}=c_{i j}+\epsilon \log \left(m_{i j}\right)-\lambda_{0}(i)-\lambda_{1}(j)
$$

- Solve for $m_{i j}$ to get

$$
m_{i j}=e^{\lambda_{0}(i) / \epsilon} e^{-c_{i j} / \epsilon} e^{\lambda_{1}(j) / \epsilon} .
$$

Optimization problems with an optimal transport cost

Recap on how to derive the Sinkhorn iterations for

$$
\begin{array}{lll}
T_{\epsilon}\left(f_{0}, f_{1}\right):= & \min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
& \text { subject to } & f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} \mathbf{1} .
\end{array}
$$

- Using Lagrangian relaxation gives

$$
L\left(M, \lambda_{0}, \lambda_{1}\right)=\operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\lambda_{0}^{T}\left(f_{0}-M \mathbf{1}\right)+\lambda_{1}^{T}\left(f_{1}-M^{T} \mathbf{1}\right)
$$

- Given dual variables λ_{0}, λ_{1}, the minimum $m_{i j}$ is

$$
0=\frac{\partial L\left(M, \lambda_{0}, \lambda_{1}\right)}{\partial m_{i j}}=c_{i j}+\epsilon \log \left(m_{i j}\right)-\lambda_{0}(i)-\lambda_{1}(j)
$$

- Solve for $m_{i j}$ to get

$$
m_{i j}=e^{\lambda_{0}(i) / \epsilon} e^{-c_{i j} / \epsilon} e^{\lambda_{1}(j) / \epsilon}
$$

- Change of variables: $u_{0}=\exp \left(\lambda_{0} / \epsilon\right), u_{1}=\exp \left(\lambda_{1} / \epsilon\right)$. The optimal solution is of the form

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

where $K=\exp (-C / \epsilon)$.

Optimization problems with an optimal transport cost

One way to interpreted the Sinkhorn iterations: coordinate ascent in the Lagrangian dual.

Optimization problems with an optimal transport cost

One way to interpreted the Sinkhorn iterations: coordinate ascent in the Lagrangian dual.

- Lagrangian relaxation gave optimal form of the primal variable

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

Optimization problems with an optimal transport cost

One way to interpreted the Sinkhorn iterations: coordinate ascent in the Lagrangian dual.

- Lagrangian relaxation gave optimal form of the primal variable

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

- The Lagrangian dual function:

$$
\varphi\left(u_{0}, u_{1}\right):=\min _{M \geq 0} L\left(M, u_{0}, u_{1}\right)=L\left(M^{*}, u_{0}, u_{1}\right)=\ldots=\epsilon \log \left(u_{0}\right)^{T} f_{0}+\epsilon \log \left(u_{1}\right)^{T} f_{1}-\epsilon u_{0}^{T} K u_{1}+\epsilon n^{2}
$$

Optimization problems with an optimal transport cost

One way to interpreted the Sinkhorn iterations: coordinate ascent in the Lagrangian dual.

- Lagrangian relaxation gave optimal form of the primal variable

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

- The Lagrangian dual function:

$$
\varphi\left(u_{0}, u_{1}\right):=\min _{M \geq 0} L\left(M, u_{0}, u_{1}\right)=L\left(M^{*}, u_{0}, u_{1}\right)=\ldots=\epsilon \log \left(u_{0}\right)^{T} f_{0}+\epsilon \log \left(u_{1}\right)^{T} f_{1}-\epsilon u_{0}^{T} K u_{1}+\epsilon n^{2}
$$

- The dual problem is thus

$$
\max _{u_{0}, u_{1} \geq 0} \varphi\left(u_{0}, u_{1}\right)
$$

Optimization problems with an optimal transport cost

One way to interpreted the Sinkhorn iterations: coordinate ascent in the Lagrangian dual.

