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Optimal transport recap

Optimal transport distance between two functions f0(x) and f1(x) is defined as

T (f0, f1) :=


min
M≥0

∫
X×X

c(x(0), x(1))M(x(0), x(1))dx(0)dx(1)

s.t. f0(x(0)) =

∫
X
M(x(0), x(1))dx(1), x(0) ∈ X

f1(x(1)) =

∫
X
M(x(0), x(1))dx(0), x(1) ∈ X .

for some cost function c : X × X → R+.

Discretized version: vectors f0 ∈ Rn, f1 ∈ Rn

cost matrix C = [cij ] ∈ Rn×n, where cij is the transportation cost c(xi , xj)

transportation plan M = [mij ] ∈ Rn×n.

T (f0, f1) :=



min
mij≥0

n∑
i=1

n∑
j=1

cijmij

s.t.
n∑

j=1

mij = f0(i), i = 1, . . . , n,

n∑
i=1

mij = f1(j), j = 1, . . . , n.

⇐⇒ T (f0, f1) :=


min
M≥0

trace(CTM)

s.t. M1 = f0
MT1 = f1
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Optimal transport recap

Recently proposed to solve via entropy regularization [1]: D(M) =
∑

i,j(mij log(mij)−mij + 1),

Tε(f0, f1) := min
M≥0

trace(CTM) + εD(M)

subject to f0 = M1

f1 = MT1.

Let exp(·), log(·), ./, � denotes the element-wise function.

For K = exp(−C/ε), the solution is of the form

M = diag(u0)Kdiag(u1)

Theorem (Sinkhorn iterations [2])

For any matrix K with positive elements there are diagonal matrices diag(u0), diag(u1) such that
M = diag(u0)Kdiag(u1) has prescribed row- and column-sums f0 and f1. The vectors u0 and u1 can be
obtained by alternating marginalization: u0 = f0./(Ku1)

u1 = f1./(KTu0).

[1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages
2292–2300, 2013.

[2] R. Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The American Mathematical Monthly, 74(4), 402–405,
1967.
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Optimization problems with an optimal transport cost

Consider problems of the form:

min
f1

Tε(f0, f1) + G(f1)

= min
M≥0, f1

trace(CTM) + εD(M) + G(f1)

subject to f0 = M1

f1 = MT1.

where G proper, convex and lower semicontinuous.

Problem well-posed if there exists f1 ≥ 0 such that

1T f1 = 1T f0,

G(f1) <∞.

In this case, the problem is convex and there exists an optimal solution.

How to solve this problem?
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Optimization problems with an optimal transport cost
Deriving the Sinkhorn iterations

Recap on how to derive the Sinkhorn iterations for

Tε(f0, f1) := min
M≥0

trace(CTM) + εD(M)

subject to f0 = M1

f1 = MT1.

Using Lagrangian relaxation gives

L(M, λ0, λ1) = trace(CTM) + εD(M) + λT
0 (f0 −M1) + λT

1 (f1 −MT1).

Given dual variables λ0, λ1, the minimum mij is

0 =
∂L(M, λ0, λ1)

∂mij
= cij + ε log(mij)− λ0(i)− λ1(j)

Solve for mij to get

mij = eλ0(i)/εe−cij/εeλ1(j)/ε.

Change of variables: u0 = exp(λ0/ε), u1 = exp(λ1/ε). The optimal solution is of the form

M∗ = diag(u0)Kdiag(u1)

where K = exp(−C/ε).
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Optimization problems with an optimal transport cost
Sinkhorn iterations as dual coordinate ascent

One way to interpreted the Sinkhorn iterations: coordinate ascent in the Lagrangian dual.

Lagrangian relaxation gave optimal form of the primal variable

M∗ = diag(u0)Kdiag(u1)

The Lagrangian dual function:

ϕ(u0, u1) := min
M≥0

L(M, u0, u1) = L(M∗, u0, u1) = . . . = ε log(u0)T f0 + ε log(u1)T f1 − εuT
0 Ku1 + εn2.

