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Typical examples

p(λ) = det(A− λI) = 0
(x− 1)(x− 3)(x− 2) = 0

−(x− 2)(x− 3) = 0

x2 + 3y2 − 15 = 0

y − 3x3 − 2x2 + 13x− 2 = 0

min
x,y

x2 + y2

s. t. y − x2 + 2x− 1 = 0
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(Computational) algebraic geometry

Algebraic Geometry: ‘Queen of mathematics’ (literature = huge !)

Computer algebra: symbolic manipulations

Computational tools: Gröbner Bases, Buchberger algorithm

Wolfgang Gröbner
(1899-1980)

Bruno Buchberger
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(Computational) algebraic geometry

Example: Gröbner basis

Input system:

x2y + 4xy − 5y + 3 = 0

x2 + 4xy + 8y − 4x− 10 = 0

Generates simpler but equivalent system (same roots)

Symbolic eliminations and reductions

Exponential complexity

Numerical issues

NO floating point but integer arithmetic
Coefficients become very large

Gröbner Basis:

−9 − 126y + 647y2 − 624y3 + 144y4 = 0

−1005 + 6109y − 6432y2 + 1584y3 + 228x = 0
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Fundamental theorem of algebra

Characteristic Polynomial
The eigenvalues of A are the roots of

p(λ) = det(A− λI) = 0

Companion Matrix
Solving

q(x) = 7x3 − 2x2 − 5x+ 1 = 0

leads to  0 1 0
0 0 1

−1/7 5/7 2/7

 1
x
x2

 = x

 1
x
x2


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Fundamental theorem of linear algebra

Consider the univariate equation

x3 + a1x
2 + a2x+ a3 = 0,

having three distinct roots x1, x2 and x3

 a3 a2 a1 1 0 0
0 a3 a2 a1 1 0
0 0 a3 a2 a1 1




1 1 1
x1 x2 x3

x2
1 x2

2 x2
3

x3
1 x3

2 x3
3

x4
1 x4

2 x4
3

x5
1 x5

2 x5
3

 = 0

Banded Toeplitz; linear
homogeneous equations

Null space: (Confluent)
Vandermonde structure

Corank (nullity) =
number of solutions

Realization theory in null
space: eigenvalue problem
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Two Univariate Polynomials

Consider

x3 + a1x
2 + a2x+ a3 = 0

x2 + b1x+ b2 = 0

Build the Sylvester Matrix:


1 a1 a2 a3 0
0 1 a1 a2 a3
1 b1 b2 0 0
0 1 b1 b2 0
0 0 1 b1 b2




1
x

x2

x3

x4

 = 0

Row Space Null Space
Ideal
=union of ideals
=multiply rows with pow-
ers of x

Variety
=intersection of null
spaces

Corank of Sylvester matrix = number of common zeros

null space = intersection of null spaces of two Sylvester
matrices

common roots follow from realization theory in null space

notice ‘double’ Toeplitz-structure of Sylvester matrix
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Two Univariate Polynomials

Sylvester Resultant
Consider two polynomials f(x) and g(x):

f(x) = x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3)

g(x) = −x2 + 5x− 6 = −(x− 2)(x− 3)

Common roots iff S(f, g) = 0

S(f, g) = det


−6 11 −6 1 0
0 −6 11 −6 1

−6 5 −1 0 0
0 −6 5 −1 0
0 0 −6 5 −1


James Joseph Sylvester

10 / 46



Rooting Univariate Multivariate Optimization Some applications Conclusions

Two Univariate Polynomials

The corank of the Sylvester matrix is 2!

