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Feedback design for MIMO nonlinear systems - 1/3

In the late 1960s and early 1970s, the theory of MIMO linear systems
reached a high degree of sophistication.

In the 1980s, a big a collective effort aimed at extending this theory to
nonlinear systems took place. Sophisticated tools had been developed,
yielding a rather satisfactory understanding of decoupling, inversion, zero
dynamics, infinite zero structure for MIMO nonlinear systems.

The issue of feedback stabilization was thoroughly addressed in the 1990s,
but mostly for SISO systems. For MIMO systems this issue was only
marginally touched.

By the early 1990s, a rather sudden blackout occurred in the study of
MIMO systems.

One basic question has always puzzles me since then: why interest in
MIMO systems had faded ?

MIMO systems seem to be important, though.
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Feedback design for MIMO nonlinear systems - 3/3

One argument that was often used to dismiss methods based on a
geometric viewpoint is that such methods are believed to be non robust.

Typically, this argument was used to “blame” methods based on feedback
linearization.

Until . . . it was understood how such methods can be robustified
(exemplar, in this respect, are the recent works in which the concept of
and extended observer is exploited: see e.g. Han (1995) , Praly-Jiang
(1998), Khalil (2008)).

Thus, the argument in question is false.

Another, more subtle, argument is that non-trivial MIMO nonlinear
systems (“non-trivial” = systems that cannot be handled by trivial
extensions of methods developed for SISO systems, such as systems that
do not have vector relative degree) are pretty delicate to handle.

Now that fears (and prejudices) have disappeared, time has come for a
renewed effort for a deeper understanding of feedback design for MIMO
nonlinear systems.
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A toy benchmark - 1/2

Consider a system with n = 3, two inputs and two outputs and assume

Lgh2(x) = δ(x)Lgh1(x)

for some δ(x).

Define φ(x) = Lf h2(x)− δ(x)Lf h1(x) to obtain

ẏ1 = Lf h1(x) + Lgh1(x)u
ẏ2 = Lf h2(x) + Lgh2(x)u = φ(x) + δ(x)ẏ1

φ̇ = Lf φ(x) + Lgφ(x)u

Setting
ξ11 = h1(x), ξ21 = h2(x), ξ22 = φ(x)

these equations can be rewritten as

ξ̇11 = a1(x) + b1(x)u

ξ̇21 = ξ22 + δ(x)[a1(x) + b1(x)u]

ξ̇22 = a2(x) + b2(x)u
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A toy benchmark - 2/2

This is a prototype of generalized normal form

ξ̇11 = a1(x) + b1(x)u

ξ̇21 = ξ22 + δ(x)[a1(x) + b1(x)u]

ξ̇22 = a2(x) + b2(x)u
y1 = ξ11

y2 = ξ21

Assume ( b1(x)
b2(x)

)
is nonsingular for all x .

This is a system that does not posses a vector relative degree. However, if
δ(x) is bounded, the system can be trivially stabilized by state feedback.

How can we achieve global stability via output feedback ?

A related question: how can we characterize observability ?
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Classification and structure of invertible MIMO systems - 1/3

MIMO input-affine nonlinear systems (having the same number of input
and output components), can be classified as follows:

The class S0 of systems in which the zero dynamics algorithm is
everywhere regular.

The sub-class SINV ⊂ S0 consisting of those systems in which the
inversion algorithm is everywhere regular i.e. systems that are uniformly
invertible (the inversion algorithm is an extension of the celebrated
structure algorithm).

The sub-sub-class SIOL ⊂ SINV consisting of those systems in which it is
possible to force, by means of state-feedback, a linear input-output
behavior.

The sub-sub-sub-class SVRD ⊂ SINV consisting of those systems for which
a vector relative degree can be defined.