The dual problem is thus
max

u0,u1≥0
ϕ(u0, u1)

Taking the gradient w.r.t u0 and putting it equal to zero gives

εf0./u0 − εKu1 = 0

 u0 = f0./(Ku1),

and w.r.t u1 gives

εf1./u1 − ε
(
uT

0 K
)T

= 0  u1 = f1./(KTu0).

These are the Sinkhorn iterations! (cf. [1])

[1] P. Tseng. Dual ascent methods for problems with strictly convex costs and linear constraints: A unified approach. SIAM Journal on Control and
Optimization, 28(1), 214–242, 1990.
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Optimization problems with an optimal transport cost
Generalized Sinkhorn iterations

min
f1

Tε(f0, f1) + G(f1) = min
M≥0, f1

trace(CTM) + εD(M) + G(f1)

subject to f0 = M1

f1 = MT1.

Lagrangian dual problem

max
u0,u1

ϕ(u0, u1) = max
u0,u1

ε log(u0)T f0 − G∗(−ε log(u1))− εuT
0 Ku1 + εn2,

where G∗(u) := supf uT f − G(f ) is the Fenchel dual.

Can be solve by dual coordinate ascent

0 = f0/u0 − Ku1

0 ∈ ∂G∗(−ε log(u1))
1

u1
− KTu0,

if the second inclusion can be solved efficiently.

The second inclusion can be efficiently solved when ∂G∗(·) is component-wise.
Example of such cases:

G(·) = If̃ (·) indicator function on {f̃ }  G∗(·) = ·T f̃  ∂G∗(·) = f̃
G(·) = ‖ · ‖2

2  G∗(·) = 1
4
‖ · ‖2

2  ∂G∗(·) = 1
2
·

8 / 22
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max
u0,u1

ϕ(u0, u1) = max
u0,u1

ε log(u0)T f0 − G∗(−ε log(u1))− εuT
0 Ku1 + εn2,

where G∗(u) := supf uT f − G(f ) is the Fenchel dual.

Can be solve by dual coordinate ascent

0 = f0/u0 − Ku1

0 ∈ ∂G∗(−ε log(u1))
1

u1
− KTu0,

if the second inclusion can be solved efficiently.

The second inclusion can be efficiently solved when ∂G∗(·) is component-wise.
Example of such cases:

G(·) = If̃ (·) indicator function on {f̃ }  G∗(·) = ·T f̃  ∂G∗(·) = f̃
G(·) = ‖ · ‖2

2  G∗(·) = 1
4
‖ · ‖2

2  ∂G∗(·) = 1
2
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Optimization problems with an optimal transport cost
More general problems?

How to solve

min
f1

Tε(f0, f1) + G(f1)

for more general functions G?

9 / 22



Intermission: ADMM and variable splitting

Consider

min
y,z

H(y) + G(z)

subject to Ax + Bz = c

Can be solved by ADMM [1]: for ρ > 0

y k+1 = arg min
y

H(y) +
2

ρ
‖Ay + Bzk − c + uk‖2

2

zk+1 = arg min
z

G(z) +
2

ρ
‖Ay k+1 + Bz − c + uk‖2

2

uk+1 = uk + Ay k+1 + Bzk+1 − c

Special case:

min
y
H(y)+G(y)

 
min
y,z

H(y) + G(z)

subject to y − z = 0
 

y k+1 = arg min
y

H(y) +
2

ρ
‖y − zk + uk‖2

2

zk+1 = arg min
z

G(z) +
2

ρ
‖y k+1 − z + uk‖2

2

uk+1 = uk + y k+1 − zk+1

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends® in Machine learning, 3(1), 1-122, 2011.
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Variable splitting

ADMM is a special case of so-called variable splitting.

Common for large convex optimization problem with several terms.

