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Typical examples

p(N) = det(A — AI) = 0
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min z2 + y2

22 4342-15 = 0 z,y
y—3x3—2x2+13x—2 = 0 s. t. y—x2+2x—1:0

0
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Rooting
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(Computational) algebraic geometry

@ Algebraic Geometry: ‘Queen of mathematics’ (literature = huge !)
@ Computer algebra: symbolic manipulations
@ Computational tools: Grobner Bases, Buchberger algorithm

Davidl & Cox
Jahn Littlc
Donal O'Shen
Using Algebraic
Geametry

\
e 7 2\

Wolfgang Grobner -Bruno Buchberger
(1899-1980)




Rooting
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(Computational) algebraic geometry

Example: Grobner basis

Input system: -

I
o

x2y+4zy—5y+3
x2+4xy+8y74x710 = 0 o

Generates simpler but equivalent system (same roots)
——yrdxy-5y+3=0
— X +d4xy+8y-—4x-10=0)

Symbolic eliminations and reductions
Exponential complexity
Numerical issues

e NO floating point but integer arithmetic 1
e Coefficients become very large

Grobner Basis:

B

—9 — 126y + 647y% — 624y° + 144y*
—1005 + 6109y — 6432y + 1584y°> + 228z

Il
o

[F—-9-126y+ 64707 6247 + 144y =0
[ ~1005 + 6100 y - 6432 " + 1584
+228x=0

I
o
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Fundamental theorem of algebra

@ Characteristic Polynomial

The eigenvalues of A are the roots of

p(A) =det(A—AI)=0

@ Companion Matrix

qx) =723 —22° — 52 +1=0

Solving
leads to
0 1 0
0 0 1
-1/7 5/7 2/7

X

2



Univariate
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Fundamental theorem of linear algebra

Consider the univariate equation
3 2 _
z° + a1z + asx +az =0,

having three distinct roots 1, x2 and z3

1 1 1 @ Banded Toeplitz; linear
homogeneous equations
a a a 1 0 0 1 T2 T3 @ Null space: (Confluent)
3 2 1 :L'% ZC% .’L'g Vandermonde structure
0 a3 a2 m 10 (L'S 1‘3 $3 =0 @ Corank (nullity) =
0 0 as as ai 1 411 i 2 number of solutions
mé xg wg @ Realization theory in null
xq xo X3 space: eigenvalue problem



Univariate
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Two Univariate Polynomials

Consider

$3+a1$2+a2$—|—a3 =
bbby =

Build the Sylvester Matrix:

1 al asg as 0
0 1 al ag as
1 b1 ba 0 0
0 1 by bo 0
0 0 1 by bo

8 =

8 8 8
=W

Row Space

Null Space

Tdeal

=union of ideals
=multiply rows with pow-
ersof

Variety
=intersection  of
spaces

null

@ Corank of Sylvester matrix = number of common zeros

@ null space = intersection of null spaces of two Sylvester
matrices

@ common roots follow from realization theory in null space

@ notice 'double’ Toeplitz-structure of Sylvester matrix

46
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Two Univariate Polynomials

@ Sylvester Resultant
Consider two polynomials f(z) and g(x):

flz) =23 —622 + 11z — 6 = (x — 1)(z — 2)(x — 3)
g(x) = —2® + 5z — 6 = —(z — 2)(x — 3)

Common roots iff S(f,g) =0

-6 11 -6 1 0
0 -6 11 —6 1
S(f,g)=det | -6 5 —-1 0
0 -6 5 -1
0 0 -6 5 -1

—

James Joseph Sylvester

o O
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Two Univariate Polynomials

The corank of the Sylvester matrix is 2!

Sylvester's result can be understood from

x

f(z) =0 6 11 -6 1 0 11
x-flx)=0 -6 11 -6 1 T1 T2
g(z)=0 -6 5 -1 3 23| =0
z-g(x)=0 -6 5 -1 3 a3

22 g(z) =0 -6 5 -1 i

where x1 = 2 and z9 = 3 are the common roots of f and g
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Two Univariate Polynomials

The vectors in the Vandermonde kernel K obey a ‘shift structure:

1 1 1 X2
Tr1 X9 z1 O 7 :c%
r? 23 [ 0 $2] I
30:1)’ x% a:‘lL x%

or
K.D=SKD=K = SK

The Vandermonde kernel K is not available directly, instead we
compute Z, for which ZV = K. We now have

S1KD = SK
S1ZVD = SZV
leading to the generalized eigenvalue problem

(S22)V = ($,Z)VD

12 /46
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Multivariate
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Macaulay matrix

@ Consider
plz,y) = 22 +3y°—15=0 !
qg(z,y) = y—323-222+13x—-2=0 ///\\\ !