- Lagrangian relaxation gave optimal form of the primal variable

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

- The Lagrangian dual function:

$$
\varphi\left(u_{0}, u_{1}\right):=\min _{M \geq 0} L\left(M, u_{0}, u_{1}\right)=L\left(M^{*}, u_{0}, u_{1}\right)=\ldots=\epsilon \log \left(u_{0}\right)^{T} f_{0}+\epsilon \log \left(u_{1}\right)^{T} f_{1}-\epsilon u_{0}^{T} K u_{1}+\epsilon n^{2}
$$

- The dual problem is thus

$$
\max _{u_{0}, u_{1} \geq 0} \varphi\left(u_{0}, u_{1}\right)
$$

- Taking the gradient w.r.t u_{0} and putting it equal to zero gives

$$
\epsilon f_{0} \cdot / u_{0}-\epsilon K u_{1}=0
$$

Optimization problems with an optimal transport cost

One way to interpreted the Sinkhorn iterations: coordinate ascent in the Lagrangian dual.

- Lagrangian relaxation gave optimal form of the primal variable

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

- The Lagrangian dual function:

$$
\varphi\left(u_{0}, u_{1}\right):=\min _{M \geq 0} L\left(M, u_{0}, u_{1}\right)=L\left(M^{*}, u_{0}, u_{1}\right)=\ldots=\epsilon \log \left(u_{0}\right)^{T} f_{0}+\epsilon \log \left(u_{1}\right)^{T} f_{1}-\epsilon u_{0}^{T} K u_{1}+\epsilon n^{2}
$$

- The dual problem is thus

$$
\max _{u_{0}, u_{1} \geq 0} \varphi\left(u_{0}, u_{1}\right)
$$

- Taking the gradient w.r.t u_{0} and putting it equal to zero gives

$$
\epsilon f_{0} \cdot / u_{0}-\epsilon K u_{1}=0 \quad \rightsquigarrow \quad u_{0}=f_{0} . /\left(K u_{1}\right)
$$

Optimization problems with an optimal transport cost

One way to interpreted the Sinkhorn iterations: coordinate ascent in the Lagrangian dual.

- Lagrangian relaxation gave optimal form of the primal variable

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

- The Lagrangian dual function:

$$
\varphi\left(u_{0}, u_{1}\right):=\min _{M \geq 0} L\left(M, u_{0}, u_{1}\right)=L\left(M^{*}, u_{0}, u_{1}\right)=\ldots=\epsilon \log \left(u_{0}\right)^{T} f_{0}+\epsilon \log \left(u_{1}\right)^{T} f_{1}-\epsilon u_{0}^{T} K u_{1}+\epsilon n^{2}
$$

- The dual problem is thus

$$
\max _{u_{0}, u_{1} \geq 0} \varphi\left(u_{0}, u_{1}\right)
$$

- Taking the gradient w.r.t u_{0} and putting it equal to zero gives

$$
\epsilon f_{0} \cdot / u_{0}-\epsilon K u_{1}=0 \quad \rightsquigarrow \quad u_{0}=f_{0} \cdot /\left(K u_{1}\right),
$$

and w.r.t u_{1} gives

$$
\epsilon f_{1} \cdot / u_{1}-\epsilon\left(u_{0}^{T} K\right)^{T}=0 \quad \rightsquigarrow \quad u_{1}=f_{1} \cdot /\left(K^{T} u_{0}\right)
$$

These are the Sinkhorn iterations! (cf. [1])
[1] P. Tseng. Dual ascent methods for problems with strictly convex costs and linear constraints: A unified approach. SIAM Journal on Control and Optimization, 28(1), 214-242, 1990.

Optimization problems with an optimal transport cost

$$
\begin{array}{ll}
\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)=\min _{\substack{M \geq 0, f_{1} \\
\text { subject to } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
f_{0}=M^{T} 1}} . \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\mathcal{G}\left(f_{1}\right) \\
\end{array}
$$

Optimization problems with an optimal transport cost

$$
\begin{array}{lll}
\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)=\min _{\substack{M \geq 0, f_{1} \\
\text { subject to }\\
}} \begin{array}{ll}
& f_{0}=M 1 \\
& f_{1}=M^{T} \mathbf{1}
\end{array}
\end{array}
$$

Lagrangian dual problem

$$
\max _{u_{0}, u_{1}} \varphi\left(u_{0}, u_{1}\right)=\max _{u_{0}, u_{1}} \epsilon \log \left(u_{0}\right)^{\top} f_{0}-\mathcal{G}^{*}\left(-\epsilon \log \left(u_{1}\right)\right)-\epsilon u_{0}^{\top} K u_{1}+\epsilon n^{2},
$$

where $\mathcal{G}^{*}(u):=\sup _{f} u^{T} f-\mathcal{G}(f)$ is the Fenchel dual.

