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Distances between  
spectral densities 

“The shortest distance between two points is always under 
construction”. (R. McClanahan)
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Genesis of this talk
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Sounds like distance between two systems, 

but with a new twist …

Spectrum approximation problem2009:

Today’s talk : based on

(Byrnes, Georgiou, Lindquist)
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The key point : the value of chordal distances

Example: how to compute the distance between two lines in the plane ?
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The classical answer:  chordal distance

identify the lines with unit vectors and compute 
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Unitary chordal distances are popular 
in approximation problems
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Intrinsic distances between subspaces can be expressed in terms of 
principal angles.  Unitary chordal distances replace the angles with their sinus.  
They retain the invariance by rotation.

A property at the core of  
matrix approximation problems 
in engineering

7

The gap metric is a chordal distance between LTI systems

The gap metric is a distance between subspaces (graphs of pairs (u,y)=Gw). 

To be computable, the distance should be a chordal distance. 

A chordal distance will be invariant by rotation (unitary transformations)  
provided that the subspaces are images of unitary operators. 
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Gap metrics are computed via H-infty norms 
 of transfer functions
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An alternative answer:  log chordal distance

log chordal
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scale-invariant as opposed to rotation-invariant
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What is a good distance between  
                          rational spectral densities ?

Our hint: 

1. Stochastic LTI systems are represented by positive rather than unitary operators 

2. Computable distances are chordal. 

Hence : what is the log-chordal distance between spectral densities ? 

11

Outline

1. Log chordal distances in cones 

2. Application to the cone of spectral densities 

3. Desirable properties of a distance 

4. Comparison with other distances

12

Log chordal distances in cones

Thompson (or part) metric (1962)

A close cousin of Hilbert metric 
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Application to the cone of spectral densities
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Proof:
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Desirable properties of a distance

•  Computable 

•  Invariant 

•  optimisable
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“Scale” invariance of the distance

Congruence (or filtering) invariance:

T 2 Rn⇥n
⇤ [z]

Using an invariant distance in approximation problems  
makes the solution unaffected by filtering the data 

A source of robustness in modeling ! 

Invariant properties are the main source of non-euclidean geometries
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Differential geometry of log chordal distances

Thompson metric endows the cone with a  Finsler manifold structure 
(similar with Riemannian structure but the norm in the tangent space 
 does not derive from an inner product).

norm

length

‘log-chordal’ geodesic
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Outline

1. Log chordal distances in cones 

2. Application to the cone of spectral densities 

3. Desirable properties of a distance 

4. Comparison with other distances
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The monovariate case

to be compared with

(Georgiou, 2006)
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(Martin, 2005)

Scale invariance implies a measure of distortion.  
The main difference lies in the choice of the two versus infinite norm.  
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The static case (distance on the SDP cone)

(This is the Fisher-Rao metric,  see e.g. Smith 2005)

to be compared with
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Invariance implies a logarithmic measure of  spectral quantities. 
The main difference lies in the choice of the two versus infinite norm. 
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The general case  

(Jian, Ning, Georgiou 2012)

to be compared with

Thompson metric combines the geometrical properties of the two norm with the  
computational properties of the divergence measures.

or

(“two norm” Riemannian analog)

(divergence measure)
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Outline

1. Log chordal distances in cones 

2. Application to the cone of spectral densities 

3. Desirable properties of a distance 

4. Comparison with other distances
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Conclusions

1. Thompson metric in the cone of spectral densities 
enjoys a number of desirable properties

2.  The underlying geometry of cones is Finslerian     
     rather than Riemannian

3.  A new avenue for distances between systems with  
     a conic representation,   
     e.g. gaussian processes and passive systems 
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Distances in cones

An overwhelming topic in 

Information geometry 
Convex analysis 
Optimization 
Optimal transport 
Theory of monotone operators 
Differential geometry 
…

An overwhelming number of applications 
in system theory  

Covariance matrices 
Gaussian distributions 
probability vectors 
Monotone systems 
Consensus theory 
Kalman filtering 
Spectral estimation 
Quantum estimation and control 
… 

The Magritte picture is perhaps not entirely 
right here …


