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Model Classes and Observation Schemes

VAR Systems:

a(z)yt = νt , t ∈ Z (high frequency) (1)

z... backward shift as well as a complex variable

a(z) = In−A1z−·· ·−Apz
p, Ai ∈ Rn×n

Assumptions

det(a(z)) 6= 0, ∀|z | ≤ 1 (stability)
(νt) white-noise, Σ = E

(
νtνT

t

)
> 0. We write νt = bεt , (εt)

white-noise with E
(
εtεT

t

)
= In.

Ap is nonsingular
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Companion Form

 yt
...

yt−p+1


︸ ︷︷ ︸

=xt+1

=


A1 · · · Ap−1 Ap

In
. . .

In 0


︸ ︷︷ ︸

A

yt−1
...

yt−p


︸ ︷︷ ︸

=xt

+


b
0
...
0


︸ ︷︷ ︸

=B

εt

or in short, written as a state space system

xt+1 = A xt +Bεt (2)
yt = (A1, ...,Ap)︸ ︷︷ ︸

=C

xt + εt (3)

Γp = Extx
T
t

fulfills the Lyapunov equation
Γp = A ΓpA T +BBT = ∑

∞
j=0 A jBBT

(
A T

)j
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Companion Form

An alternative state space system is of the form

xt+1 = A xt +Bεt (4)
yt = (In,0, ...,0)︸ ︷︷ ︸

=C

xt+1 (5)

In the following we use both representations.
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Note that a state space system (A ,B,C ) is minimal if and only if
it is controllable and observable. Since for Σ > 0 always Γp > 0
holds, the system is always controllable. It is observable and thus
minimal, if and only if Ap is nonsingular.
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Other model classes considered here
VARMA systems
Singular VAR and VARMA systems
Generalized linear dynamic factor models (GDFM’s)
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VAR Case

Parameter space for high frequency AR model (fixed p)

Θ =
{

(A1, . . . ,Ap) ∈ Rn×np|det(a(z)) 6= 0, |z | ≤ 1
}︸ ︷︷ ︸

=S

×
{

Σ|Σ = ΣT , Σ > 0
}

S is open in Rn×np.
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Transfer Function

k(z) = a−1(z)

Steady state solution

yt = a−1(z)bεt =
∞

∑
j=0

kjbεt−j

Spectral Density

f (λ ) = (2π)−1 k
(
e−iλ

)
Σk
(
e−iλ

)∗
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Observation Schemes

“Stock” data:

yt =

(
y f

t

y s
t

)
of dimension (nf ×1)
of dimension (ns ×1)

where y f
t , t ∈ Z, and y s

t , t ∈ NZ, N = 2,3, . . . ,

Population second moments which can be directly observed

γ
ff (h) = E

(
y f

t+h(y f
t )T

)
, h ∈ Z

γ
sf (h) = E

(
y s

t+h(y f
t )T

)
, h ∈ Z

γ
ss(h)= E

(
y s

t+h(y s
t )T
)
, h ∈ NZ
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Flow Data and More General Aggregation Schemes

More general linear aggregation schemes

yt =

(
y f

t

wt

)
of dimension (nf ×1)
of dimension (ns ×1)

where wt = k0y
s
t + · · ·+kN−1y

s
t−N+1, k0 non-singular, t ∈ NZ

Flow data
Here k0 = · · ·= kN−1 = Ins
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g-Identifiability

g-Identifiability

Identifiability
Can the system and noise parameters θ ∈Θ of the underlying
system be uniquely determined from those second moments which
can be directly observed?

Genericity
A property is said to hold generically if it holds on a set containing
an open and dense subset of the parameter space.

In many cases we cannot show identifiability, but only generic
identifiability, which we call g-identifiability.
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g-Identifiability

g-Identifiability

Complement of a Proper Algebraic Variety
Our results are even stronger as we show identifiability on the
complement of a proper algebraic variety.

