Back to the Roots at the occasion of Anders Lindquist 75!

Philippe Dreesen

Kim Batselier

Bart De Moor

KU Leuven Department of Electrical Engineering **ESAT-STADIUS**

Outline

- 1 Rooting
- 2 Univariate
- Multivariate
- 4 Optimization
- 5 Some applications
- 6 Conclusions

Typical examples

Rooting

$$p(\lambda) = \det(A - \lambda I) = 0$$

$$(x-1)(x-3)(x-2) = 0$$

 $-(x-2)(x-3) = 0$

$$x^{2} + 3y^{2} - 15 = 0$$
$$y - 3x^{3} - 2x^{2} + 13x - 2 = 0$$

Rooting

- Algebraic Geometry: 'Queen of mathematics' (literature = huge !)
- Computer algebra: symbolic manipulations
- Computational tools: Gröbner Bases, Buchberger algorithm

Graduate Texts
in Mathematics

Devid A Cor
John Little
Donal OSnea

Using Algebraic
Geometry

Wolfgang Gröbner (1899-1980)

Bruno Buchberger

Example: Gröbner basis

Input system:

Rooting

$$x^{2}y + 4xy - 5y + 3 = 0$$
$$x^{2} + 4xy + 8y - 4x - 10 = 0$$

- Generates simpler but equivalent system (same roots)
- Symbolic eliminations and reductions
- Exponential complexity
- Numerical issues
 - NO floating point but integer arithmetic
 - Coefficients become very large

Gröbner Basis:

$$-9 - 126y + 647y^2 - 624y^3 + 144y^4 = 0$$

-1005 + 6109y - 6432y^2 + 1584y^3 + 228x = 0

Outline

- Rooting
- 2 Univariate
- 3 Multivariate
- 4 Optimization
- 5 Some applications
- 6 Conclusions

Univariate

Characteristic Polynomial

The eigenvalues of A are the roots of

$$p(\lambda) = \det(A - \lambda I) = 0$$

Companion Matrix

Solving

$$q(x) = 7x^3 - 2x^2 - 5x + 1 = 0$$

leads to

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1/7 & 5/7 & 2/7 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} = x \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}$$

Consider the univariate equation

$$x^3 + a_1 x^2 + a_2 x + a_3 = 0,$$

having three distinct roots x_1 , x_2 and x_3

$$\begin{bmatrix} a_3 & a_2 & a_1 & 1 & 0 & 0 \\ 0 & a_3 & a_2 & a_1 & 1 & 0 \\ 0 & 0 & a_3 & a_2 & a_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \\ x_1^3 & x_2^3 & x_3^3 \\ x_1^4 & x_2^4 & x_3^4 \\ x_1^5 & x_2^5 & x_2^5 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \\ x_1^3 & x_2^3 & x_3^3 \\ x_1^4 & x_2^4 & x_3^4 \\ x_1^5 & x_2^5 & x_3^5 \end{bmatrix} = 0$$

- Banded Toeplitz; linear homogeneous equations
- Null space: (Confluent) Vandermonde structure
- Corank (nullity) = number of solutions
 - Realization theory in null space: eigenvalue problem

Consider

Univariate

$$x^{3} + a_{1}x^{2} + a_{2}x + a_{3} = 0$$
$$x^{2} + b_{1}x + b_{2} = 0$$

Build the Sylvester Matrix:

$$\begin{bmatrix} 1 & a_1 & a_2 & a_3 & 0 \\ 0 & 1 & a_1 & a_2 & a_3 \\ \hline 1 & b_1 & b_2 & 0 & 0 \\ 0 & 1 & b_1 & b_2 & 0 \\ 0 & 0 & 1 & b_1 & b_2 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \\ x^4 \end{bmatrix} = 0$$

Row Space	Null Space
Ideal =union of ideals =multiply rows with powers of x	Variety =intersection of null spaces

- Corank of Sylvester matrix = number of common zeros
- null space = intersection of null spaces of two Sylvester matrices
- common roots follow from realization theory in null space
- notice 'double' Toeplitz-structure of Sylvester matrix