A system in the class S0, if certain vector fields are complete, is globally
diffeomorphic to a system described by equations that can be split in a
subset of the form

ż = f0(z , ξ) + g0(z , ξ)u

and p subsets of the form
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Classification and structure of invertible MIMO systems - 2/3

ξ̇i,1 = ξi,1
· · ·

ξ̇i,r1−1 = ξi,r1
ξ̇i,r1 = ξi,r1+1 + δ1

i,r1+1(x)[a1(x) + b1(x)u]
· · ·

ξ̇i,r2−1 = ξi,r2 + δ1
i,r2 (x)[a1(x) + b1(x)u]

ξ̇i,r2 = ξi,r2+1 + δ1
i,r2+1(x)[a1(x) + b1(x)u] + δ2

i,r2+1(x)[a2(x) + b2(x)u]
· · ·

ξ̇i,ri−1 = ξi,ri−1+1 +
i−1∑
j=1

δji,ri−1+1(x)[aj(x) + bj(x)u]

· · ·

ξ̇i,ri−1 = ξi,ri +
i−1∑
j=1

δji,ri (x)[aj(x) + bj(x)u]

ξ̇i,ri = ai (x) + bi (x)u
yi = ξi,1
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Classification and structure of invertible MIMO systems - 3/3

It’s a horrible form, but we have to live with that !

In the sub-class SINV of those systems that are invertible, the equation a1(x)
...

am(x)

+

 b1(x)
...

bm(x)

 u = v

can be solved for u, and the multipliers δji,k(x) depend on the components
of x in a special way.

In the sub-sub-class SIOL of those systems in which it is possible to force,
by means of state-feedback, a linear input-output behavior, the multipliers
δji,k(x) are independent of x .

In the sub-sub-sub-class SVRD of those systems for which a vector relative
degree can be defined, the multipliers δji,k(x) are zero.

In the case of a SISO system, all such sub-classes collapse to a single one.

The classes in question can be identified also in coordinate-free terms

The ri ’s characterize what in a linear system is known as infinite zero
structure.
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Stabilization of invertible MIMO nonlinear systems - 1/2

A MIMO system having a well-defined vector relative degree and an
input-to-state stable inverse (a strongly minimum-phase system) can be
asymptotically stabilized, with a guaranteed region of attraction, by
dynamic output feedback.

An extended observer can be designed and hence the stabilizer in question
is robust with respect to model uncertainties (but not to measurement
noise).

The extension of such stabilization paradigm to more general classes of
MIMO systems is still an open domain of research.

Interest in stabilizing more general classes of MIMO systems has been
triggered by the works of Liberzon, Morse, Sontag (TAC, 2002), in which
the authors analyze, in a coordinate-free framework, systems in which state
and input are bounded so long as the output is bounded, and decay to zero
so long as the output decays to zero. This can be seen as “equivalent” of
the property that the inverse of the system is input-to-state stable.
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Stabilization of invertible MIMO nonlinear systems - 2/2

Liberzon (SCL, 2004), in particular, considers input-affine systems having
m inputs and p ≥ m outputs, with the following property: for some integer
N, there exist functions β ∈ KL and γ ∈ K∞ such that for every initial
state x(0) and every admissible input u(·) the corresponding solution x(t)
satisfies

|x(t)| ≤ max{β(|x(0)|, t), γ(‖yN−1‖[0,t])}

as long as it exists. This is the version, for MIMO systems, of the property
of being strongly minimum phase.

Then, Liberzon proves that if:

1 the system is uniformly left invertible and strongly minimum phase, and
2 a map T (x) that he defines is onto

then a static state feedback law u = α(x) exists that globally stabilizes the
system.

At the time of publication, this was the most general result available
dealing with global stabilization of MIMO systems.

However, the result was not directly applicable as such, because the
conditions ensuring that the map T (x) is onto were not given.

And, also, the proposed stabilizing feedback requires availability of the full
state of the system
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Stabilization of I-O linearizable systems - 1/2

Since this result, no relevant contributions appeared for some time.
Recently, interest in improving such stabilization result has resumed.

If a system belongs to the sub-sub-class in which the multipliers δji,k(x) are
constant, semiglobal stabilization via dynamic output feedback is possible
(Wang, A.I. et al. (TAC, 2015)).

Define a set of dummy output functions

ỹ i = ci1ξi,1 + ci2ξi,2 + · · ·+ ci,ri−1ξi,ri−1 + ξi,ri

Then, the system can be described by equations of the form

ż = f0(z , ξ) + g0(z , ξ)u
˙̃z = F z̃ + Gỹ
˙̃y = q(z , ξ) + b(z , ξ)u

in which ξ = ξ(z̃ , ỹ) and b(z , ξ) is a nonsingular matrix. The property that
the multipliers δji,k(x) are constant is instrumental to this end.