Well-Posedness
In addition to identifiability, we explicitly describe the mapping
attaching the parameters to the second moments which can be
directly observed as well as the continuity of this mapping.

As a consequence of well-posedness, consistent estimators of the
second moments, which can be directly observed, give consistent
estimators for the high-frequency parameters in this case.
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General Remarks

Mixed frequency (MF) data are quite common, in particular in
high dimensional time series.
Aims:

Estimation of high frequency (VAR) models
Forecasting, Nowcasting, Interpolation

Approaches:

Use only data at the lowest frequency: information loss
Interpolate the missing observations and estimate using high
frequency “data”.
Estimate a continuous-time model from low frequency data by
“inverting” the aliasing formula (Phillips 1973, Hansen and
Sargent 1983). No use of cross correlations.
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Relation to Continuous-Time Systems

Idea
If all data, when sampled at the slowest rate, determine the
parameters of “the corresponding” continuous-time system, then we
have solved our problem.

Aliasing

f (∆)(λ ) =
∞

∑
j=−∞

f

(
λ +

2π j

∆

)
f (∆): spectral density of discrete-time process, sampling interval ∆
f : spectral density of continuous-time process

Without further restrictions, the mapping f → f ∆ is not injective.
Discrete-to-discrete analogon: finite sum
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Relation to Continuous-Time Systems

Band limited processes
Nyquist: Sample at a rate exceeding twice the bandwidth, then the
errors are “small”.
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Further Approaches

MIDAS regression (Ghysels et al. 2006, 2007)
Kalman filtering (Zadrozny 1990)

Our approach:
Direct estimation of the parameters of the high frequency
(VAR) model from MF data.

First step (Anderson et al. 2012, Anderson et al. 2016):
Identifiability: “constructive”, well-posedness, consistent
estimators provided.
Once the VAR parameters are given, all second moments of
the output process are obtained and all linear least squares
approximations (forecasting, nowcasting, interpolation) can be
performed, e.g. via the Kalman filter.
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AR case, n = 2, p = 1

yt =

(
y f

t

y s
t

)
=

(
aff afs

asf ass

)(
y f

t−1
y s

t−1

)
+

(
ε f

t

εs
t

)
, t ∈ Z

y f
t =

(
aff afs

)(y f
t−1
y s

t−1

)
+ ε

f
t (6)

Here all moments needed for projecting y f
t on y f

t−1 and y s
t−1 and

thus aff , afs and σ2
f =

(
Eε f

t

)2 are uniquely determined.
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AR case, cont.

y s
t =

(
asf ass

)(y f
t−1
y s

t−1

)
+ εs

t , EεtεT
t =

(
σ2

f 0
0 σ2

s

)
The autocovariance Ey s

t y
s
t−1 is not available. We replace y s

t−1 by

asf y
f
t−2 +assy

s
t−2 + εs

t−2 and project
(
y f

t
y s

t

)
onto

y f
t−1
y f

t−2
y s

t−2

 :

(
y f

t

y s
t

)
=

(
aff afsasf afsass

asf assasf a2
ss

)y f
t−1
y f

t−2
y s

t−2


︸ ︷︷ ︸

=(∗)

+

(
ε̄ f

t

ε̄s
t

)
(7)

where the components of (∗) are linearly independent and(
ε̄ f

t

ε̄s
t

)
=

(
afs

ass

)
εs

t−1 +

(
ε f

t

εs
t

)
. The parameters aff , afs and σ2

f are

unique from (6). If afs 6= 0 or asf 6= 0 or ass = 0, then the system is
identified from (7). 22 / 77
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MA case, n = 2,q = 1

yt =

(
y f

t

y s
t

)
= I

(
ε f

t

εs
t

)
+

(
bff bfs

bsf bss

)
︸ ︷︷ ︸

=B

(
ε f

t−1
εs

t−1

)

Miniphase condition: det(I −Bz)︸ ︷︷ ︸
=b(z)

6= 0, |z | ≤ 1

Parameter space:

Θ =
{
B ∈ R2×2| det(b(z)) 6= 0, |z | ≤ 1

}︸ ︷︷ ︸
=S

×{Σ|Σ > 0}

S is open in R2×2

B
iP→ b(e−iλ ), ||b(e−iλ )||sup = supλ∈[−π,π] ||b(e−iλ )||max, iP is a

homeomorphism
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MA case, cont.