Optimization problems with an optimal transport cost

$$
\begin{array}{lll}
\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)=\min _{\substack{M \geq 0, f_{1} \\
\text { subject to }\\
}} \begin{array}{l}
\\
\\
\\
\\
\\
\\
\\
f_{1}=M^{T} 1
\end{array}
\end{array}
$$

Lagrangian dual problem

$$
\max _{u_{0}, u_{1}} \varphi\left(u_{0}, u_{1}\right)=\max _{u_{0}, u_{1}} \epsilon \log \left(u_{0}\right)^{T} f_{0}-\mathcal{G}^{*}\left(-\epsilon \log \left(u_{1}\right)\right)-\epsilon u_{0}^{\top} K u_{1}+\epsilon n^{2},
$$

where $\mathcal{G}^{*}(u):=\sup _{f} u^{T} f-\mathcal{G}(f)$ is the Fenchel dual.
Can be solve by dual coordinate ascent

$$
\begin{aligned}
& 0=f_{0} / u_{0}-K u_{1} \\
& 0 \in \partial \mathcal{G}^{*}\left(-\epsilon \log \left(u_{1}\right)\right) \frac{1}{u_{1}}-K^{T} u_{0}
\end{aligned}
$$

if the second inclusion can be solved efficiently.

Optimization problems with an optimal transport cost

$$
\begin{aligned}
& \min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)=\min _{M \geq 0, f_{1}} \quad \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\mathcal{G}\left(f_{1}\right) \\
& \text { subject to } f_{0}=M 1 \\
& f_{1}=M^{T} \mathbf{1} \text {. }
\end{aligned}
$$

Lagrangian dual problem

$$
\max _{u_{0}, u_{1}} \varphi\left(u_{0}, u_{1}\right)=\max _{u_{0}, u_{1}} \epsilon \log \left(u_{0}\right)^{T} f_{0}-\mathcal{G}^{*}\left(-\epsilon \log \left(u_{1}\right)\right)-\epsilon u_{0}^{\top} K u_{1}+\epsilon n^{2},
$$

where $\mathcal{G}^{*}(u):=\sup _{f} u^{T} f-\mathcal{G}(f)$ is the Fenchel dual.
Can be solve by dual coordinate ascent

$$
\begin{aligned}
& 0=f_{0} / u_{0}-K u_{1} \\
& 0 \in \partial \mathcal{G}^{*}\left(-\epsilon \log \left(u_{1}\right)\right) \frac{1}{u_{1}}-K^{T} u_{0}
\end{aligned}
$$

if the second inclusion can be solved efficiently.
The second inclusion can be efficiently solved when $\partial \mathcal{G}^{*}(\cdot)$ is component-wise.
Example of such cases:

- $\mathcal{G}(\cdot)=\mathcal{I}_{\tilde{f}}(\cdot)$ indicator function on $\{\tilde{f}\} \quad \rightsquigarrow \quad \mathcal{G}^{*}(\cdot)=\cdot^{T} \tilde{f} \quad \rightsquigarrow \quad \partial \mathcal{G}^{*}(\cdot)=\tilde{f}$
- $\mathcal{G}(\cdot)=\|\cdot\|_{2}^{2} \quad \rightsquigarrow \quad \mathcal{G}^{*}(\cdot)=\frac{1}{4}\|\cdot\|_{2}^{2} \quad \rightsquigarrow \quad \partial \mathcal{G}^{*}(\cdot)=\frac{1}{2}$.

Optimization problems with an optimal transport cost

How to solve

$$
\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)
$$

for more general functions \mathcal{G} ?