[ |
/ \ |

@ Fix a monomial order, e.g., 1 <z <y < 22 < zy <
y2 < 3 <x2y<
»" \\//

@ Construct M: write the system in matrix-vector

notation:
1 T Y 22 zy y? 2 2%y xy? P
p(z,y) -15 1 3
q(z,y) -2 13 1 =2 -3
z-p(x,y) —15 1 3
Y- p(z,y) —15 1 3

14 /46
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Macaulay matrix
plz,y) = 22432 -15=0
q(z,y) = y—323-2224+13x-2=0
Continue to enlarge M:
it # |f0rm|| 1| x y| 22 xy y2| 23 22y 2y? o3| atadya2y?aySyd] 2O52tyady222ySayt y5| }
2
d = 3| :Z
q
z‘p
azd 28
aq|
ya
z°p|
m2gp
zyZp
d=-5 y:;p
xzq
zyq|
ygq

@ # rows grows faster than # cols = overdetermined system

@ If solution exists: rank deficient by construction!

{ v Leuven s
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Fundamental Linear Algebra Theorem and Algebraic Geometry

@ Row space:

@ ideal; Hilbert Basis Theorem
@ Subspace based elimination theory

@ Left null space:

@ syzygies, Hilbert Syzygy Theorem
@ Syzygy: numerical linear algebra paper bdm/kb

@ Right null space:
@ Variety; Hilbert Nullstellensatz (existence of solutions); Hilbert
polynomial (number of solutions = nullity)
@ Modelling the Macaulay null space with nD singular autonomous David Hilbert
systems

@ Column space: Rank tests: Affine roots, roots at co

dim ra
dim ra

dimm—ra
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The singular value decomposition

A AWATH
A=USV' = (U, uz)(o1 o) <v§)

with
viu; =1, Viv, =1,
UsUs = Im_r, ViV = lhy, iy
UiU>,=0 Viv,.=0

Geometry | Basis

R(A) U;
N (A%) U,
R(AY) v,
N (A) Vv,

Gene Howard Golub

(Dr. SVD)
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The null space

Vandermonde nullspace K

@ Macaulay matrix M: built from s solutions (x;,¥;):
x XP%] 0 0 0 _ -
_ o x X X110 0 1 1 1
M = 0 0 x X X0
0 0 0 Xx X X 1 T2 oao Ts
. . Y1 Y2 Ys
@ Solutions generate vectors in kernel of M: 2 2 2
171 JI2 Ty
MK =0 zlgl 1212;2 ifs:;!s
Y1 Y2 Ys
@ Number of solutions s follows from corank z3 @ | oo | @B
Z‘%yl Z%yg coa Igys
mlyf wzyg oo | ®sy2
3 3 3
Y1 Yo e Ys
z§ x5 [ zh
:c‘rfyl x‘;’yg oo | 23ys
2,2 | 22,2 2,2
T1Y1 | LY | - | TSYs
"Ely? nyS coa xsyg
4 4 4
Y1 Y Ys

Francis Sowerby Macaulay




Multivariate
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Setting up an eigenvalue problem in x

@ Choose s linear independent rows in K

S1K 1 1 .. 1]

@ This corresponds to finding linear “ 2 B
dependent columns in M y; yz y;
] x5 A

iy | T2y2 | .. | ®sys
vi | vy |- | w2

23y1 | z3y2 | ... | 22ys

z1y? | woy2 | ... | wsy?
vi | ¥ vs
o | @ g

x?yl mng soo xi’yg

gy Fo2yat [ Ne2y2

T3 | w203 | ... | syl
vi | vy || us
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Setting up an eigenvalue problem in x

Shifting the selected rows gives (shown for 3 columns)