Autocovariances: (Ey0y
T
0︸ ︷︷ ︸

γ(0)

, Ey1y
T
0︸ ︷︷ ︸

γ(1)

), γ(j) = 0, |j | ≥ 2

Spectral density:
f (λ ) = (2π)−1

∑
1
j=−1 γ(j)e−iλ j = b(e−iλ )Σb(e−iλ )∗

Let Γ =
{

(vechγ(0)T , vechγ(1)T , f (λ ) > 0,λ ∈ [−π,π]
}
∈ R3+4 is

open

We have identifiability for the high frequency case and in addition
Θ

i←→ Γ is a homeomorphism. Thus, if γss(1) is not directly

observed, i−1
(

γ(0),

(
γff (1) γfs(1)
γsf (1) ∗

))
is a one-dimensional

equivalance class in Θ.
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g-Identifiability for the VAR Case, Stock Variables

Identifiability of system parameters (A1, . . . ,Ap)

Right-multiplying fast, lagged variables, taking expectations

E
[
yt

(
(y f

t−1)T ,(y f
t−2)T , . . .

)]
︸ ︷︷ ︸

=Z∞
1

= (A1, . . . ,Ap )E




yt−1
.
.
.

yt−p

((y f
t−1)T ,(y f

t−2)T , . . .
)

︸ ︷︷ ︸
=Z∞

contains only second moments which can be estimated from mixed
frequency data. However, not all second moments which can be
directly observed are used.
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The extended Yule-Walker equations

Using Cayley-Hamilton
Define

Z = E


yt−1

...
yt−p

((y f
t−1)T , . . . ,(y f

t−np)T
) ∈ Rnp×nf np.

=
(
K ,A K ,A 2K , . . . ,A np−1K

)
, K = E

yt−1
...

yt−p

(y f
t−1)T

By Cayley-Hamilton rk (Z∞) = rk (Z ).

Extended Yule-Walker equations

E
[
yt

(
(y f

t−1)T , . . .(y f
t−np)T

)]
= (A1, . . . ,Ap)Z
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g-Identifiability of System Parameters

Theorem

The matrix Z =
(
K ,A K ,A 2K , . . . ,A np−1K

)
has full row rank

on a generic subset of the parameter space. Therefore the system
parameters are identifiable on this set.

Use rational structure of vec(Γp ) =
(

I(np)2 − (A ⊗A )
)−1

vec(BBT ).

There is a particular ((A1, . . . ,Ap) ,b), w.l.o.g. b can be
chosen as an n-vector, in the parameter space Θ such that
det(Z ) 6= 0 holds. Consider

A =


0 · · · 0 ρC
In

. . .
In 0

 , B = E1 =


1
0
.
.
.
0

 , ρ ∈ (0,1), C =



0 0 · · · 0 1
1 0 · · · · · · 0

0 1
.. .

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

0 · · · 0 1 0


.

Thus det(Z ) 6= 0 holds on the complement of a proper
algebraic subset of Θ.
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Proof continued

Note, that an algebraic variety is the set of common zeros of a
finite number of polynomials.
It is called proper if it is not equal to the embedding Euclidean
space.
Since the set of system parameters S is open in this
embedding Euclidean space, the result follows.
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g-Identifiability of Noise Parameters

For given (A1 . . . ,Ap),
Σ is generically obtained from a vectorization of the equations

Γp = A ΓpA T +H T ΣH

γ(0) = E
(
yty

T
t

)
= H ΓpH T ,

where
H = (In,0n×n, . . . ,0n×n)

which leads to

vec (γ(0)) = (H ⊗H )
(
I(np)2−A ⊗A

)−1
(H T ⊗H T )vec (Σ) .
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Theorem and Idea of Proof

Theorem

The matrix (H ⊗H )
(
I(np)2−A ⊗A

)−1
(H T ⊗H T ) is

generically non-singular. Therefore Σ is unique generically.