Consider

$$
\begin{array}{rl}
\min _{y, z} & \mathcal{H}(y)+\mathcal{G}(z) \\
\text { subject to } & A x+B z=c
\end{array}
$$

Intermission: ADMM and variable splitting

Consider

$$
\begin{array}{rl}
\min _{y, z} & \mathcal{H}(y)+\mathcal{G}(z) \\
\text { subject to } & A x+B z=c
\end{array}
$$

Can be solved by ADMM [1]: for $\rho>0$

$$
\begin{aligned}
y^{k+1} & =\underset{y}{\arg \min } \mathcal{H}(y)+\frac{2}{\rho}\left\|A y+B z^{k}-c+u^{k}\right\|_{2}^{2} \\
z^{k+1} & =\underset{z}{\arg \min } \mathcal{G}(z)+\frac{2}{\rho}\left\|A y^{k+1}+B z-c+u^{k}\right\|_{2}^{2} \\
u^{k+1} & =u^{k}+A y^{k+1}+B z^{k+1}-c
\end{aligned}
$$

Intermission: ADMM and variable splitting

Consider

$$
\begin{array}{rl}
\min _{y, z} & \mathcal{H}(y)+\mathcal{G}(z) \\
\text { subject to } & A x+B z=c
\end{array}
$$

Can be solved by ADMM [1]: for $\rho>0$

$$
\begin{aligned}
y^{k+1} & =\underset{y}{\arg \min } \mathcal{H}(y)+\frac{2}{\rho}\left\|A y+B z^{k}-c+u^{k}\right\|_{2}^{2} \\
z^{k+1} & =\underset{z}{\arg \min } \mathcal{G}(z)+\frac{2}{\rho}\left\|A y^{k+1}+B z-c+u^{k}\right\|_{2}^{2} \\
u^{k+1} & =u^{k}+A y^{k+1}+B z^{k+1}-c
\end{aligned}
$$

Special case:
$\min _{y} \mathcal{H}(y)+\mathcal{G}(y)$
[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends $®$ in Machine learning, 3(1), 1-122, 2011.

Intermission: ADMM and variable splitting

Consider

$$
\begin{array}{rl}
\min _{y, z} & \mathcal{H}(y)+\mathcal{G}(z) \\
\text { subject to } & A x+B z=c
\end{array}
$$

Can be solved by ADMM [1]: for $\rho>0$

$$
\begin{aligned}
y^{k+1} & =\underset{y}{\arg \min } \mathcal{H}(y)+\frac{2}{\rho}\left\|A y+B z^{k}-c+u^{k}\right\|_{2}^{2} \\
z^{k+1} & =\underset{z}{\arg \min } \mathcal{G}(z)+\frac{2}{\rho}\left\|A y^{k+1}+B z-c+u^{k}\right\|_{2}^{2} \\
u^{k+1} & =u^{k}+A y^{k+1}+B z^{k+1}-c
\end{aligned}
$$

Special case:
$\begin{array}{lll}\min _{y} \mathcal{H}(y)+\mathcal{G}(y) \quad \min _{y, z} & \mathcal{H}(y)+\mathcal{G}(z) \\ \text { subject to } & y-z=0\end{array}$
[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends $®$ in Machine learning, 3(1), 1-122, 2011.

Intermission: ADMM and variable splitting

Consider

$$
\begin{array}{rl}
\min _{y, z} & \mathcal{H}(y)+\mathcal{G}(z) \\
\text { subject to } & A x+B z=c
\end{array}
$$

Can be solved by ADMM [1]: for $\rho>0$

$$
\begin{aligned}
y^{k+1} & =\underset{y}{\arg \min } \mathcal{H}(y)+\frac{2}{\rho}\left\|A y+B z^{k}-c+u^{k}\right\|_{2}^{2} \\
z^{k+1} & =\underset{z}{\arg \min } \mathcal{G}(z)+\frac{2}{\rho}\left\|A y^{k+1}+B z-c+u^{k}\right\|_{2}^{2} \\
u^{k+1} & =u^{k}+A y^{k+1}+B z^{k+1}-c
\end{aligned}
$$

Special case:

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning, 3(1), 1-122, 2011.

Variable splitting

ADMM is a special case of so-called variable splitting.

Common for large convex optimization problem with several terms.