1 1 1 7

z1 2 z3

y; y% ’yg

fEl .’1)2 fL‘d
T1Y1 13232 x3g3

Y1 y% Y3

@y ;’2 o

2 2
T1yl | w2y | T3Y3 —> “shift with " —>

Y1 yg Y3
af | ap | 2d
3 3
T1Y1 ToY2 T3Y.
3 3 343

Y1 Yo Y3
simplified:
1 1 1
1 T2 T3
Y1 Y2 y3
T1Y1 r2Y2 *3Y3
g E0) 23]

2 2 2
ziy1 | z3y2 | 23y3
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Setting up an eigenvalue problem in x

— Finding the z-roots: let D, = diag(z1, z2,...,2s), then

Sy KD, = -K,

where S7 and S, select rows from K w.r.t. shift property

— Realization Theory for the unknown x
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Setting up an eigenvalue problem in x

We have

Sy KD, — -K

Generalized Vandermonde K is not known as such, instead a null space
basis Z is calculated, which is a linear transformation of K:

ZV =K
which leads to

(SuZ)V = (812)V D,

Here, V is the matrix with eigenvectors, D, contains the roots z as
eigenvalues.



Optimization

Setting up an eigenvalue problem in y

It is possible to shift with y as well. ..

We find
S1KDy = SyK

with D, diagonal matrix of y-components of roots, leading to
(Sy2Z)V = (51Z)V D,
Some interesting results:

— same eigenvectors V!
- (8:2)7Y(S12) and (S,Z)"(S1Z) commute
—> ‘commutative algebra’



Multivariate
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Rank, nullity and null space: SVD-ize the Macaulay matrix

Basic Algorithm outline
Find a basis for the nullspace of M using an SVD:

X X X 0 0 O
I x X7 0 0| 1 0 wT
M = 185 No % x X7 0 =[x Y][o OHZT]
0 0 0 x X X
Hence,
MZ =0
We have

S1KD = Sqnine K

with K generalized Vandermonde, not known as such. Instead a basis Z

is computed as
ZV =K

which leads to
(Ssnie Z2)V = (51 2)VD

S1 selects linear independent rows; Sgpife selects rows ‘hit’ by the shift.



Dynamics of the Macaulay matrix

‘Mind the Gap' and ‘A Bout de Souffle’

— Dynamics in the null space of M (d) for increasing degree d: The
index of some of the linear independent rows stabilizes (=affine
zeros); The index of other ones keeps increasing (=zeros at o).

— ‘Mind-the-gap’: As a function of d, certain degree blocks become
and stay linear dependent on all preceeding rows: allows to count
and seperate affine zeros from zeros at oo

— ‘A bout de souffle": Effect of zeros at co ‘dies’ out (nilpotency).

affine roots column reduction
— — — —
— — — —
— — — —
a
N - | 0w
gap
= a
. <
L
=< nilpotency
S P
<




Multivariate

Modelling the null space: singular nD autonomous systems

@ Weierstrass Canonical Form decoupling affine and infinity

(o) - (o) ()

@ Action of A; and FE; represented in grid of monomials

.S
/
Ay [ /v /
Ay Ey 1



Roots at Infinity: nD Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity

s = ]

Singular nD Attasi model (for n = 2)

vk+1,01) = Agv(k,l)
vk, l+1) = Ayv(k,l)
w(k—1,1) = Ezw(k,l)
w(k,l—1) = Eyw(k,l)

with E; and £, nilpotent matrices.
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Modelling the null space: singular nD autonomous systems

Summary

— Rooting multivariate polynomials
o = (numerical) linear algebra
o = (fund. thm. of algebra) () (fund. thm. of linear algebra)
e = nD realization theory in null space of Macaulay matrix
— Decisions based upon (numerical) rank
e Dimension of variety = degree of Hilbert polynomial: follows

from corank (nullity);

e For O-dimensional varieties (‘isolated’ roots): corank stabilizes
= # roots (nullity)

e ‘Mind-the-gap’ splits affine zeros from zeros at oo

e # affine roots (dimension column compression)

— not discussed
e Multiplicity of roots (‘confluent’ generalized Vandermonde

matrices)
e Macaulay matrix columnspace based methods (‘data driven’)
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Optimization
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Introduction

/M

Polynomial Optimization Problems

min z? + o>
"L‘7y

s. t. y—a>4+2x—-1=0

©-0.5-

Lagrange multipliers: necessary conditions for optimality:
L(z,y,2) =2 +y* + 2(y — 2?2 + 22 — 1)

OL/0x =0 — 2rx—22z+22=0
OL/0y=0 — 2y+2z=0
OL/0z=0 — y—2*+2x—-1=0
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Introduction

Observations:
— all equations remain polynomial

— all ‘stationary’ points (local minima/maxima, saddle points)
are roots of a system of polynomial equations

— shift with objective function to find minimum: only
minimizing roots are needed !