The system with output ỹ has now vector relative degree {1, 1, . . . , 1}.
Moreover, the parameters cij in the definition of the ỹi ’s can be chosen in
such a way that F is a Hurwitz matrix.
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The system with output ỹ has now vector relative degree {1, 1, . . . , 1}.
Moreover, the parameters cij in the definition of the ỹi ’s can be chosen in
such a way that F is a Hurwitz matrix.

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization of I-O linearizable systems - 1/2

Since this result, no relevant contributions appeared for some time.
Recently, interest in improving such stabilization result has resumed.

If a system belongs to the sub-sub-class in which the multipliers δji,k(x) are
constant, semiglobal stabilization via dynamic output feedback is possible
(Wang, A.I. et al. (TAC, 2015)).

Define a set of dummy output functions
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Stabilization of I-O linearizable systems - 2/2

Thus, the minimum phase properties of the original system (if any) are
preserved.

As a consequence, if the system with output y is strongly minimum phase,
so is the system with output ỹ .

Hence, global stabilization can be obtained by means of a feedback law
u = κ(ỹ).

An estimate of ỹ can be obtained by means of a high-gain observer driven
by the actual output y . This is not a trivial task, though, because the
components of ξ are not just higher-order derivatives of the components of
y .

As a consequence, semiglobal stabilization via dynamic output feedback
can be obtained.

Note that the original system is not required to possess a vector relative
degree.

The design of an extended observer for such class of systems is still an
open problem.

The design can be made robust with respect to uncertainties in q(z , ξ) and
b(z , ξ), but the actual values of the “multipliers” δji,k need to be known.
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An estimate of ỹ can be obtained by means of a high-gain observer driven
by the actual output y . This is not a trivial task, though, because the
components of ξ are not just higher-order derivatives of the components of
y .

As a consequence, semiglobal stabilization via dynamic output feedback
can be obtained.

Note that the original system is not required to possess a vector relative
degree.

The design of an extended observer for such class of systems is still an
open problem.

The design can be made robust with respect to uncertainties in q(z , ξ) and
b(z , ξ), but the actual values of the “multipliers” δji,k need to be known.

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization of I-O linearizable systems - 2/2

Thus, the minimum phase properties of the original system (if any) are
preserved.

As a consequence, if the system with output y is strongly minimum phase,
so is the system with output ỹ .
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components of ξ are not just higher-order derivatives of the components of
y .

As a consequence, semiglobal stabilization via dynamic output feedback
can be obtained.

Note that the original system is not required to possess a vector relative
degree.

The design of an extended observer for such class of systems is still an
open problem.

The design can be made robust with respect to uncertainties in q(z , ξ) and
b(z , ξ), but the actual values of the “multipliers” δji,k need to be known.
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One level up: back to the benchmark problem - 1/2

In the benchmark problem

ξ̇11 = a1(x) + b1(x)u

ξ̇21 = ξ22 + δ(x)[a1(x) + b1(x)u]

ξ̇22 = a2(x) + b2(x)u
y1 = ξ11

y2 = ξ21

the multiplier δ(x) is not constant. Thus, the previous stabilization
method is not applicable.

In general, if δ(x) is not constant, the system may even fail to be
uniformly invertible.

In fact

y
(1)
1 = a1 + b1u

y
(2)
2 = a2 + b2u + δy

(2)
1

+
[
∂δ
∂ξ11

y
(1)
1 + ∂δ

∂ξ21
y

(1)
2 + ∂δ

∂ξ22
[a2 + b2u]

]
y

(1)
1

and if ∂δ
∂ξ22
6= 0 there are singularities.
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One level up: back to the benchmark problem - 2/2

System is uniformly invertible if and only if δ(x) is independent of ξ22 and
the matrix ( b1(x)

b2(x)

)
is nonsingular for all x .