Sylvester Resultant

Univariate 000000

Consider two polynomials f(x) and g(x):

$$f(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$$

$$g(x) = -x^2 + 5x - 6 = -(x - 2)(x - 3)$$

Common roots iff S(f,g) = 0

$$S(f,g) = \det \begin{bmatrix} -6 & 11 & -6 & 1 & 0 \\ 0 & -6 & 11 & -6 & 1 \\ -6 & 5 & -1 & 0 & 0 \\ 0 & -6 & 5 & -1 & 0 \\ 0 & 0 & -6 & 5 & -1 \end{bmatrix}$$

James Joseph Sylvester

Univariate 000000

The corank of the Sylvester matrix is 2!

Sylvester's result can be understood from

$$f(x) = 0$$

$$x \cdot f(x) = 0$$

$$g(x) = 0$$

$$x \cdot g(x) = 0$$

$$x^{2} \cdot g(x) = 0$$

$$1 \quad x \quad x^{2} \quad x^{3} \quad x^{4}$$

$$-6 \quad 11 \quad -6 \quad 1 \quad 0$$

$$-6 \quad 5 \quad -1$$

where $x_1 = 2$ and $x_2 = 3$ are the common roots of f and g

Univariate ○○○○○

The vectors in the Vandermonde kernel K obey a 'shift structure':

$$\begin{bmatrix} 1 & 1 \\ x_1 & x_2 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \end{bmatrix} \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \\ x_1^4 & x_2^4 \end{bmatrix}$$

or

$$\underline{K}.D = S_1KD = \overline{K} = S_2K$$

The Vandermonde kernel K is not available directly, instead we compute Z, for which ZV=K. We now have

$$S_1KD = S_2K$$

$$S_1ZVD = S_2ZV$$

leading to the generalized eigenvalue problem

$$(S_2 Z)V = (S_1 Z)VD$$

Outline

- Multivariate
- 5 Some applications

Consider

$$\left\{ \begin{array}{lcl} p(x,y) & = & x^2 + 3y^2 - 15 = 0 \\ q(x,y) & = & y - 3x^3 - 2x^2 + 13x - 2 = 0 \end{array} \right.$$

- \bullet Fix a monomial order, e.g., $1 < x < y < x^2 < xy < y^2 < x^3 < x^2y < \dots$
- ullet Construct M: write the system in matrix-vector notation:

Macaulay matrix

$$\begin{cases} p(x,y) = x^2 + 3y^2 - 15 = 0 \\ q(x,y) = y - 3x^3 - 2x^2 + 13x - 2 = 0 \end{cases}$$

Continue to enlarge M:

it # form	1	x	y	x^2	xy	y^2	x^3	x^2y	xy^2	y^3	$x^{4} x^{3} y^{3}$	x^2y^2x	y^3y^4	x ⁵ x ⁴ y	x^3y^2x	$^{2}y^{3}xy$	$^{4}y^{5}$	\rightarrow
$d = 3 \begin{vmatrix} xp \\ yp \\ q \end{vmatrix}$	- 15 - 2	- 15 - 13	- 15 1	1 - 2		3	1 - 3	1	3	3								
$d = 4 \begin{vmatrix} x^2 p \\ xyp \\ y^2 p \\ xq \\ yq \end{vmatrix}$		- 2	- 2	- 15 - 13	- 15 - 1 13	- 15 1	- 2	- 2			1 - 3 - 3	3 1	3					
$d = 5 \begin{cases} x^{3} & y \\ x^{2} & yp \\ x^{2} & yp \\ y^{3} & y^{3} & y^{2} \\ x^{2} & q \\ xyq & y^{2} & q \end{cases}$				- 2	- 2		- 15 13	- 15 1 13	1	- 15	- 2	- 2		1 - 3 - 3	1	3	3	
						- 2	14.	1.	13	1	1. 1.	1.	- 2 ··.·.	1. 1.	- 3	·. ·	· . · .	·.,

- # rows grows faster than # cols \Rightarrow overdetermined system
- If solution exists: rank deficient by construction!