Find (A1, . . . ,Ap) such that
(H ⊗H )

(
I(np)2−A ⊗A

)−1
(H T ⊗H T ) is non-singular.

In an open neighborhood of this (A1, . . . ,Ap) non-singularity
holds, so we have a nonempty intersection with the generic set
of identifiable system parameters.
The determinant is a rational function in the free entries
(A1, . . . ,Ap), thus non-singularity holds for a generic set in the
parameter space.
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rk(Z ) = np not necessary for identifiability

as Extended Yule Walker equations do not use the full information
contained in the second moments which can be observed in
principle.

We have not been able to precisely describe the set of high
frequency parameters where Z has full row rank.
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Blocking

An alternative way to retrieve the parameters of the high-frequency
system from the second moments which can be directly observed:
This approach (Anderson et al. 2016):

provides additional insights
all moments which can be directly observed are used
leads to alternative estimation procedures

Consider the case N = 2 and the processes

ỹt =

(
yt

y f
t−1

)
, t ∈ 2Z Yt =

(
yt

yt−1

)
, t ∈ 2Z

Then (yt | t ∈ Z) and (Yt | t ∈ 2Z) are both AR with minimal state
dimension np.
Note that (ỹt | t ∈ 2Z) is not necessarily AR , but we stay in the
class of ARMA processes.
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Blocking

Consider the spectral density of (ỹt | t ∈ 2Z) . This spectrum can be
factorized as

fỹ (z2) = k(z2)k(z2)∗ (8)

where k(z2) is a stable and miniphase spectral factor (with a
minimum number of columns).
Let

(
Āb, B̄b, C̄b, D̄b

)
denote a minimal state space system realizing

such a spectral factor, i.e.

k(z2) = C̄b

(
I
(
z2)−1− Āb

)−1
B̄b + D̄b (9)

McMillan degree of a transfer function
State dimension of a minimal state space system.
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Theorem:
For ((A1, . . . ,Ap) ,Σν ) ∈Θ, if Ap is non-singular, Γp > 0, and if for
eigenvalues of A , λi 6= λj implies λ 2

i 6= λ 2
j , the McMillan degree of

a causal and miniphase spectral factor k
(
z2) of fỹ (z2) is equal to

np.

This result is quite remarkable, as it tells us that generically, the
McMillan degree does not drop if we omit the slow, odd variables

from Yt =

(
yt

yt−1

)
.

The proof is quite tedious and shows that the Hankel matrix of
covariance matrices

E

 ỹt+2
...

ỹt+2np

(ỹT
t · · · ỹT

t−2(np−1)

)
has rank np under the assumptions of the theorem.
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Blocking

On the other hand we obtain from (2), (3)

xt+1 = A 2︸︷︷︸
Ab

xt−1 + (B,A B)︸ ︷︷ ︸
Bb

(
εt

εt−1

)
(10)

ỹt =

(
In 0 0 · · · 0
0 (Inf

,0) 0 · · · 0

)
A 2︸ ︷︷ ︸

Cb

xt−1 +

(
b A1b
0 (Inf

,0)b

)
︸ ︷︷ ︸

Db

(
εt

εt−1

)

As is easy to see, the driving noise of this system are not
innovations, the system has a fat transfer function and will not be
miniphase.
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Blocking

Nevertheless, one can show:

Theorem:

Under the assumptions of the theorem above (Ab,Cb) and
(
Āb, C̄b

)
are related by

Āb = T−1AbT

C̄b = CbT

for a suitably chosen non-singular np×np matrix T .

