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Best control scientists in the world
gather at KTH

Publicerad 2009-09-17

They have come to celebrate two milestones in the careers of Chris Byrnes
and Anders Lindquist. But this international symposium in the field of
systems and control is also a tribute to the best control scientists in the
world who have gathered in Stockholm for this occasion.

2009: Spectrum approximation problem  (Bymes, Georgiou, Lindquist)

Problem 1 (Spectral estimation): Given U e ST*™(T) and
¥ e 81", find  that solves

min  d(T,)
$eST™(T)

st [ G(eﬁ’)@(eﬂ)c*(ef”)ﬁ =X

. 2m
where d:ST™(T) x ST*™(T) — [0,00) is a suitable
(pseudo-)distance function in the cone ST*™(T).

Sounds like distance between two systems,

but with a new twist ...
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The key point : the value of chordal distances
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Example: how to compute the distance between two lines in the plane ?




The classical answer: chordal distance

12 fl2=] g ll2=1
identify the lines with unit vectors and compute
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Unitary chordal distances are popular
in approximation problems

e.g. planar rotations:

Intrinsic distances between subspaces can be expressed in terms of
principal angles. Unitary chordal distances replace the angles with their sinus.
They retain the invariance by rotation.
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A property at the core of e
matrix approximation problems

in engineering

The gap metric is a chordal distance between LTI systems

The gap metric is a distance between subspaces (graphs of pairs (u,y)=Gw).
To be computable, the distance should be a chordal distance.

A chordal distance will be invariant by rotation (unitary transformations)
provided that the subspaces are images of unitary operators.

ga’p(VbV?) :” PV1 - PV2 ”2

Gap metrics are computed via H-infty norms
of transfer functions
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ON THE COMPUTATION OF THE GAP METRIC*

Tryphon T. Georgiou

PROPOSITION 1 The following hold
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= maxl Qienlfw G —GaQ . QiGnJ.‘ G, =G0l (3b)




An alternative answer: log chordal distance

—

log chordal ~ d(V;, V) = max(log f, log g)
Yy x

scale-invariant as opposed to rotation-invariant

S = {® € R(z)"*"

What is a good distance between
rational spectral densities ?

d(el?) >0, 0 € [—7, 7]}

Our hint:
1. Stochastic LTI systems are represented by positive rather than unitary operators
2. Computable distances are chordal.

Hence : what is the log-chordal distance between spectral densities ?

Outline

1. Log chordal distances in cones

2. Application to the cone of spectral densities
3. Desirable properties of a distance

4. Comparison with other distances
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Log chordal distances in cones

Let K be a closed, solid, pointed, convex cone defined in a
real Banach space B with norm |||, that is, a closed subset
K with the properties that: (i) the interior of K, denoted by
K, is non-empty, (ii) K + K C K, (iii) £ n —K = {0}, (iv)
AK C K for all A > 0. The cone K induces a partial ordering
<k on B by

r<gy <= y—zek.

M(z,y) :=inf{\ : z <x Ay}

Thompson (or part) metric (1962)

A close cousin of Hilbert metric
M(z,y)
m(z,y) =sup{p : py <xz}  dy(z,y):=log——= 12
(5:9) =18 3z y)




Application to the cone of spectral densities

Theorem 1: Consider two full normal rank spectral densities
@y, Py € SETN(T) and let Wy, Wy € R"*"(2) denote the
corresponding minimum-phase spectral factors. If W, 'W,
has no zero/pole on T, then the Hilbert and Thompson metrics

between &, and &, are given, respectively, by
dir (1, %) = log [|[Wy W[y, [IWi ' Walfs, .
dr(®1,®,) = log max {||W5 Wa[5,_, [WiWal3,_}-

Otherwise, it holds dy (®1, ®3) = dr (P41, P2) = c0.

Proof:

M(®y, ;) = inf{A € R : &;(e7?) < ABy(e??), 9 € [—m,7]}

—inf{A € R : &, % (%), (%) d; % (%) < An,9 € [-, 7]}

[tns],
= ||W2—‘<I>1W2‘*||Lm

= ||W2_1‘V1W;W2_‘||Lm
= ||W2_1W1

2
Iz.. -

= [wz Wil

Desirable properties of a distance

o Computable

¢ Invariant

« optimisable
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“Scale” invariance of the distance

Congruence (or filtering) invariance:

d((bla (1)2) - d(T(I)lT** T(I)QT*)

for any T € R}*"[z]

Using an invariant distance in approximation problems
makes the solution unaffected by filtering the data

A source of robustness in modeling !

Invariant properties are the main source of non-euclidean geometries




Differential geometry of log chordal distances

Thompson metric endows the cone with a Finsler manifold structure
(similar with Riemannian structure but the norm in the tangent space
does not derive from an inner product).

norm [v]|T:= inf{a > 0 : —az <x v <x az}

b
length &) :z/a ||7'(t)||:(t)dt'

‘log-chordal’ geodesic

o= {(E5)ve (535 004
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The monovariate case

d(1, $) = log(max(| f;— oo | j— o)

o o2
b lloo> || log o1 )

= max(|| log

to be compared with

_ [T b1 I o1 _
d(¢1,¢2) = \/27r /ﬂ(log £)2d9 — (% /Tr log(g)d@z (Georgiou, 2006)

A1, 62) = \/ o | iiosShas (= DHios S )
- (Martin, 2005)

Scale invariance implies a measure of distortion.
The main difference lies in the choice of the two versus infinite norm.
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The static case (distance on the SDP cone)
dr(®, 1) = logmax(Ayr, A\,
11r(®, ) = log 224

to be compared with

d(®,1) =||log @ ||p= /) log\?

(This is the Fisher-Rao metric, see e.g. Smith 2005)

Invariance implies a logarithmic measure of spectral quantities.
The main difference lies in the choice of the two versus infinite norm.
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The general case

dr (@1, ®3) = log max {||1,.V2—1[‘{.s’1

e W W[5}

to be compared with

§ I A S
||log Wy @, W || o (“two norm” Riemannian analog)

-
or

Wy Wy

|3, + W W2 |3, —2n, (divergence measure)
(Jian, Ning, Georgiou 2012)

Thompson metric combines the geometrical properties of the two norm with the
computational properties of the divergence measures.
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Conclusions

1. Thompson metric in the cone of spectral densities
enjoys a number of desirable properties

2. The underlying geometry of cones is Finslerian
rather than Riemannian

3. A new avenue for distances between systems with
a conic representation,
e.g. gaussian processes and passive systems
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Distances in cones

An overwhelming topic in

Information geometry

Convex analysis

Optimization

Optimal transport

Theory of monotone operators
Differential geometry

An overwhelming number of applications

in system theory

Covariance matrices

Gaussian distributions
probability vectors

Monotone systems

Consensus theory

Kalman filtering

Spectral estimation

Quantum estimation and control

The Magritte picture is perhaps not entirely
right here ...
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