Fundamental Linear Algebra Theorem and Algebraic Geometry

Row space:

- · ideal; Hilbert Basis Theorem
- Subspace based elimination theory

Left null space:

- syzygies, Hilbert Syzygy Theorem
- Syzygy: numerical linear algebra paper bdm/kb

Multivariate 00000000000000

Right null space:

- · Variety; Hilbert Nullstellensatz (existence of solutions); Hilbert polynomial (number of solutions = nullity)
- Modelling the Macaulay null space with nD singular autonomous systems
- Column space: Rank tests: Affine roots, roots at ∞

David Hilbert

The singular value decomposition

$$\textbf{\textit{A}} = \textbf{\textit{US}}\,\textbf{\textit{V}}^t = \begin{pmatrix} \textbf{\textit{U}}_1 & \textbf{\textit{U}}_2 \end{pmatrix} \begin{pmatrix} \textbf{\textit{S}}_1 & \textbf{\textit{0}} \\ \textbf{\textit{0}} & \textbf{\textit{0}} \end{pmatrix} \begin{pmatrix} \textbf{\textit{V}}_1^t \\ \textbf{\textit{V}}_2^t \end{pmatrix}$$

with

$$egin{align*} m{U}_1^t m{U}_1 &= m{I}_{r_A} & m{V}_1^t m{V}_1 &= m{I}_{r_A} \\ m{U}_2^t m{U}_2 &= m{I}_{m-r_A} & m{V}_2^t m{V}_2 &= m{I}_{n-r_A} \\ m{U}_1^t m{U}_2 &= 0 & m{V}_1^t m{V}_2 &= 0 \\ \end{split}$$

Geometry	Basis
R(A)	U_1
$N(A^t)$	U_2
$R(A^t)$	V ₁
N(A)	V ₂

Gene Howard Golub

(Dr. SVD)

Macaulay matrix M:

$$M = \begin{bmatrix} \times & \times & \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times & 0 & 0 \\ 0 & 0 & \times & \times & \times & \times & 0 \\ 0 & 0 & 0 & \times & \times & \times & \times \end{bmatrix}$$

• Solutions generate vectors in kernel of *M*:

$$MK = 0$$

Number of solutions s follows from corank

Francis Sowerby Macaulay

Vandermonde nullspace Kbuilt from s solutions (x_i, y_i) :

	1	1		1
	x_1	x_2		x_s
	y_1	y_2		y_s
l	x_{1}^{2}	x_{2}^{2}		x_s^2
İ	x_1y_1	x_2y_2		$x_s y_s$
	y_1^2	y_{2}^{2}		y_s^2 x_s^3
	x_1^3	x_{2}^{3}		
	$x_1^2 y_1$	$x_2^2 y_2$		$x_s^2 y_s$
1	$x_1 y_1^2$	$x_2y_2^2$		$x_s y_s^2$
	y_1^3	y_{2}^{3}		y_s^3
	x_{1}^{4}	x_{2}^{4}		x_{4}^{4}
İ	$x_1^3 y_1$	$x_2^3y_2$		$x_s^3 y_s$
İ	$x_1^2 y_1^2$	$x_2^2y_2^2$		$x_{s}^{2}y_{s}^{2}$
	$x_1 y_1^3$	$x_2y_2^3$		$x_s y_s^3$
	y_1^4	y_2^4		y_s^4
1	:	:	:	
- 1				

ullet Choose s linear independent rows in K

$$S_1K$$

• This corresponds to finding linear dependent columns in M

1	1		1
x_1	x_2		x_s
y_1	y_2		y_s
x_{1}^{2}	x_{2}^{2}		x_s^2
x_1y_1	x_2y_2		$x_s y_s$
y_1^2	y_{2}^{2}		y_s^2
x_1^3	x_{2}^{3}		x_s^3
$x_1^2 y_1$	$x_2^2 y_2$		$x_s^2 y_s$
$x_1 y_1^2$	$x_2y_2^2$		$x_s y_s^2$
y_1^3	y_{2}^{3}		y_s^3
x_{1}^{4}	x_{2}^{4}		x_4^4
$x_1^3 y_1$	$x_2^3y_2$		$x_s^3 y_s$
$x_1^2 y_1^2$	$x_2^2y_2^2$		$x_{s}^{2}y_{s}^{2}$
$x_1y_1^3$	$x_2y_2^3$		$x_s y_s^3$
y_1^4	y_{2}^{4}		y_s^4
:	:	:	:

Shifting the selected rows gives (shown for 3 columns)

simplified:

	$\begin{matrix} 1 & & & \\ x_1 & & & \\ y_1 & & & \\ x_1 y_1 & & & \\ x_1^3 & & & \\ x_1^2 y_1 & & & \end{matrix}$	$ \begin{array}{c} 1 \\ x_2 \\ y_2 \\ x_2y_2 \\ x_3^3 \\ x_2^2 \\ x_2^2 y_2 \end{array} $	$ \begin{array}{cccc} & 1 & - \\ & x_3 \\ & y_3 \\ & x_3 y_3 \\ & x_3 $\begin{bmatrix} x_1 \\ \end{bmatrix}$	x_2	$\left[\begin{array}{c} \\ \end{array} \right] =$	$x_1 \\ x_1^2 \\ x_1y_1 \\ x_1^2y_1 \\ x_1^4 \\ x_1^3 \\ x_1^3y_1$	$egin{array}{c} x_2 \\ x_2 \\ x_2 y_2 \\ x_2^2 y_2 \\ x_2^4 \\ x_2 \\ x_2^3 y_2 \\ \end{array}$	x_3 x_3 x_3 x_3 x_3 x_3 x_4 x_4 x_3 x_3 x_3	
--	--	---	---	--	-------	--	--	---	---

- Finding the x-roots: let $D_x = \operatorname{diag}(x_1, x_2, \dots, x_s)$, then

$$S_1 KD_x = S_x K,$$

where S_1 and S_x select rows from K w.r.t. shift property

Realization Theory for the unknown x

Setting up an eigenvalue problem in x

We have

$$S_1 KD_x = S_x K$$

Generalized Vandermonde K is not known as such, instead a null space

basis Z is calculated, which is a linear transformation of K:

$$ZV = K$$

which leads to

$$(S_x Z)V = (S_1 Z)VD_x$$

Here, V is the matrix with eigenvectors, D_x contains the roots x as eigenvalues.

It is possible to shift with y as well...

We find

$$S_1 K D_y = S_y K$$

with D_y diagonal matrix of y-components of roots, leading to

$$(S_y Z)V = (S_1 Z)V D_y$$

Some interesting results:

- same eigenvectors V!
- $(S_xZ)^{-1}(S_1Z)$ and $(S_yZ)^{-1}(S_1Z)$ commute
 - ⇒ 'commutative algebra'

Basic Algorithm outline

Find a basis for the nullspace of M using an SVD:

$$M = \begin{bmatrix} \times & \times & \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times & 0 & 0 \\ 0 & 0 & \times & \times & \times & \times & 0 \\ 0 & 0 & 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} X & Y \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} W^T \\ Z^T \end{bmatrix}$$

Hence,

$$MZ = 0$$

We have

$$S_1KD = S_{\text{shift}}K$$

with K generalized Vandermonde, not known as such. Instead a basis Zis computed as

$$ZV = K$$

which leads to

$$(S_{\text{shift}}Z)V = (S_1Z)VD$$

 S_1 selects linear independent rows; S_{shift} selects rows 'hit' by the shift.

'Mind the Gap' and 'A Bout de Souffle'

- Dynamics in the null space of M(d) for increasing degree d: The index of some of the linear independent rows stabilizes (=affine zeros); The index of other ones keeps increasing (=zeros at ∞).
- 'Mind-the-gap': As a function of d, certain degree blocks become and stay linear dependent on all preceeding rows: allows to count and seperate affine zeros from zeros at ∞
- 'A bout de souffle': Effect of zeros at ∞ 'dies' out (nilpotency).