Examples of methods

- ADMM [1]
- primal-dual hybrid gradient algorithm (Chambolle-Pock) [2]
- primal-dual Douglas-Rachford [3]
[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends $®$ in Machine learning, 3(1), 1-122, 2011.
[2] A. Chambolle, and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1), 120-145, 2011.
[3] R.I. Boț, and C. Hendrich. A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM Journal on Optimization, 23(4), 2541-2565, 2013.

Variable splitting

ADMM is a special case of so-called variable splitting.

Common for large convex optimization problem with several terms.

Examples of methods

- ADMM [1]
- primal-dual hybrid gradient algorithm (Chambolle-Pock) [2]
- primal-dual Douglas-Rachford [3]

Common tool in these algorithms: the proximal operator of the involved functions \mathcal{H} and \mathcal{G} [4,5]

$$
\operatorname{Prox}_{\mathcal{H}}^{\sigma}(h)=\underset{f}{\arg \min } \mathcal{H}(f)+\frac{1}{2 \sigma}\|f-h\|_{2}^{2}
$$

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends $®$ in Machine learning, 3(1), 1-122, 2011.
[2] A. Chambolle, and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1), 120-145, 2011.
[3] R.I. Boț, and C. Hendrich. A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM Journal on Optimization, 23(4), 2541-2565, 2013.
[4] R.T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14(5), 877-898, 1976.
[5] H.H. Bauschke and P.L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces. Springer, New York, 2011.

Evaluating proximal operator of $T_{\epsilon}\left(f_{0}, \cdot\right)$

We want to compute the proximal operator of $T_{\epsilon}\left(f_{0}, \cdot\right)$. This is given by

$$
\operatorname{Prox}_{T_{\epsilon}\left(f_{0}, \cdot\right)}^{\sigma}(h)=\underset{f_{1}}{\arg \min } T_{\epsilon}\left(f_{0}, f_{1}\right)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2} .
$$

Evaluating proximal operator of $T_{\epsilon}\left(f_{0}, \cdot\right)$

We want to compute the proximal operator of $T_{\epsilon}\left(f_{0}, \cdot\right)$. This is given by

$$
\operatorname{Prox}_{T_{\epsilon}\left(f_{0}, \cdot\right)}^{\sigma}(h)=\underset{f_{1}}{\arg \min } T_{\epsilon}\left(f_{0}, f_{1}\right)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2} .
$$

Thus we want to solve

$$
\begin{aligned}
& \min _{M \geq 0, f_{1}} \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2} \\
& \text { subject to } f_{0}=M 1 \\
& f_{1}=M^{\top} 1 .
\end{aligned}
$$

Use dual coordinate ascent with $\mathcal{G}(\cdot)=\frac{1}{2 \sigma}\|\cdot-h\|_{2}^{2}$

Evaluating proximal operator of $T_{\epsilon}\left(f_{0}, \cdot\right)$

We want to compute the proximal operator of $T_{\epsilon}\left(f_{0}, \cdot\right)$. This is given by

$$
\operatorname{Prox}_{T_{\epsilon}\left(f_{0}, \cdot\right)}^{\sigma}(h)=\underset{f_{1}}{\arg \min } T_{\epsilon}\left(f_{0}, f_{1}\right)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2} .
$$

Thus we want to solve

$$
\begin{aligned}
& \min _{M \geq 0, f_{1}} \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2} \\
& \text { subject to } f_{0}=M 1 \\
& f_{1}=M^{\top} 1 . \\
& \text { Compare to } \\
& \text { (1) } u_{0}=f_{0} \cdot /\left(K u_{1}\right) \\
& \text { (2) } u_{1}=f_{1} \cdot /\left(K^{\top} u_{0}\right)
\end{aligned}
$$

Use dual coordinate ascent with $\mathcal{G}(\cdot)=\frac{1}{2 \sigma}\|\cdot-h\|_{2}^{2}$
This gives the algorithm:
(1) $u_{0}=f_{0}$./(K $\left.u_{1}\right)$
$\left.\left.\left.\frac{h}{\sigma \epsilon}+\log \left(K^{\top} u_{0}\right)\right)+\log (\sigma \epsilon)\right)\right)$

- Here ω denotes the (elementwise) Wright omega function, i.e., $x=\log (\omega(x))+\omega(x)$.
- Solved elementwise. Bottleneck is still computation of $K u_{1}, K^{\top} u_{0}$.