It is also interesting to observe that, if δ(x) is independent of ξ22, then

ξ11 = y1

ξ21 = y2

ξ22 = y
(1)
2 − δ(y1, y2)y

(1)
2

that is, the the state x can be uniquely retrieved from y1, y2, y
(1)
1 , y

(1)
2 . The

system is uniformly observable
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The “triangular” dependence on x - 1/2

The ambition is to develope stabilization methods for systems in which the
multipliers δji,k(x) are not constant.
As seen, not any function if x is admissible if the system is assumed to be
invertible. Thus, we consider a special dependence on x .
Specifically, we assume that:
(i) The z variables are missing (the system has a trivial zero dynamics), in
which case x = ξ
(ii) The dependence of the δji,k(x)’s on x is “triangular”, as illustrated in
the following case of a systems having 2 inputs and 2 outputs

If p = 2, the multipliers δ1
2,k(x) only appear in the second string, and we

assume that they depend on x as follows

y2 = x2,1

ẋ2,1 = x2,2

ẋ2,2 = x2,3

· · ·
ẋ2,r1−1 = x2,r1

ẋ2,r1 = x2,r1+1 + δ2,r1+1(x1,1, . . . , x1,r1 , x1,1, . . . , x2,r1 )(a1(x) + b1(x)u)
ẋ2,r1+1 = x2,r1+2 + δ2,r1+2(x1,1, . . . , x1,r1 , x1,1, . . . , x2,r1+1)(a1(x) + b1(x)u)

· · ·
ẋ2,r2−1 = x2,r2 + δ2,r2 (x1,1, . . . , x1,r1 , x1,1, . . . , x2,r2−1)(a1(x) + b1(x)u)
ẋ2,r2 = a2(x) + b2(x)u .
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ẋ2,r1−1 = x2,r1
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ẋ2,r2 = a2(x) + b2(x)u .

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



The “triangular” dependence on x - 2/2

To simplify a little bit the notation, we set

[x2]k = col(x2,1, . . . , x2,k) , xi = col(xi,1, . . . , xi,ri ) .

in which case the equations are rewritten as

y2 = x2,1

ẋ2,1 = x2,2

ẋ2,2 = x2,3

· · ·
ẋ2,r1−1 = x2,r1

ẋ2,r1 = x2,r1+1 + δ2,r1+1(x1, [x2]r1 )(a1(x) + b1(x)u)
· · ·

ẋ2,r2−1 = x2,r2 + δ2,r2 (x1, [x2]r2−1)(a1(x) + b1(x)u)
ẋ2,r2 = a2(x) + b2(x)u .

We refer to this as a “triangular dependence on the components of x”.
Note the absence of z .

Proposition If a system has 2 inputs and 2 outputs and a trivial zero
dynamics, the system is invertible if and only if the dependence of δ2,k(x)
on x is as described above.

The extension of this result to systems having p > 2 and/or non-trivial
zero dynamics is yet to be found.
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ẋ2,2 = x2,3

· · ·
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ẋ2,r2 = a2(x) + b2(x)u .

We refer to this as a “triangular dependence on the components of x”.
Note the absence of z .

Proposition If a system has 2 inputs and 2 outputs and a trivial zero
dynamics, the system is invertible if and only if the dependence of δ2,k(x)
on x is as described above.

The extension of this result to systems having p > 2 and/or non-trivial
zero dynamics is yet to be found.

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



The “triangular” dependence on x - 2/2

To simplify a little bit the notation, we set

[x2]k = col(x2,1, . . . , x2,k) , xi = col(xi,1, . . . , xi,ri ) .

in which case the equations are rewritten as

y2 = x2,1
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ẋ2,r1 = x2,r1+1 + δ2,r1+1(x1, [x2]r1 )(a1(x) + b1(x)u)
· · ·
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Stabilization via full state feedback - 1/2

Such systems can be easily stabilized via full state feedback.

Pick a function v(x1) so that

ẋ1,1 = x1,2

· · ·
ẋ1,r1−1 = x1,r1

ẋ1,r1 = v1(x1)

is stabilized and let u be such that

a1(x) + b1(x)u = v1(x1) .