Note that
(
Āb, C̄b

)
can be obtained from the spectral density fỹ (z2)

of the observed process (ỹt | t ∈ 2Z) uniquely up to basis change.
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Blocking
Using the structure of Cb =

(
In 0 0 · · · 0
0

(
Inf

,0
)

0 · · · 0

)
A 2 and

A =


A1 · · · Ap−1 Ap

In
. . .

In 0

, we obtain T and thus the system

parameters in a unique way:
Theorem:
Under the assumptions of previous theorem and the additional
assumptions that the matrix


(

Inf
0 · · · 0

)(
Inf

0 · · · 0
)
A

...(
Inf

0 · · · 0
)
A np


has rank np and that all eigenvalues of A are distinct, the system
parameters (A1, . . . ,Ap) are uniquely determined from those
population second moments which are directly observed.
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g-Identifiability for the Case of Flow Data

(Anderson et al. 2016)

(wt)t∈Z is a linear transformation of (y s
t )t∈Z

Time Domain: linear transformation
wt = (1+ z + z2 + · · ·+ zN−1)y s

t , t ∈ Z
Frequency Domain:
fww (λ ) =(
1+ e iλ + · · ·+

(
e iλ
)N−1

)
fy s y s (λ )

(
1+ e−iλ + · · ·+

(
e−iλ

)N−1
)

Inverse transfer function(
1+ e iλ +

(
e iλ
)2

+ · · ·+
(
e iλ
)N−1

)−1
Ins ∈L2 (fwwdλ )

Isomorphism between frequency and time domain
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Recovering fy sy f

Cross spectral densities between (y s
t )t∈Z and

(
y f

t

)
t∈Z

fy s y f (λ ) =

(
1+ e iλ +

(
e iλ
)2

+ · · ·+
(
e iλ
)N−1

)−1

fwy f (λ )

One to one relationship of the spectral density and the
covariance data: covariances γsf (h) can be recovered from
γwy f (h) which are observed.
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Remarks

Analysis presented can easily be extended to general linear
aggregation schemes:

wt = k0y
s
t +k1y

s
t−1 + ...+kN−1y

s
t−N+1, k0 non-singular
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ARMA Systems

a(z)yt = b(z)εt

b(z) =
q

∑
j=0

Bjz
j , B0 = I

Assumptions:
det(a(z)) 6= 0, |z | ≤ 1, rk(Ap) = n

det(b(z)) 6= 0, |z | ≤ 1, rk(Bq) = n

(a(z),b(z)) is left coprime

Parameter space:

ΘI = {(A1, . . . ,Ap,B1, . . . ,Bq) |Assumptions from above hold}

×
{

Σ |Σ > 0, ΣT = Σ
}
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ARMA Systems - Main results

Main results:
for p ≥ q: g-identifiability, Anderson et al. (2016), JoE
for p < q: non-identifiability; equivalence classes are
(topological) manifolds of dimension larger then or equal to
one, Deistler et al. (2016), EcoSta
Simplest Case: MA case; Here the not directly observed
covariances of the outputs can be “freely varied” and this
corresponds to equivalance classes in the parameter space
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Estimation: VAR Case

Estimation VAR Case:
Koelbl et al. (2016), Koelbl (2015), Koelbl and Deistler (2016)

Quick and Dirty: Extended YW, IVL
initial estimators
MLE and EM algorithm

Estimation GDFM’s
Braumann, Fresoli, Deistler (2016)

Evaluation of these estimators by bootstrap methods is ongoing
(starting) work
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Extended Yule-Walker Estimator

We replace the population second moments by their sample
counterparts:

γ̂
ff (h) =

1
T

T−h

∑
t=1

y f
t+h

(
y f

t

)T

γ̂
sf (h) =

1
T/2

t2

∑
t=t1

y s
2t

(
y f
2t−h

)T
, T sample size

If Z has full row rank, its estimator, Ẑ say, will be of full row
rank, from a certain T0 onwards, too. We may now define the
XYW estimators as (

Â1, . . . , Âp

)
= Ẑ1Ẑ

†

where Ẑ † = ẐT
(
Ẑ ẐT

)−1
is the Moore-Penrose pseudo

inverse of Ẑ (see Chen & Zadrozny (1998)).
Note that not all second moments which can be directly
observed are used in this estimator. 49 / 77
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Maximum Likelihood Estimation

ỹt =

(
yt

y f
t−1

)
, t ∈ 2Z

Ỹobs =
(
ỹT
2 ỹT

4 · · · ỹT
T

)T

θ =
(
vec(A)T ,vech(Σ)T

)T
, A = (A1, . . . ,Ap)

L̃T (θ) = log(det(Γ̃T (θ))) + Ỹ T
obs(Γ̃T (θ))−1Ỹobs

[Γ̃T (θ)]i ,j =

 γff (i − j) γ fs(i − j) γff (i −1− j)
γsf (i − j) γss(i − j) γ fs(i −1− j)

γff (i − j +1) γsf (i − j +1) γff (i − j)

 i , j ∈ 2N

Problems:
size of the matrix Γ̃T (θ)
no explicit formula for the score function
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EM Algorithm

The idea of the algorithm is to find θ̂ = arg minθ∈Θ L̃T (θ)
iteratively as follows. Consider the negative log-likelihood of the
complete (i.e. high-frequency) data YT =

(
yT
1 ,yT

2 , . . . ,yT
T

)T :

LT (θ) = log det(V1)+xT
1 V−1

1 x1 +T log det(Σ)+
T

∑
t=1

(yt−Axt)T Σ−1(yt−Axt)

where we assume for the initial values
x1 = (yT

−p+1, . . . ,y
T
0 )T ∼N (0,V1).

The k +1-th iteration consists of two steps:
1 E-step: For given parameters θ (k), compute the conditional

expectation E
θ (k)

(
LT (θ) | Ỹobs

)
, where

Ỹobs =
(
ỹT
2 ỹT

4 · · · ỹT
T

)T

2 M-step: Obtain θ (k+1) by optimizing the conditional
expectation E

θ (k)

(
LT (θ) | Ỹobs

)
with respect to θ .
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EM Algorithm - E-step

E
θ (k)

(
LT (θ) | Ỹobs

)
= log det(V1) + trace

(
V−1

1 E
θ (k)

(
x1x

T
1 |Ỹobs

))
+

T log det(Σ) + trace(Σ−1
T

∑
t=1

E
θ (k)

(
(yt −Axt)(yt −Axt)T |Ỹobs

)
︸ ︷︷ ︸

=(∗)

)

Let xt|T = E
θ (k)

(
xt |Ỹobs

)
and consider term (*) using

yt = (In,0, . . . ,0)︸ ︷︷ ︸
C

xt+1:

(∗) = C

(
T

∑
t=1

xt+1|T xT
t+1|T +Pt+1|T

)
C T +A

(
T

∑
t=1

xt|T xT
t|T +Pt|T

)
AT

−C

(
T

∑
t=1

xt+1|T xT
t|T +Pt+1,t|T

)
AT −A

(
T

∑
t=1

xt|T xT
t+1|T +Pt,t+1|T

)
C T

where Pt,t−j |T = E
(
xt −xt|T

)(
xt−j −xt−j |T

)T
.
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EM Algorithm - E-step cont.

We compute the conditional expectations and its errors,

xt|T = E
θ (k)

(
xt |Ỹobs

)
Pt,t−j |T = E

(
xt −xt|T

)(
xt−j −xt−j |T

)T

through the following time variable system

xt+1 = A xt +Bεt

y×t = Ctxt+1

where xt = (yT
t−1, . . . ,y

T
t−p) and C2t = (In0 · · ·0), C2t−1 = (Inf

0 · · ·0).
The vector y×t contains only observable components.