Sylvester’s result can be understood from



1 x x2 x3 x4

f(x) = 0 −6 11 −6 1 0
x · f(x) = 0 −6 11 −6 1
g(x) = 0 −6 5 −1
x · g(x) = 0 −6 5 −1
x2 · g(x) = 0 −6 5 −1




1 1
x1 x2

x2
1 x2

2

x3
1 x3

2

x4
1 x4

2

 = 0

where x1 = 2 and x2 = 3 are the common roots of f and g
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Two Univariate Polynomials

The vectors in the Vandermonde kernel K obey a ‘shift structure’:
1 1
x1 x2

x2
1 x2

2

x3
1 x3

2

[ x1 0
0 x2

]
=


x1 x2

x2
1 x2

2

x3
1 x3

2

x4
1 x4

2


or

K.D = S1KD = K = S2K

The Vandermonde kernel K is not available directly, instead we
compute Z, for which ZV = K. We now have

S1KD = S2K

S1ZV D = S2ZV

leading to the generalized eigenvalue problem

(S2Z)V = (S1Z)V D
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Macaulay matrix

Consider{
p(x, y) = x2 + 3y2 − 15 = 0
q(x, y) = y − 3x3 − 2x2 + 13x− 2 = 0

Fix a monomial order, e.g., 1 < x < y < x2 < xy <
y2 < x3 < x2y < . . .

Construct M : write the system in matrix-vector
notation:


1 x y x2 xy y2 x3 x2y xy2 y3

p(x, y) −15 1 3
q(x, y) −2 13 1 −2 −3
x · p(x, y) −15 1 3
y · p(x, y) −15 1 3


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Macaulay matrix {
p(x, y) = x2 + 3y2 − 15 = 0
q(x, y) = y − 3x3 − 2x2 + 13x− 2 = 0

Continue to enlarge M :

it # form 1 x y x2 xy y2 x3 x2y xy2 y3 x4x3yx2y2xy3y4 x5x4yx3y2x2y3xy4y5→
d = 3

p − 15 1 3
xp − 15 1 3
yp − 15 1 3
q − 2 13 1 − 2 − 3

d = 4

x2p − 15 1 3
xyp − 15 1 3

y2p − 15 1 3
xq − 2 13 1 − 2 − 3
yq − 2 13 1 − 2 − 3

d = 5

x3p − 15 1 3

x2yp − 15 1 3

xy2p − 15 1 3

y3p − 15 1 3

x2q − 2 13 1 − 2 − 3
xyq − 2 13 1 − 2 − 3

y2q − 2 13 1 − 2 − 3

↓ .
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

# rows grows faster than # cols ⇒ overdetermined system

If solution exists: rank deficient by construction!
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Fundamental Linear Algebra Theorem and Algebraic Geometry

Row space:

ideal; Hilbert Basis Theorem
Subspace based elimination theory

Left null space:

syzygies, Hilbert Syzygy Theorem
Syzygy: numerical linear algebra paper bdm/kb

Right null space:

Variety; Hilbert Nullstellensatz (existence of solutions); Hilbert
polynomial (number of solutions = nullity)
Modelling the Macaulay null space with nD singular autonomous
systems

Column space: Rank tests: Affine roots, roots at∞

David Hilbert
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The singular value decomposition

	
Gene Howard Golub

(Dr. SVD)
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The null space

Macaulay matrix M :

M =

[× × × × 0 0 0
0 × × × × 0 0
0 0 × × × × 0
0 0 0 × × × ×

]

Solutions generate vectors in kernel of M :

MK = 0

Number of solutions s follows from corank

Francis Sowerby Macaulay

Vandermonde nullspace K
built from s solutions (xi, yi):

1 1 . . . 1

x1 x2 . . . xs

y1 y2 . . . ys

x2
1 x2

2 . . . x2
s

x1y1 x2y2 . . . xsys

y2
1 y2

2 . . . y2
s

x3
1 x3

2 . . . x3
s

x2
1y1 x2

2y2 . . . x2
sys

x1y2
1 x2y2

2 . . . xsy2
s

y3
1 y3

2 . . . y3
s

x4
1 x4

2 . . . x4
4

x3
1y1 x3

2y2 . . . x3
sys

x2
1y

2
1 x2

2y
2
2 . . . x2

sy
2
s

x1y3
1 x2y3

2 . . . xsy3
s

y4
1 y4

2 . . . y4
s

...
...

...
...