Examples of methods

ADMM [1]

primal-dual hybrid gradient algorithm (Chambolle-Pock) [2]

primal-dual Douglas-Rachford [3]

Common tool in these algorithms: the proximal operator of the involved functions H and G [4, 5]

ProxσH(h) = arg min
f

H(f ) +
1

2σ
‖f − h‖2

2.

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends® in Machine learning, 3(1), 1-122, 2011.

[2] A. Chambolle, and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical
Imaging and Vision, 40(1), 120-145, 2011.

[3] R.I. Boţ, and C. Hendrich. A Douglas–Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type
monotone operators. SIAM Journal on Optimization, 23(4), 2541-2565, 2013.

[4] R.T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14(5), 877-898, 1976.

[5] H.H. Bauschke and P.L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces. Springer, New York, 2011.

11 / 22



Variable splitting

ADMM is a special case of so-called variable splitting.

Common for large convex optimization problem with several terms.

Examples of methods

ADMM [1]

primal-dual hybrid gradient algorithm (Chambolle-Pock) [2]

primal-dual Douglas-Rachford [3]

Common tool in these algorithms: the proximal operator of the involved functions H and G [4, 5]

ProxσH(h) = arg min
f

H(f ) +
1

2σ
‖f − h‖2

2.

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends® in Machine learning, 3(1), 1-122, 2011.

[2] A. Chambolle, and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical
Imaging and Vision, 40(1), 120-145, 2011.
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Evaluating proximal operator of Tε(f0, ·)

We want to compute the proximal operator of Tε(f0, ·). This is given by

ProxσTε(f0,·)(h) = arg min
f1

Tε(f0, f1) +
1

2σ
‖f1 − h‖2

2.

Thus we want to solve

min
M≥0,f1

trace(CTM) + εD(M) +
1

2σ
‖f1 − h‖2

2

subject to f0 = M1

f1 = MT1.

Use dual coordinate ascent with G(·) = 1
2σ
‖ · −h‖2

2

This gives the algorithm:
1 u0 = f0./(Ku1)
2 u1 = exp

(
h
σε
− ω

(
h
σε

+ log
(
KTu0)

)
+ log(σε)

))
Here ω denotes the (elementwise) Wright omega function, i.e., x = log(ω(x)) + ω(x).
Solved elementwise. Bottleneck is still computation of Ku1, KTu0.

Theorem

The algorithm is globally convergent, and with linear convergence rate.
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UPDATE OR REMOVE THIS SLIDE!

Potentially add slides on how to deal with structured cost matrix C

uniform discretization and c(·, ·) translation invariant  Toeplitz-block-Toeplitz.

c(·, ·) that decomposes in each dimension.

13 / 22



Example: variational regularization of inverse problems

Consider the problem of recovering f ∈ X from data g ∈ Y , given by

g = A(f ) + ’noise’

Notation:

X is called the reconstruction space.
Y is called the data space.
A : X → Y is the forward operator.

Problems of interest are ill-posed inverse problems:

a solution might not exist,
the solution might not be unique,
the solution does not depend continuously on data.

Alternatively: A−1 does not exist as a continuous bijection!

Comes down to: find approximate inverse A† so that

g = A(f ) + ’noise’ =⇒ A†(g) ≈ f .
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Example: variational regularization of inverse problems

A common technique to solve ill-posed inverse problems is to use variational regularization:

arg min
f∈X

G(A(f ), g) + λF(f )

G : Y × Y → R, data discrepancy functional.

F : X → R, regularization functional.

λ is the regularization parameter. Controls trade-off between data matching and regularization.

Common example in imaging is total variation regularization:

G(h, g) = ‖h − g‖2
2,

F(f ) = ‖∇f ‖1.

If A is linear this is a convex problem!

15 / 22



Example: variational regularization of inverse problems
Incorporating prior information in variational schemes

How can one incorporate prior information in such a scheme?

One way: consider
arg min

f∈X
G(A(f ), g) + λF(f ) + γH(f̃ , f )

f̃ is prior/template
H defines “closeness” to f̃ .