If this is the case, the second string becomes

ẋ2,1 = x2,2

ẋ2,2 = x2,3

· · ·
ẋ2,r1−1 = x2,r1

ẋ2,r1 = x2,r1+1 + δ2,r1+1(x1, [x2]r1 )v1(x1)
· · ·

ẋ2,r2−1 = x2,r2 + δ2,r2 (x1, [x2]r2−1)v1(x1)
ẋ2,r2 = a2(x) + b2(x)u .

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization via full state feedback - 1/2

Such systems can be easily stabilized via full state feedback.

Pick a function v(x1) so that
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Stabilization via full state feedback - 2/2

This sub-system can be stabilized recursively, via backstepping.

At the end of the backstepping process, a control law v2(x1, x2) can be
found such that, if

a2(x) + b2(x)u = v2(x1, x2)

the entire sub-set is stabilized.

Thus, we conclude that if the control u is such that

A(x) + B(x)u =

(
a1(x) + b1(x)u
a2(x) + b2(x)u

)
=

(
v1(x1)

v2(x1, x2)

)
the entire system is globally stabilized.

This method though, requires an accurate model of the plant and
availability of the full state x .

The second of these two problems can be fixed, because the state x of the
system in question turns out to be easily observable.
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Observability - 1/2

Lemma Set, for i = 1, 2,

yji = col(yi , y
(1)
i , . . . , y

(j−1)
i ) .

There exists a map Ψ : R2r2 → Rr1+r2 such that

x = Ψ(yr21 , y
r2
2 ) .

By definition

x1i = y
(i−1)
1

x2i = y
(i−1)
2

for i = 1, . . . , r1.

So long as x2,r1+1 is concerned, observe that

x2,r1+1 = ẋ2,r1 − δ2,r1+1(x1, [x2]r1 )[a1(x) + b1(x)u]

= y
(r1)
2 − δ2,r1+1(x1, [x2]r1 )y

(r1)
1 ,

in which the various components of the arguments x1 and [x2]r1 of δ2,r1+1(·)
coincide with y1, . . . , y

(r1−1)
1 and, respectively, with y2, . . . , y

(r1−1)
2 .

Thus, it is concluded that there exists a function ψ2,r1+1(·) such that

x2,r1+1 = ψ2,r1+1(y1, . . . , y
(r1)
1 , y2, . . . , y

(r1)
2 ) .
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Observability - 2/2

So long as x2,r1+2 is concerned, observe that

x2,r1+2 = ẋ2,r1+1 − δ2,r1+2(x1, [x2]r1+1)[a1(x) + b1(x)u]

= ψ̇2,r1+1(y1, . . . , y
(r1)
1 , y2, . . . , y

(r1)
2 )− δ2,r1+2(x1, [x2]r1+1)y

(r1)
1 .

The first term ψ̇2,r1+1(·) is a function y1, . . . , y
(r1+1)
1 , y2, . . . , y

(r1+1)
2 , while

the arguments x1 and [x2]r1+1 of δ2,r1+2(·) are functions of

y1, . . . , y
(r1)
1 , y2, . . . , y

(r1)
2 .

Thus it is concluded that there exists a function ψ2,r1+2(·) such that

x2,r1+2 = ψ2,r1+2(y1, . . . , y
(r1+1)
1 , y2, . . . , y

(r1+1)
2 ) .

The procedure can be iterated, until the existence of a map ψ2,r2 (·) is
shown, such that

x2,r2 = ψ2,r2 (y1, . . . , y
(r2−1)
1 , y2, . . . , y

(r2−1)
2 ) .
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Stabilization by output feedback - 1/3

The properties just proven show that the system can be stabilized by
means of a feedback law of the form u = α(x) = α(Ψ(yr21 , y

r2
2 )).

The components of yr11 and yr22 could be estimated by means of a
high-gain observer.

In this respect, though, it must be stressed that the arguments of Ψ(·)
consist of y1, y2 and all their higher order derivatives up order r2 − 1.

In particular, this requires the estimation of the derivatives of y1 from
order r1 to order r2 − 1 and such derivatives, in turn, depend on the input
u and a few of its higher order derivatives, up to order r2 − r1 − 1.