Evaluating proximal operator of $T_{\epsilon}\left(f_{0}, \cdot\right)$

We want to compute the proximal operator of $T_{\epsilon}\left(f_{0}, \cdot\right)$. This is given by

$$
\operatorname{Prox}_{T_{\epsilon}\left(f_{0}, \cdot\right)}^{\sigma}(h)=\underset{f_{1}}{\arg \min } T_{\epsilon}\left(f_{0}, f_{1}\right)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2}
$$

Thus we want to solve

$$
\begin{aligned}
& \min _{M \geq 0, f_{1}} \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2} \\
& \text { subject to } f_{0}=M 1 \\
& f_{1}=M^{T} 1 . \\
& \text { Compare to } \\
& \text { (1) } u_{0}=f_{0} \cdot /\left(K u_{1}\right) \\
& \text { (2) } u_{1}=f_{1} \cdot /\left(K^{T} u_{0}\right)
\end{aligned}
$$

Use dual coordinate ascent with $\mathcal{G}(\cdot)=\frac{1}{2 \sigma}\|\cdot-h\|_{2}^{2}$
This gives the algorithm:
(1) $u_{0}=f_{0} \cdot /\left(K u_{1}\right)$
(2) $\left.u_{1}=\exp \left(\frac{h}{\sigma \epsilon}-\omega\left(\frac{h}{\sigma \epsilon}+\log \left(K^{T} u_{0}\right)\right)+\log (\sigma \epsilon)\right)\right)$

- Here ω denotes the (elementwise) Wright omega function, i.e., $x=\log (\omega(x))+\omega(x)$.
- Solved elementwise. Bottleneck is still computation of $K u_{1}, K^{T} u_{0}$.

Theorem

The algorithm is globally convergent, and with linear convergence rate.

UPDATE OR REMOVE THIS SLIDE!

Potentially add slides on how to deal with structured cost matrix C

- uniform discretization and $c(\cdot, \cdot)$ translation invariant \rightsquigarrow Toeplitz-block-Toeplitz.
- $c(\cdot, \cdot)$ that decomposes in each dimension.

Example: variational regularization of inverse problems

Consider the problem of recovering $f \in X$ from data $g \in Y$, given by

$$
g=A(f)+\text { 'noise' }
$$

Notation:

- X is called the reconstruction space.
- Y is called the data space.
- $A: X \rightarrow Y$ is the forward operator.

Example: variational regularization of inverse problems

Consider the problem of recovering $f \in X$ from data $g \in Y$, given by

$$
g=A(f)+\text { 'noise' }
$$

Notation:

- X is called the reconstruction space.
- Y is called the data space.
- $A: X \rightarrow Y$ is the forward operator.

Problems of interest are ill-posed inverse problems:

- a solution might not exist,
- the solution might not be unique,
- the solution does not depend continuously on data.

Alternatively: A^{-1} does not exist as a continuous bijection!
Comes down to: find approximate inverse A^{\dagger} so that

$$
g=A(f)+\text { 'noise' } \Longrightarrow A^{\dagger}(g) \approx f
$$

Example: variational regularization of inverse problems

A common technique to solve ill-posed inverse problems is to use variational regularization:

$$
\underset{f \in X}{\arg \min } \mathcal{G}(A(f), g)+\lambda \mathcal{F}(f)
$$

- $\mathcal{G}: Y \times Y \rightarrow \mathbb{R}$, data discrepancy functional.
- $\mathcal{F}: X \rightarrow \mathbb{R}$, regularization functional.
- λ is the regularization parameter. Controls trade-off between data matching and regularization.

Common example in imaging is total variation regularization:

- $\mathcal{G}(h, g)=\|h-g\|_{2}^{2}$,
- $\mathcal{F}(f)=\|\nabla f\|_{1}$.

If A is linear this is a convex problem!

Example: variational regularization of inverse problems

How can one incorporate prior information in such a scheme?