Let
AV =VD,

and
AV =VD,

then find minimum eigenvalue of

2 2 2 2
(Az + A))V =V(D; + Dy)
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Some applications
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System Identification: Prediction Error Methods

@ PEM System identification

Measured data {uy, yk}szl

@ Model structure

yr = G(q)ur + H(q)ey

@ Output prediction Class Polynomials
ARX A(q), B(q)
g = H Y (q)G(q)ur + (1 — H M)yy, ARMAX égqg, B(q),
q
: OE B(q), F(q)
@ Model classes: ARX, ARMAX, OE, BJ B Bla) Ol
D(q), F(q)

A(Q)yx = B(q)/F(q)ur+C(q)/D(q)ex



Some applications
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System Identification: Prediction Error Methods

@ Minimize the prediction errors y — g, where
g = H ' (9)G(Q)ur + (1 — H "y,

subject to the model equations

@ Example

ARMAX identification: G(q) = B(q)/A(q) and H(q) = C(q)/A(q), where
Alq)=1+aq™ ', B(q)=bg ", Clq) =14cqg ', N=5

@ngiglc (1 —91)% + ...+ (5 — 95)°
s. t. U5 — cfa — bug — (c — a)yas = 0,
Ja — ¢z — bug — (¢ — a)ys = 0,
93 — 2 — buz — (¢ — a)y2 = 0,
92 — ci1 — bur — (¢ — a)yr = 0,

34 /46
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Structured Total Least Squares

Static Linear Modeling Dynamical Linear Modeling

o

@ Rank deficiency

@ Rank deficiency

@ minimization problem:

@ minimization problem:

g 2
min H[AA Ab]Hiﬂ LTS [[[aa Ab]H}W
- (A+ AAdyw = b+ Ab, s. t. (A+ AA)v = b+ Ab,
T Ty =1
vio=1
[AA  Ab] structured

@ Singular Value Decomposition:

find (u, o, v) which minimizes o2 @ Riemannian SVD:
Let M =[A b find (w, T, v) which minimizes 72
Mv = uo Mv = Dyut
MTy = vo MTy = Dyvr
T = 1 WTo = 1
wTu = 1 wI'Dyu = 1(=vTDyv)



Some applications
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Structured Total Least Squares

min
v

s. t.

% =T MT D, M

vy =1.

10

x ‘

&> STLS Hankel cost funcion
X Tisisvoson
ol o stsuRisvIinvi steps
STLSIRISVDInvtsoin
STLSIRISVDIEIG global mi

15[ X STLSIRISVDIEIG exrema

theta

method TLS/SVD STLS inv. it. STLS eig
v .8003 4922 .8372
vo -.5479 -.7757 .3053
v3 .2434 .3948 .4535
T2 4.8438 3.0518 2.3822
global solution? no no yes

36/ 46



Some applications
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Maximum Likelihood Estimation: DNA

CpG Islands

@ genomic regions that contain a high frequency of sites where a
cytosine (C) base is followed by a guanine (G)

@ rare because of methylation of the C base

@ hence CpG islands indicate functionality

Given observed sequence of DNA:

CTCACGTGATGAGAGCATTCTCAGA
CCGTGACGCGTGTAGCAGCGGCTCA

Problem

Decide whether the observed sequence came from a CpG island



Some applications
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Maximum Likelihood Estimation: DNA

The model

@ 4-dimensional state space [m| = {A,C,G, T}
@ Mixture model of 3 distributions on [m)]

O : CGrich DNA
@® : CG poor DNA
© : CG neutral DNA

@ Each distribution is characterised by probabilities of observing
base A,C,Gor T

Table: Probabilities for each of the distributions (Durbin; Pachter & Sturmfels)

DNA Type | A C G T
CG rich 0.15 |1 0.33 ] 0.36 | 0.16
CG poor | 0.27 | 0.24 | 0.23 | 0.26