Since xt = (yT
t−1, . . . ,y

T
t−p), calculating xt|T means interpolating the

missing y s
t .
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EM Algorithm - M-step

Obtain A(k+1), Σ(k+1) by solving
∂E

θ(k)(LT (θ) | Ỹobs)
∂X = 0, X = A,Σ:

A(k+1) = C S10S
−1
00

Σ(k+1) = T−1
(
C S11 C T −C S10S

−1
00 ST

10 C T
)

Sii =
T

∑
t=1

(
xt+j |T xT

t+j |T +Pt+j |T

)
, j = 0,1

S10 =
T

∑
t=1

(
xt+1|T xT

t|T +Pt+1,t|T

)
The matrix C = (In,0, . . . ,0) selects the first n×np block row.

Note that this is a version of the EM algorithm for state space
models, first proposed in Shumway & Stoffer (1982).
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Asymptotic Distribution of the XYW Estimators

The derivation of the asymptotic distribution of the XYW
estimator is tedious (no analytic formula for asym. variance)
First, we consider Bartlett’s formula for the mixed-frequency
estimators of the autocovariance function:

√
T

(
vec
(

γ̂ff (h)

γ̂sf (h)

)
−vec

(
γff (h)

γsf (h)

))np

h=1−p

d→N
(
0,Σγ

)
In the next step we consider the linearization of the mapping
attaching the parameters to the second moments at the “true”
point:

vec
(
ÂXYW−A

)
= Ẑ †vec

(
Ẑ1−AẐ

)
= Ẑ †LA

(
vec
(

γ̂ff (h)

γ̂sf (h)

)
−vec

(
γff (h)

γsf (h)

))np

h=1−p

Finally, we can conclude that
√
T
(
vec
(
ÂXYW

)
−vec(A)

)
d→N

(
0,Z †LAΣγL

T
A

(
Z †
)T
)
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Compare Properties

Asymptotic and finite sample properties of
HF Maximum Likelihood, which is asymptotically equivalent to
the (HF) Yule-Walker estimator
HF XYW: Loss of uniqueness and thus of consistency if Z is of
rank smaller than np. In general, efficiency loss compared to
HF Yule-Walker estimator, in particular if Z is “almost” rank
deficient
MF Maximum Likelihood: asymptotically efficient for MF
data. EM algorithm
MF XYW: two sources of efficiency loss relative to HF
maximum likelihood: caused by MF data and relative to the
MF maximum likelihood estimator
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Loss of Identifiability

Theorem
Assume that p = 1, nf = ns = 1, Σ = I2. The system parameters(
aff afs

asf ass

)
are not identifiable if and only if they satisfy the

equations
afs = 0, asf = 0, ass 6= 0.

Example: AR(1)

yt =

(
0.9 0
asf 0.8

)
yt−1 + εt

(εt)∼WN (0, I2) , asf ∈ {0, 0.1, 0.25}
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Example: AR(1)

Evaluate the log-likelihood −LT (θ) fixed at the true parameters
aff ,afs ,asf ,Σ.

Figure:
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Finite Sample Examples

Model “The Good”:

yt =

(
0.9556 0.8611
−0.6914 0.2174

)
yt−1 + εt , εt ∼WN(0, I2)

z0,1 = 0.7303±0.8437i

Model “The Bad”:

yt =

(
−1.2141 1.1514
−0.9419 0.8101

)
yt−1 + εt , εt ∼WN(0, I2)

z0,1 =−2±2.4294i
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Correlations - Model “The Good”

Figure:
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Correlations - Model “The Bad”

Figure:
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Finite Sample - MSE
(

