
The Lindquist Symposium
in Systems Theory:

Flows in Wasserstein space

Tryphon Georgiou
Univ. of California, Irvine

Cambridge, July 2017

dedicated to Anders
on the occasion of his 75th birthday



Anders’ birthday puzzle



Anders’ birthday puzzle



Anders’ birthday puzzle



Anders’ birthday puzzle



Anders’ birthday puzzle
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Flows in Wasserstein space

Mass Transport⇔ Schrödinger bridges⇔ Stochastic control

with connections to:
LQG, Riccati, Discrete-spaces & Networks, Matrix/Quantum flows,
etc.

Collaboration with:

Yongxin Chen Michele Pavon Allen Tannenbaum

also W. Gangbo, H. Farooq, K. Yamamoto, E. Haber



Optimal Mass Transport (OMT)

Gaspard Monge 1781

Leonid Kantorovich 1976
Work in early 1940’s, Nobel 1975

CIA file on Kantorovich
(wikipedia)



Monge’s problem
Le mémoire sur les déblais et les remblais
Gaspard Monge 1781

inf
T

∫
‖x−T (x)︸ ︷︷ ︸

y

‖2dµ(x) =: W2(µ, ν)

where T#µ = ν



Kantorovich’s formulation

inf
π∈Π(ρ0,ρ1)

∫∫
‖x − y‖2 dπ(x, y)

where Π(µ, ν) are “couplings”:

∫
y π(dx, dy) = ρ0(x)dx = dµ(x)

∫
x π(dx, dy) = ρ1(y)dy = dν(y).
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B&B’s fluid dynamic formulation

Benamou and Brenier (2000):

inf
(ρ,v)

∫
Rn

∫ 1

0
‖v(x, t)‖2ρ(x, t)dtdx

∂ρ

∂t
+∇ · (vρ) = 0

ρ(x, 0) = ρ0(x), ρ(y , 1) = ρ1(y)

McCann, Gangbo, Otto, Villani, ...



Stochastic control formulation

inf
v

Eρ

{∫ 1

0
‖v(x, t)‖2dt

}
ẋ(t) = v(x, t)

x(0) ∼ ρ0(x)dx
x(1) ∼ ρ1(y)dy



OMT as a control problem – derivation

‖x − y‖2 = inf
x∈Xxy

∫ 1

0
‖ẋ‖2dt,

Xxy = {x ∈ C1 | x(0) = x, x(1) = y}.

Inf attained at constant speed geodesic x∗(t) = (1− t)x + ty



OMT as a control problem – derivation

Dirac marginals:
Also, Inf = any probabilistic average in Xxy

‖x − y‖2 = inf
Pxy∈D(δx ,δy )

EPxy

{∫ 1

0
‖ẋ(t)‖2dt

}
,

General marginals:

inf
π∈Π(ρ0,ρ1)

∫
Rn×Rn

‖x − y‖2dπ(x, y) = inf
P∈D(ρ0,ρ1)

EP

{∫ 1

0

‖ẋ(t)‖2dt
}
.

Stochastic control:

inf
v

E

{∫ 1

0
‖v‖2dt

}
ẋ(t) = v(x(t), t), a.s., x(0) ∼ ρ0dx, x(1) ∼ ρ1dy .



Schrödinger’s Bridges

Erwin Schrödinger
Work in 1926, Nobel 1935

Bridges 1931/32

ρ = ΨΨ̄



Schrödinger’s Bridge Problem (SBP)

– Cloud of N independent Brownian particles (N large)

– empirical distr. ρ0(x)dx and ρ1(y)dy at t = 0 and t = 1,
resp.

– ρ0 and ρ1 not compatible with transition mechanism

ρ1(y) 6=
∫ 1

0
p(t0, x, t1, y)ρ0(x)dx,

where

p(s, y , t, x) = [2π(t − s)]−
n
2 exp

[
−
|x − y |2

2(t − s)

]
, s < t

Particles have been transported in an unlikely way
Schrödinger (1931): Of the many unlikely ways in which this could
have happened, which one is the most likely?