CG neutral | 0.25 | 0.25 | 0.25 | 0.25




Some applications
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Maximum Likelihood Estimation: DNA

@ The probabilities of observing each of the bases A to T are given by

p(A) = —0.100; +0.020> +0.25
p(C) = +0.086; —0.016;+0.25
p(G) = +0.116; —0.0262 +0.25
p(T) = —0.0961 +0.016 +0.25

@ 0; is probability to sample from distribution i (61 + 62 + 65 = 1)

@ Maximum Likelihood Estimate:
(6‘1, 6, 6‘},) = argmax 1(9)
where the log-likelihood [(6) is given by
1(0) = 111logp(A) + 141logp(C) + 151ogp(G) + 101logp(T)

@ Need to solve the following polynomial system

oue)  _ 4 i Op(d)  _

061 - Zi:l plzz) 001 =0
al(h) _ 4 u; Op(i) _

004 - Zi:l p() 317(92 - 0



Some applications
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aximum Likelihood Estimation: DNA

Solving the Polynomial System

@ corank(M) =9

@ Reconstructed Kernel

11 1 1. 1
052 3.12 —500 1072 ... | 6
022 312 —1501 7151 ... | 6,
K=1027 976 2502 11503 ... | 63
011 9.76 75.08 766.98 ... | 616,

@ 0;'s are probabilities: 0 < 6; <1
@ Could have introduced slack variables to impose this constraint!

@ Only solution that satisfies this constraint is 6 = (0.52,0.22, 0.26)



Optimization

And Many More

Applications are found in

@ Polynomial Optimization Problems
@ Structured Total Least Squares

@ H5 Model order reduction

Analyzing identifiability of nonlinear model structures
(differential algebra)

Robotics: kinematic problems

Computational Biology: conformation of molecules
Algebraic Statistics

Signal Processing

nD dynamical systems; Partial difference equations
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Optimization S ions Conclusions
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Conclusions

Finding roots: linear algebra and realization theory!

Polynomial optimization: extremal eigenvalue problems

(Numerical) linear algebra/systems theory translation of
algebraic geometry/symbolic algebra

Many problems are in fact eigenvalue problems !

Algebraic geometry

System identification (PEM)

Numerical linear algebra (STLS, affine EVP Az = 2\ +q, etc.)
Multilinear algebra (tensor least squares approximation)
Algebraic statistics (HMM, Bayesian networks, discrete
probabilities)

o Differential algebra (Glad/Ljung)

@ Projecting up to higher dimensional space (difficult in low
number of dimensions; ‘easy’ (=large EVP) in high number of
dimensions)
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Current work:

@ Subspace identification for spatially-temporarilly correlated signals
(partial difference equations)

@ Modelling in the era of loT (Internet-of-Things) with its tsunami of
data: in space and time (e.g. trajectories over time); or e.g. in MSI|
(mass spectrometry imaging): spectrum (1D) per space-voxel (3D)
over time (1D) = 5D-tensor. How to model ?

@ Example: Advection - diffusion equation space-time with
input-output data:

Space

Time

Input Output



Conclusions

Research on Three Levels

Conceptual /Geometric Level

@ Polynomial system solving is an eigenvalue problem!

@ Row and Column Spaces: Ideal/Variety ++ Row space/Kernel of M,
ranks and dimensions, nullspaces and orthogonality

@ Geometrical: intersection of subspaces, angles between subspaces,
Grassmann'’s theorem,. . .

Numerical Linear Algebra Level

@ Eigenvalue decompositions, SVDs,. . .
@ Solving systems of equations (consistency, nb sols)
@ QR decomposition and Gram-Schmidt algorithm

Numerical Algorithms Level

@ Modified Gram-Schmidt (numerical stability), GS ‘from back to front’

@ Exploiting sparsity and Toeplitz structure (computational complexity
O(n?) vs O(n?)), FFT-like computations and convolutions,. ..

@ Power method to find smallest eigenvalue (= minimizer of polynomial
optimization problem)
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“At the end of the day,
the only thing we really understand,
is linear algebra”.

\I\\\Wﬂlﬂ!lrllm 1 VR
‘ Bl ] ‘;1\ e \ \

CIRRLAN

Anders ‘free will’ Lindquist
Sculpture by Joos Vandewalle Ad multos annos !!

A variety in algebraic geometry
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