Example: variational regularization of inverse problems

How can one incorporate prior information in such a scheme?
One way: consider

$$
\underset{f \in X}{\arg \min } \mathcal{G}(A(f), g)+\lambda \mathcal{F}(f)+\gamma \mathcal{H}(\tilde{f}, f)
$$

- \tilde{f} is prior/template
- \mathcal{H} defines "closeness" to \tilde{f}.

What is a good choice for \mathcal{H} ?

Example: variational regularization of inverse problems

How can one incorporate prior information in such a scheme?
One way: consider

$$
\underset{f \in X}{\arg \min } \mathcal{G}(A(f), g)+\lambda \mathcal{F}(f)+\gamma \mathcal{H}(\tilde{f}, f)
$$

- \tilde{f} is prior/template
- \mathcal{H} defines "closeness" to \tilde{f}.

What is a good choice for \mathcal{H} ?

Scenarios where potentially of interest.

- incomplete measurements, e.g. limited angle tomography.
- spatiotemporal imaging:
- data is a time-series of data sets: $\left\{g_{t}\right\}_{t=0}^{T}$.

For each set, the underlying image has undergone a deformation.

- each data set g_{t} normally "contains less information": $A^{\dagger}\left(g_{t}\right)$ is a poor reconstruction.

Approach: solve coupled inverse problems

$$
\underset{f_{0}, \ldots, f_{T} \in X}{\arg \min } \sum_{j=0}^{T}\left[\mathcal{G}\left(A\left(f_{j}\right), g_{j}\right)+\lambda \mathcal{F}\left(f_{j}\right)\right]+\sum_{j=1}^{T} \gamma \mathcal{H}\left(f_{j-1}, f_{j}\right)
$$

Consider the inverse problems

$$
\begin{gathered}
\min _{f_{1} \geq 0}\left\|\nabla f_{1}\right\|_{1} \\
\text { subject to }\left\|A f_{1}-g\right\|_{2} \leq \kappa
\end{gathered}
$$

- TV-regularization term: $\left\|\nabla f_{1}\right\|_{1}$
- Forward model A, data g, and data mismatch term: $\left\|A f_{1}-g\right\|_{2}$

Consider the inverse problems

$$
\begin{aligned}
& \min _{f_{1} \geq 0}\left\|\nabla f_{1}\right\|_{1}+" f_{1} \text { close to } f_{0} " \\
& \text { subject to }\left\|A f_{1}-g\right\|_{2} \leq \kappa .
\end{aligned}
$$

- TV-regularization term: $\left\|\nabla f_{1}\right\|_{1}$
- Forward model A, data g, and data mismatch term: $\left\|A f_{1}-g\right\|_{2}$
- Prior f_{0}

Consider the inverse problems

$$
\begin{aligned}
& \min _{f_{1} \geq 0}\left\|\nabla f_{1}\right\|_{1}+\gamma \boldsymbol{T}_{\epsilon}\left(f_{0}, f_{1}\right) \\
& \text { subject to }\left\|A f_{1}-g\right\|_{2} \leq \kappa .
\end{aligned}
$$

- TV-regularization term: $\left\|\nabla f_{1}\right\|_{1}$
- Forward model A, data g, and data mismatch term: $\left\|A f_{1}-g\right\|_{2}$
- Prior f_{0}

Example: variational regularization of inverse problems

Computed tomography (CT): imaging modality used in many areas, e.g., medicine.

- The object is probed with X-rays.
- Different materials attenuates X-rays differently \Longrightarrow incoming and outgoing intensities gives information about the object.
- Simplest model

$$
\int_{L_{r, \theta}} f(x) d x=\log \left(\frac{I_{0}}{I}\right)
$$

- $f(x)$ is the attenuation in the point x, which is what we want to reconstruct,
- $L_{r, \theta}$ is the line along which the X-ray beam travels,
- I_{0} and I are the the incoming and outgoing intensities.