To circumvent this problem, it is convenient to dynamically extend the
system, by adding a chain of r2 − r1 integrators on both input channels.
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Stabilization by output feedback - 2/3

The system is extended by setting

u = ζ1

ζ̇1 = ζ2

· · ·
ζ̇r2−r1 = v ,

in which ζi ∈ R2 and where v ∈ R2 plays a role of a new input.
The system thus extended has a structure similar to that of the system
seen before: hence that there exists a feedback law v = α(x , ζ) that
globally asymptotically stabilizes the equilibrium (x , η) = 0.
The components of the vector ζ are states of the dynamic extension,
hence available for feedback.
Thus, to implement this feedback law, only the vector x has to be
estimated.
But we know, from the previous analysis, that x = Ψ(yr21 , y

r2
2 ). Hence, to

implement this feedback law, estimates of yr21 , y
r2
2 suffice.

Such estimates can be generated by means of a standard high-gain
observer, because now

y
(r2)
1 = q1(x , ζ) + p1(x)v

y
(r2)
2 = q2(x , ζ) + p2(x)v .

and such expressions involve the only input v and not its higher derivatives.
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observer, because now

y
(r2)
1 = q1(x , ζ) + p1(x)v

y
(r2)
2 = q2(x , ζ) + p2(x)v .

and such expressions involve the only input v and not its higher derivatives.
Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization by output feedback - 2/3

The system is extended by setting

u = ζ1

ζ̇1 = ζ2

· · ·
ζ̇r2−r1 = v ,

in which ζi ∈ R2 and where v ∈ R2 plays a role of a new input.
The system thus extended has a structure similar to that of the system
seen before: hence that there exists a feedback law v = α(x , ζ) that
globally asymptotically stabilizes the equilibrium (x , η) = 0.
The components of the vector ζ are states of the dynamic extension,
hence available for feedback.
Thus, to implement this feedback law, only the vector x has to be
estimated.
But we know, from the previous analysis, that x = Ψ(yr21 , y

r2
2 ). Hence, to

implement this feedback law, estimates of yr21 , y
r2
2 suffice.

Such estimates can be generated by means of a standard high-gain
observer, because now

y
(r2)
1 = q1(x , ζ) + p1(x)v

y
(r2)
2 = q2(x , ζ) + p2(x)v .

and such expressions involve the only input v and not its higher derivatives.
Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization by output feedback - 2/3

The system is extended by setting

u = ζ1

ζ̇1 = ζ2

· · ·
ζ̇r2−r1 = v ,

in which ζi ∈ R2 and where v ∈ R2 plays a role of a new input.
The system thus extended has a structure similar to that of the system
seen before: hence that there exists a feedback law v = α(x , ζ) that
globally asymptotically stabilizes the equilibrium (x , η) = 0.
The components of the vector ζ are states of the dynamic extension,
hence available for feedback.
Thus, to implement this feedback law, only the vector x has to be
estimated.
But we know, from the previous analysis, that x = Ψ(yr21 , y

r2
2 ). Hence, to

implement this feedback law, estimates of yr21 , y
r2
2 suffice.

Such estimates can be generated by means of a standard high-gain
observer, because now

y
(r2)
1 = q1(x , ζ) + p1(x)v

y
(r2)
2 = q2(x , ζ) + p2(x)v .

and such expressions involve the only input v and not its higher derivatives.
Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization by output feedback - 3/3

The stabilization method described above (Wang, A.I. et al. (TAC,2017))
is based on the following hypotheses:

The zero dynamics are trivial

The multipliers δji,k(x) are special “triangular” functions of x .

The functions δji,k(x) are assumed to be accurately known, as they are
required in the construction of the maps

u = v̄(x , ζ)
x = Ψ(yr21 , y

r2
2 )

The design of a more robust controller is still an open issue.

Note also that, as a byproduct, we have proven that the map T (x) defined
in Liberzon (SCL, 2004) is onto.

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization by output feedback - 3/3

The stabilization method described above (Wang, A.I. et al. (TAC,2017))
is based on the following hypotheses:

The zero dynamics are trivial

The multipliers δji,k(x) are special “triangular” functions of x .

The functions δji,k(x) are assumed to be accurately known, as they are
required in the construction of the maps

u = v̄(x , ζ)
x = Ψ(yr21 , y

r2
2 )

The design of a more robust controller is still an open issue.