θ̂

)
θ =

(
vec(A1)T ,vech(Σ)T

)T
,

MSE
(

θ̂

)
= 1

m ∑
m
j=1 ∑

7
i=1

(
θi − θ̂

j
i

)2
, m = 103

Model “The Good” Model “The Bad”
T = 500 T = 500

Estimator absolute relative absolute relative

H
F YW 0.0067 1 0.0092 1
XYW 0.0111 1.66 0.2255 24.51

M
F MLE-EM 0.0101 1.51 0.0451 4.90

XYW 0.0783 11.69 1.3226 143.76
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Finite Sample - One-step-ahead Forecasting Errors

Comparing LF-MF-HF

Model 1 Model 2
Estimators Absolute Relative Absolute Relative

LF YW 3.6071 1 2.8594 1

MF
MLE-EM 2.3709 0.66 2.8574 0.99
XYW 2.3883 0.66 34.1492 11.94

HF YW 1.9948 0.55 1.9981 0.70
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Modeling High Dimensional Time Series

“Structured big data”

Curse of dimensionality vs. gaining additional information from
additional time series

Model Classes: Sparsity (either a-priori knowledge or model
selection)

Dynamic Factor Models
Dynamic PCA
Structural Models
Graphical Time Series Models
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Areas of Application

Areas of Application:
System Identification: Oversensoring
System Identification: Internet of Things
Macroeconometric Modeling: Disaggregated Data
High Density EEG’s
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GDFM’s

yt = ŷt +ut , t ∈ Z, High-frequency system

yt ... n-dimensional observations (e.g. n=150)
ŷt ... latent variables, strongly dependent
ut ... noise, weakly dependent (weakly idiosyncratic)
(ŷt)⊥(ut)

ŷt = Lzt , L ∈ Rn×s

zt ... s-dimensional static factors, s < n

a(z)zt = bεt , b ∈ Rs×q

εt ... q-dimensional dynamic factors, q ≤ s
For q < s (singular case), the AR case is generic, Anderson et al.
(2016b)
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GDFM’s

Separate denoising (i.e. estimating latent variables or static factors
from observations) from MF observations to obtain a MF AR(MA)
model for static factors

Aim: Obtain a minimal static factor with a maximum number of
high frequency variables.
Stock variables:

Estimate factor z f
t from y f

t

Estimate factor zs
t from y s

t

For the estimate ẑt eliminate linear dependent components of
second step.

The HF AR model estimated this way then may be used for
“structured” interpolation.
Felsenstein (2014), Braumann, Fresoli, Deistler (2016)

Denoising in other cases is still an open problem
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GDFM’s

Integrated denoising via a state space formulation of the GDFM
(Mariano & Murasawa (2003); Bańbura & Modugno (2014)).
Assume that

yt = Lzt +ut

zt = A1zt−1 + · · ·+A4zt−4 + εt

uit = αiuit−1 + ηit

where |αi |< 1 and det
(
Is −A1z−·· ·−A4z

4) 6= 0, ∀|z | ≤ 1 and
(εt)∼WN(0, Is). In addition (ut)∼WN(0,R).
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GDFM’s

State space formulation of the GDFM:

yt = (L,0, . . . ,0, In,0)


zt

zt−1
zt−2
zt−3
ut




zt

zt−1
zt−2
zt−3
ut

=



A1 A2 A3 A4 0
In

In
In α1 0

. . .
0 αN






zt−1
zt−2
zt−3
zt−4
ut−1

+


εt

0
...
0
ηt



The parameters can be estimated e.g. by the EM algorithm.
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Conclusions

For the VAR case as well as for the VARMA case where the
MA order is less than or equal to the AR order we have generic
identifiability from MF data.
Estimation in the VAR case: Fast methods: XYW and IVL,
consistent but not asymptotically efficient. Initial estimators
for MLE and EM
VMA case as well as the VARMA case where the MA order
exceeds the AR order: Genuine nonidentifiablity.
Future work: Evaluation of estimators by bootstrap methods
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Questions?

Thank you!
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