Modelling the null space: singular nD autonomous systems

Weierstrass Canonical Form decoupling affine and infinity roots

$$\left(\begin{array}{c|c} v(k+1) \\ \hline w(k-1) \end{array}\right) = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & E \end{array}\right) \left(\begin{array}{c|c} v(k) \\ \hline w(k) \end{array}\right),$$

 \bullet Action of A_i and E_i represented in grid of monomials

Roots at Infinity: nD Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity

$$\left[\begin{array}{c|c} v(k+1) \\ \hline w(k-1) \end{array}\right] = \left[\begin{array}{c|c} A & 0 \\ \hline 0 & E \end{array}\right] \left[\begin{array}{c|c} v(k) \\ \hline w(k) \end{array}\right]$$

Singular $n\mathsf{D}$ Attasi model (for n=2)

$$v(k+1,l) = A_x v(k,l)$$

$$v(k,l+1) = A_y v(k,l)$$

$$w(k-1,l) = E_x w(k,l)$$

$$w(k,l-1) = E_y w(k,l)$$

with E_x and E_y nilpotent matrices.

Summary

- Rooting multivariate polynomials
 - = (numerical) linear algebra
 - \bullet = (fund. thm. of algebra) \cap (fund. thm. of linear algebra)
 - = nD realization theory in null space of Macaulay matrix
- Decisions based upon (numerical) rank
 - Dimension of variety = degree of Hilbert polynomial: follows from corank (nullity);
 - For 0-dimensional varieties ('isolated' roots): corank stabilizes = # roots (nullity)
 - 'Mind-the-gap' splits affine zeros from zeros at ∞
 - # affine roots (dimension column compression)
- not discussed
 - Multiplicity of roots ('confluent' generalized Vandermonde matrices)
 - Macaulay matrix columnspace based methods ('data driven')

Optimization •00

Outline

- 4 Optimization
- 5 Some applications

Polynomial Optimization Problems

Lagrange multipliers: necessary conditions for optimality:

$$L(x, y, z) = x^2 + y^2 + z(y - x^2 + 2x - 1)$$

$$\frac{\partial L}{\partial x} = 0 \quad \rightarrow \quad 2x - 2xz + 2z = 0$$

$$\frac{\partial L}{\partial y} = 0 \quad \rightarrow \quad 2y + z = 0$$

$$\frac{\partial L}{\partial z} = 0 \quad \rightarrow \quad y - x^2 + 2x - 1 = 0$$

Observations:

- all equations remain polynomial
- all 'stationary' points (local minima/maxima, saddle points) are roots of a system of polynomial equations

Optimization

- shift with objective function to find minimum: only minimizing roots are needed!

Let

$$A_xV = VD_x$$

and

$$A_y V = V D_y$$

then find minimum eigenvalue of

$$(A_x^2 + A_y^2)V = V(D_x^2 + D_y^2)$$

Outline

- 5 Some applications

- PEM System identification
- Measured data $\{u_k, y_k\}_{k=1}^N$
- Model structure

$$y_k = G(q)u_k + H(q)e_k$$

Output prediction

$$\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k$$

Model classes: ARX, ARMAX, OE, BJ

$$A(q)y_k = B(q)/F(q)u_k + C(q)/D(q)e_k$$

Class	Polynomials
ARX	A(q), B(q)
ARMAX	A(q), $B(q)$,
	C(q)
OE	B(q), F(q)
BJ	B(q), $C(q)$,
	D(q), F(q)

Minimize the prediction errors $y - \hat{y}$, where

$$\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k,$$

subject to the model equations

Example

ARMAX identification:
$$G(q)=B(q)/A(q)$$
 and $H(q)=C(q)/A(q)$, where $A(q)=1+aq^{-1}$, $B(q)=bq^{-1}$, $C(q)=1+cq^{-1}$, $N=5$

$$\min_{\hat{y},a,b,c} \qquad (y_1 - \hat{y}_1)^2 + \ldots + (y_5 - \hat{y}_5)^2
s.t. \qquad \hat{y}_5 - c\hat{y}_4 - bu_4 - (c - a)y_4 = 0,
\hat{y}_4 - c\hat{y}_3 - bu_3 - (c - a)y_3 = 0,
\hat{y}_3 - c\hat{y}_2 - bu_2 - (c - a)y_2 = 0,
\hat{y}_2 - c\hat{y}_1 - bu_1 - (c - a)y_1 = 0,$$