What is a good choice for H?

Scenarios where potentially of interest.

incomplete measurements, e.g. limited angle tomography.
spatiotemporal imaging:

data is a time-series of data sets: {gt}Tt=0.
For each set, the underlying image has undergone a deformation.
each data set gt normally “contains less information”: A†(gt) is a poor reconstruction.

Approach: solve coupled inverse problems

arg min
f0,...,fT∈X

T∑
j=0

[
G(A(fj), gj) + λF(fj)

]
+

T∑
j=1

γH(fj−1, fj)

16 / 22
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Example: variational regularization of inverse problems
Inverse problems with optimal mass transport priors

Consider the inverse problems

min
f1≥0

‖∇f1‖1

+ γTε(f0, f1)

subject to ‖Af1 − g‖2 ≤ κ.
TV-regularization term: ‖∇f1‖1

Forward model A, data g , and data mismatch term: ‖Af1 − g‖2

Prior f0
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Example: variational regularization of inverse problems
Computed tomography

Computed tomography (CT): imaging modality used in many areas, e.g., medicine.

The object is probed with X-rays.

Different materials attenuates X-rays differently =⇒ incoming and outgoing intensities gives
information about the object.

Simplest model

∫
Lr,θ

f (x)dx = log

(
I0
I

)
,

f (x) is the attenuation in the point x , which is
what we want to reconstruct,

Lr,θ is the line along which the X-ray beam travels,

I0 and I are the the incoming and outgoing
intensities.

Illustration from Wikipedia

18 / 22



Example: variational regularization of inverse problems
Example in computed tomography

Parallel beam 2D CT example:

Reconstruction space: 256× 256 pixels

Angles: 30 in [π/4, 3π/4] (limited angle)

Detector partition: uniform 350 bins

Noise level 5%

TV-regularization and optimal transport prior:

min
f1

‖∇f1‖1 + γTε(f0, f1)

subject to ‖Af1 − g‖2 ≤ κ.

TV-regularization and `2
2 prior:

min
f1

‖∇f1‖1 + γ‖f0 − f1‖2
2

subject to ‖Af1 − g‖2 ≤ κ.

(a) Shepp-Logan phantom (b) Prior

(c) TV-regularization (d) TV-regularization and `2
2-prior

(γ = 10)
(e) TV-regularization and optimal
transport prior (γ = 4)
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Example: variational regularization of inverse problems
Example in computed tomography

TV-regularization and optimal transport prior:

min
f1

‖∇f1‖1 + γTε(f0, f1)

subject to ‖Af1 − g‖2 ≤ κ.

TV-regularization and `2
2 prior:

min
f1

‖∇f1‖1 + γ‖f0 − f1‖2
2

subject to ‖Af1 − g‖2 ≤ κ. (p) Shepp-Logan phantom (q) Prior

(r) TV-regularization (s) TV-regularization and `2
2-prior

(γ = 10)
(t) TV-regularization and optimal
transport prior (γ = 4) 19 / 22



Example: variational regularization of inverse problems
Example in computed tomography

Comparing different regularization parameters for the problem with `2
2 prior.

min
f1

‖∇f1‖1 + γ‖f0 − f1‖2
2

subject to ‖Af1 − g‖2 ≤ κ.

(u) γ = 0 (v) γ = 1 (w) γ = 10

(x) γ = 100 (y) γ = 1000 (z) γ = 10 000.

Figure: Reconstructions using `2 prior with different regularization parameters γ. 20 / 22



Summary and conclusions

Conclusions:

Sinkhorn iterations can be interpreted as coordinate ascent in the dual.

Generalizes to methods for solving min
f1

Tε(f0, f1) + G(f1), where G is “simple”.

Iterative method to compute the proximal operator of Tε(f0, ·)
 can solve more advanced problems using variable splitting.

Optimal transport - a viable framework for many applications!
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Thank you for your attention!

Questions?

22 / 22