Note also that, as a byproduct, we have proven that the map T (x) defined
in Liberzon (SCL, 2004) is onto.

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization by output feedback - 3/3

The stabilization method described above (Wang, A.I. et al. (TAC,2017))
is based on the following hypotheses:

The zero dynamics are trivial

The multipliers δji,k(x) are special “triangular” functions of x .

The functions δji,k(x) are assumed to be accurately known, as they are
required in the construction of the maps

u = v̄(x , ζ)
x = Ψ(yr21 , y

r2
2 )

The design of a more robust controller is still an open issue.

Note also that, as a byproduct, we have proven that the map T (x) defined
in Liberzon (SCL, 2004) is onto.

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization by output feedback - 3/3

The stabilization method described above (Wang, A.I. et al. (TAC,2017))
is based on the following hypotheses:

The zero dynamics are trivial

The multipliers δji,k(x) are special “triangular” functions of x .

The functions δji,k(x) are assumed to be accurately known, as they are
required in the construction of the maps

u = v̄(x , ζ)
x = Ψ(yr21 , y

r2
2 )

The design of a more robust controller is still an open issue.

Note also that, as a byproduct, we have proven that the map T (x) defined
in Liberzon (SCL, 2004) is onto.

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization by output feedback - 3/3

The stabilization method described above (Wang, A.I. et al. (TAC,2017))
is based on the following hypotheses:

The zero dynamics are trivial

The multipliers δji,k(x) are special “triangular” functions of x .

The functions δji,k(x) are assumed to be accurately known, as they are
required in the construction of the maps

u = v̄(x , ζ)
x = Ψ(yr21 , y

r2
2 )

The design of a more robust controller is still an open issue.

Note also that, as a byproduct, we have proven that the map T (x) defined
in Liberzon (SCL, 2004) is onto.

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Stabilization by output feedback - 3/3

The stabilization method described above (Wang, A.I. et al. (TAC,2017))
is based on the following hypotheses:

The zero dynamics are trivial

The multipliers δji,k(x) are special “triangular” functions of x .

The functions δji,k(x) are assumed to be accurately known, as they are
required in the construction of the maps

u = v̄(x , ζ)
x = Ψ(yr21 , y

r2
2 )

The design of a more robust controller is still an open issue.

Note also that, as a byproduct, we have proven that the map T (x) defined
in Liberzon (SCL, 2004) is onto.

Alberto Isidori Open problems in feedback design for MIMO nonlinear systems



Open problems in feedback stabilization of MIMO systems

In the case p > 2, a special functional dependence of the δj i , k(x)’s on the
individual components of x that guarantees invertibility is easily found.
However, a sharp necessary condition for invertibility is not know yet.

The previous stabilization method presupposes a trivial zero dynamics.
The more general case of systems having a nontrivial zero dynamics has
not been handled yet.

The method of Liberzon, for stabilization via full state feedback, requires a
map T (x) to be onto. Conditions ensuring that this map is onto are likely
to be related to invertibility and observability (as shown in the case
discussed before), but precise conditions have not been determined yet.

The method of Liberzon provides a full state feedback stabilizing law.
However, since the system is strongly minimum phase, it is likely to expect
that only outputs (and their higher order derivatives) suffice for
stabilization. This issue has not been explored yet.

Last but not least: how systems with different numbers of input and
output channels should be handled ?
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Conclusions

The topic of robust feedback design of MIMO nonlinear systems, that had
remained silent for a while, is now experiencing a revival.

If the system is robustly minimum-phase and the multipliers δji,k(x) in the
normal form are constant, it can be robustly (semiglobally) stabilized via
dynamic output feedback.

In any case “practical” disturbance decoupling and feedback linearization
can obtained on a finite interval, in spite of model uncertainties, if an
extended observer is used.

More challenging extensions are have been pursued, notably those
addressing special cases in which the multipliers δji,k(x) in the normal form
are not constant.

There is a lot of work still to be done and this is a promising direction of
research in the area of nonlinear control.
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Happy Birthday Anders !

Cento di questi giorni !
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