Static Linear Modeling

- Rank deficiency
- minimization problem:

$$\begin{aligned} & \min & & \left| \left| \left[\begin{array}{cc} \Delta A & \Delta b \end{array} \right] \right| \right|_F^2 \,, \\ & \text{s. t.} & & (A + \Delta A)v = b + \Delta b, \\ & & v^T v = 1 \end{aligned}$$

$$\begin{cases}
Mv &= u\sigma \\
M^T u &= v\sigma \\
v^T v &= 1 \\
u^T u &= 1
\end{cases}$$

Dynamical Linear Modeling

- Rank deficiency
- minimization problem:

$$\begin{aligned} & \min & & |||[\Delta A \quad \Delta b]||_F^2 \;, \\ & \text{s. t.} & & (A + \Delta A)v = b + \Delta b, \\ & & v^T v = 1 \\ & & [\Delta A \quad \Delta b] \; \text{structured} \end{aligned}$$

Riemannian SVD: find (u, τ, v) which minimizes τ^2

$$\left\{ \begin{array}{rcl} Mv & = & D_v u \tau \\ M^T u & = & D_u v \tau \\ v^T v & = & 1 \\ u^T D_v u & = & 1 \left(= v^T D_u v \right) \end{array} \right.$$

Structured Total Least Squares

$$\begin{aligned} \min_{v} & \quad \tau^2 = v^T M^T D_v^{-1} M v \\ \text{s. t.} & \quad v^T v = 1. \end{aligned}$$

method	TLS/SVD	STLS inv. it.	STLS eig	
v_1	.8003	.4922	.8372	
v_2	5479	7757	.3053	
v_3	.2434	.3948	.4535	
τ^2	4.8438	3.0518	2.3822	
global solution?	no	no	yes	

ptimization

Maximum Likelihood Estimation: DNA

CpG Islands

- genomic regions that contain a high frequency of sites where a cytosine (C) base is followed by a guanine (G)
- rare because of methylation of the C base
- hence CpG islands indicate functionality

Given observed sequence of DNA:

CTCACGTGATGAGAGCATTCTCAGA CCGTGACGCGTGTAGCAGCGGCTCA

Problem

Decide whether the observed sequence came from a CpG island

Maximum Likelihood Estimation: DNA

The model

- 4-dimensional state space $[m] = \{A, C, G, T\}$
- Mixture model of 3 distributions on [m]

1 : CG rich DNA 2 : CG poor DNA 3 : CG neutral DNA

 Each distribution is characterised by probabilities of observing base A,C,G or T

Table: Probabilities for each of the distributions (Durbin; Pachter & Sturmfels)

DNA Type	Α	С	G	Т
CG rich	0.15	0.33	0.36	0.16
CG poor	0.27	0.24	0.23	0.26
CG neutral	0.25	0.25	0.25	0.25

ullet The probabilities of observing each of the bases A to T are given by

$$p(A) = -0.10 \theta_1 + 0.02 \theta_2 + 0.25$$

$$p(C) = +0.08 \theta_1 - 0.01 \theta_2 + 0.25$$

$$p(G) = +0.11 \theta_1 - 0.02 \theta_2 + 0.25$$

$$p(T) = -0.09 \theta_1 + 0.01 \theta_2 + 0.25$$

- θ_i is probability to sample from distribution i ($\theta_1 + \theta_2 + \theta_3 = 1$)
- Maximum Likelihood Estimate:

$$(\hat{\theta_1}, \hat{\theta_2}, \hat{\theta_3}) = \arg\max_{\theta} \ l(\theta)$$