Illustration from Wikipedia

Example: variational regularization of inverse problems

Example in computed tomography

Parallel beam 2D CT example:

- Reconstruction space: 256×256 pixels
- Angles: 30 in $[\pi / 4,3 \pi / 4]$ (limited angle)
- Detector partition: uniform 350 bins
- Noise level 5%

(a) Shepp-Logan phantom

(b) Prior

Example: variational regularization of inverse problems

TV-regularization and optimal transport prior:

$$
\begin{aligned}
\min _{f_{1}}\left\|\nabla f_{1}\right\|_{1}+\gamma T_{\epsilon}\left(f_{0}, f_{1}\right) \\
\text { subject to }\left\|A f_{1}-g\right\|_{2} \leq \kappa
\end{aligned}
$$

(f) Shepp-Logan phantom

(g) Prior

Example: variational regularization of inverse problems

TV-regularization and optimal transport prior:

$$
\begin{aligned}
& \min _{f_{1}}\left\|\nabla f_{1}\right\|_{1}+\gamma \boldsymbol{T}_{\epsilon}\left(f_{0}, f_{1}\right) \\
& \text { subject to }\left\|A f_{1}-g\right\|_{2} \leq \kappa .
\end{aligned}
$$

TV-regularization and ℓ_{2}^{2} prior:

$$
\min _{f_{1}}\left\|\nabla f_{1}\right\|_{1}+\gamma\left\|f_{0}-f_{1}\right\|_{2}^{2}
$$

subject to $\left\|A f_{1}-g\right\|_{2} \leq \kappa$.

(k) Shepp-Logan phantom

(I) Prior

Example: variational regularization of inverse problems

Example in computed tomography

TV-regularization and optimal transport prior:

$$
\min _{f_{1}}\left\|\nabla f_{1}\right\|_{1}+\gamma \boldsymbol{T}_{\epsilon}\left(f_{0}, f_{1}\right)
$$

subject to $\left\|A f_{1}-g\right\|_{2} \leq \kappa$.
TV-regularization and ℓ_{2}^{2} prior:
$\min _{f_{1}}\left\|\nabla f_{1}\right\|_{1}+\gamma\left\|f_{0}-f_{1}\right\|_{2}^{2}$
subject to $\left\|A f_{1}-g\right\|_{2} \leq \kappa$.

(p) Shepp-Logan phantom
(s) TV-regularization and ℓ_{2}^{2}-prior $(\gamma=10)$

(q) Prior

(t) TV-regularization and optimal
transport prior $(\gamma=4)$

Example: variational regularization of inverse problems

Comparing different regularization parameters for the problem with ℓ_{2}^{2} prior.

$$
\begin{aligned}
& \min _{f_{1}}\left\|\nabla f_{1}\right\|_{1}+\gamma\left\|f_{0}-f_{1}\right\|_{2}^{2} \\
& \text { subject to }\left\|\boldsymbol{A} f_{1}-g\right\|_{2} \leq \kappa
\end{aligned}
$$

Figure: Reconstructions using ℓ_{2} prior with different regularization parameters γ.

Conclusions:

- Sinkhorn iterations can be interpreted as coordinate ascent in the dual.

Conclusions:

- Sinkhorn iterations can be interpreted as coordinate ascent in the dual.
- Generalizes to methods for solving $\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)$, where \mathcal{G} is "simple".

Conclusions:

- Sinkhorn iterations can be interpreted as coordinate ascent in the dual.
- Generalizes to methods for solving $\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)$, where \mathcal{G} is "simple".
- Iterative method to compute the proximal operator of $T_{\epsilon}\left(f_{0}, \cdot\right)$
\rightsquigarrow can solve more advanced problems using variable splitting.

Conclusions:

- Sinkhorn iterations can be interpreted as coordinate ascent in the dual.
- Generalizes to methods for solving $\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\mathcal{G}\left(f_{1}\right)$, where \mathcal{G} is "simple".
- Iterative method to compute the proximal operator of $T_{\epsilon}\left(f_{0}, \cdot\right)$
\rightsquigarrow can solve more advanced problems using variable splitting.

Optimal transport - a viable framework for many applications!

Thank you for your attention!

Questions?

[^0]: [1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages

[^1]: [1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages

[^2]: [1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages 2292-2300, 2013.
 [2] R. Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The American Mathematical Monthly, 74(4), 402-405, 1967.