Large deviations formulation of SBP

Minimize H(Q,W ) = EQ

[
log

dQ
dW

]
over Q ∈ D(ρ0, ρ1) distributions on paths with marginals ρ’s

H(·, ·): relative entropy

Föllmer 1988: This is a problem of large deviations of the empirical
distribution on path space connected through Sanov’s theorem to a
maximum entropy problem.



Relative entropy w.r.t. Wiener measure

dX = vdt + dB

Girsanov:

EQ

[
log

dQ
dW

]
= EQ

[
1

2

∫ t

0
‖v‖2ds

]
the relative entropy is a quadratic cost!!!



SBP as a stochastic control problem

inf
(ρ,v)

∫
Rn

∫ 1

0
‖v(x, t)‖2ρ(x, t)dtdx,

∂ρ

∂t
+∇ · (vρ) =

1

2
∆ρ

ρ(x, 0) = ρ0(x), ρ(y , 1) = ρ1(y).

Blaquière, Dai Pra, ...



Fluid-dynamic formulation of SBP

inf
(ρ,v)

∫
Rn

∫ 1

0

[
‖v(x, t)‖2 + ‖

1

2
∇ log ρ(x, t)‖2

]
ρ(x, t)dtdx,

∂ρ

∂t
+∇ · (vρ) = 0,

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y).

‖1
2∇ log ρ(x, t)‖2 : Fisher information, Nelson’s osmotic power

Chen-Georgiou-Pavon, On the relation between optimal transport and
Schrödinger bridges: A stochastic control viewpoint, 2015

Mikami 2004, Mikami-Thieullen 2006,2008, Léonard 2012

Conforti 2017: SBP ∼ gradient flow in Wasserstein



LQG - covariance control

min
u

E

{∫ T

0
‖v(t)‖2 dt

}
,

s.t.
dX = AXdt + Bvdt + B1dW

X (0) ∼ N (0,Σ0), X (T ) ∼ N (0,Σ1)

Chen-Georgiou-Pavon (TAC 2016)

Beghi (1996), Grigoriadis- Skelton (1997)

Brockett (2007, 2012), Vladimirov-Petersen (2010, 2015)



SBP Riccati’s

– nonlinearly coupled Riccati equations ≡ Schrödinger system

Π̇ = −A′Π− ΠA + ΠBB′Π
Ḣ = −A′H−HA−HBB′H

+ (Π + H)
(
BB′ − B1B ′1

)
(Π + H) .

Σ−1
0 = Π(0) + H(0)

Σ−1
T = Π(T ) + H(T ).

Chen-Georgiou-Pavon, Optimal steering of a linear stochastic system to a

final probability distribution, IEEE Trans. Aut. Control, May 2016



Application: Cooling

Efficient steering from initial condition ρ0 to ρ1 at finite time

– Efficient stationary state of stochastic oscillators to desired ρ1

– thermodynamic systems, controlling collective response

– magnetization distribution in NMR spectroscopy,..

Chen-Georgiou-Pavon, Fast cooling for a system of stochastic oscillators,

J. Math. Phys. Nov. 2015.



Cooling

Nyquist-Johnson noise driven oscillator

LdiL(t) = vC (t)dt
RCdvC (t) = −vC (t)dt − RiL(t)dt + u(t)dt + dw(t)



Cool it & keeping it cool

Inertial particles with stochastic excitation



Wasserstein flows and SBP’s with dynamics



Flows on discrete spaces



Wasserstein flows for vector & matrix fields

Applications:
color image processing, multivariable spectral analysis, DTI and
medical imaging, gradient flows in Quantum mechanics, etc.



... almost the end

Thank you for your attention

and now

Anders’ birthday puzzle
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Anders’ birthday puzzle

They all preach to the converted... mathematicians & followers
But only Anders has an actual proof...



Many happy occasions!

Here come the penguins



Many happy occasions!

Puzzle solving in Minneapolis



Many happy occasions!



Happy 75th!

Athens 2005
two young men enjoying

their τσιπoυρα and ρετσινα