where the log-likelihood $l(\theta)$ is given by

$$l(\theta) = 11 \log p(A) + 14 \log p(C) + 15 \log p(G) + 10 \log p(T)$$

Need to solve the following polynomial system

$$\begin{cases} \frac{\partial l(\theta)}{\partial \theta_1} &= \sum_{i=1}^4 \frac{u_i}{p(i)} \frac{\partial p(i)}{\partial \theta_1} &= 0\\ \frac{\partial l(\theta)}{\partial \theta_2} &= \sum_{i=1}^4 \frac{u_i}{p(i)} \frac{\partial p(i)}{\partial \theta_2} &= 0 \end{cases}$$

Solving the Polynomial System

- $\operatorname{corank}(M) = 9$
- Reconstructed Kernel

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots \\ 0.52 & 3.12 & -5.00 & 10.72 & \dots \\ 0.22 & 3.12 & -15.01 & 71.51 & \dots \\ 0.27 & 9.76 & 25.02 & 115.03 & \dots \\ 0.11 & 9.76 & 75.08 & 766.98 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} 1 \\ \theta_1 \\ \theta_2 \\ \theta_1^2 \\ \vdots \\ \theta_1\theta_2 \end{bmatrix}$$

- θ_i 's are probabilities: $0 < \theta_i < 1$
- Could have introduced slack variables to impose this constraint!
- Only solution that satisfies this constraint is $\hat{\theta} = (0.52, 0.22, 0.26)$

Applications are found in

- Polynomial Optimization Problems
- Structured Total Least Squares
- H₂ Model order reduction
- Analyzing identifiability of nonlinear model structures (differential algebra)
- Robotics: kinematic problems
- Computational Biology: conformation of molecules
- Algebraic Statistics
- Signal Processing
- nD dynamical systems; Partial difference equations
- . . .

Outline

- 1 Rooting
- 2 Univariate
- 3 Multivariate
- 4 Optimization
- 5 Some applications
- 6 Conclusions

- Finding roots: linear algebra and realization theory!
- Polynomial optimization: extremal eigenvalue problems
- (Numerical) linear algebra/systems theory translation of algebraic geometry/symbolic algebra
- Many problems are in fact eigenvalue problems!
 - Algebraic geometry
 - System identification (PEM)
 - Numerical linear algebra (STLS, affine EVP $Ax = x\lambda + a$, etc.)
 - Multilinear algebra (tensor least squares approximation)
 - Algebraic statistics (HMM, Bayesian networks, discrete probabilities)
 - Differential algebra (Glad/Ljung)
- Projecting up to higher dimensional space (difficult in low number of dimensions; 'easy' (=large EVP) in high number of dimensions)

Current work:

Conclusions

- Subspace identification for spatially-temporarilly correlated signals (partial difference equations)
- Modelling in the era of IoT (Internet-of-Things) with its tsunami of data: in space and time (e.g. trajectories over time); or e.g. in MSI (mass spectrometry imaging): spectrum (1D) per space-voxel (3D) over time (1D) = 5D-tensor. How to model?
- Example: Advection diffusion equation space-time with input-output data:

Conclusions

Conceptual/Geometric Level

- Polynomial system solving is an eigenvalue problem!
- Row and Column Spaces: Ideal/Variety \leftrightarrow Row space/Kernel of M, ranks and dimensions, nullspaces and orthogonality
- Geometrical: intersection of subspaces, angles between subspaces, Grassmann's theorem,...

Numerical Linear Algebra Level

- Eigenvalue decompositions, SVDs,...
- Solving systems of equations (consistency, nb sols)
- QR decomposition and Gram-Schmidt algorithm

Numerical Algorithms Level

- Modified Gram-Schmidt (numerical stability), GS 'from back to front'
- Exploiting sparsity and Toeplitz structure (computational complexity) $O(n^2)$ vs $O(n^3)$), FFT-like computations and convolutions,...
- Power method to find smallest eigenvalue (= minimizer of polynomial optimization problem)

Sculpture by Joos Vandewalle

Anders 'free will' Lindquist

Ad multos annos !!