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Setting up an eigenvalue problem in x

Choose s linear independent rows in K

S1K

This corresponds to finding linear
dependent columns in M



1 1 . . . 1

x1 x2 . . . xs

y1 y2 . . . ys

x2
1 x2

2 . . . x2
s

x1y1 x2y2 . . . xsys

y2
1 y2

2 . . . y2
s

x3
1 x3

2 . . . x3
s

x2
1y1 x2

2y2 . . . x2
sys

x1y2
1 x2y2

2 . . . xsy2
s

y3
1 y3

2 . . . y3
s

x4
1 x4

2 . . . x4
4

x3
1y1 x3

2y2 . . . x3
sys

x2
1y

2
1 x2

2y
2
2 . . . x2

sy
2
s

x1y3
1 x2y3

2 . . . xsy3
s

y4
1 y4

2 . . . y4
s

...
...

...
...


19 / 46



Rooting Univariate Multivariate Optimization Some applications Conclusions

Setting up an eigenvalue problem in x

Shifting the selected rows gives (shown for 3 columns)

1 1 1
x1 x2 x3
y1 y2 y3
x21 x22 x23
x1y1 x2y2 x3y3
y21 y22 y23
x31 x32 x33
x21y1 x22y2 x23y3
x1y

2
1 x2y

2
2 x3y

2
3

y31 y32 y33
x41 x42 x44
x31y1 x32y2 x33y3
x21y

2
1 x22y

2
2 x23y

2
3

x1y
3
1 x2y

3
2 x3y

3
3

y41 y42 y43
.
.
.

.

.

.

.

.

.


→ “shift with x”→



1 1 1
x1 x2 x3
y1 y2 y3
x21 x22 x23
x1y1 x2y2 x3y3
y21 y22 y23
x31 x32 x33
x21y1 x22y2 x23y3
x1y

2
1 x2y

2
2 x3y

2
3

y31 y32 y33
x41 x42 x44
x31y1 x32y2 x33y3
x21y

2
1 x22y

2
2 x23y

2
3

x1y
3
1 x2y

3
2 x3y

3
3

y41 y42 y43
.
.
.

.

.

.

.

.

.


simplified: 1 1 1

x1 x2 x3
y1 y2 y3
x1y1 x2y2 x3y3
x31 x32 x33
x21y1 x22y2 x23y3

[ x1
x2

x3

]
=


x1 x2 x3
x21 x22 x23
x1y1 x2y2 x3y3
x21y1 x22y2 x23y3
x41 x42 x44
x31y1 x32y2 x33y3


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Setting up an eigenvalue problem in x

– Finding the x-roots: let Dx = diag(x1, x2, . . . , xs), then

S1 KDx = Sx K,

where S1 and Sx select rows from K w.r.t. shift property

– Realization Theory for the unknown x
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Setting up an eigenvalue problem in x

We have
S1 KDx = Sx K

Generalized Vandermonde K is not known as such, instead a null space

basis Z is calculated, which is a linear transformation of K:

ZV = K

which leads to

(SxZ)V = (S1Z)V Dx

Here, V is the matrix with eigenvectors, Dx contains the roots x as
eigenvalues.
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Setting up an eigenvalue problem in y

It is possible to shift with y as well. . .

We find
S1KDy = SyK

with Dy diagonal matrix of y-components of roots, leading to

(SyZ)V = (S1Z)V Dy

Some interesting results:

– same eigenvectors V !

– (SxZ)
−1(S1Z) and (SyZ)

−1(S1Z) commute
=⇒ ‘commutative algebra’
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Rank, nullity and null space: SVD-ize the Macaulay matrix

Basic Algorithm outline

Find a basis for the nullspace of M using an SVD:

M =

 × × × × 0 0 0
0 × × × × 0 0
0 0 × × × × 0
0 0 0 × × × ×

 = [ X Y ]
[

Σ1 0
0 0

] [
WT

ZT

]
Hence,

MZ = 0

We have
S1KD = SshiftK

with K generalized Vandermonde, not known as such. Instead a basis Z
is computed as

ZV = K

which leads to
(SshiftZ)V = (S1Z)V D

S1 selects linear independent rows; Sshift selects rows ‘hit’ by the shift.
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Dynamics of the Macaulay matrix

‘Mind the Gap’ and ‘A Bout de Souffle’
– Dynamics in the null space of M(d) for increasing degree d: The

index of some of the linear independent rows stabilizes (=affine
zeros); The index of other ones keeps increasing (=zeros at ∞).

– ‘Mind-the-gap’: As a function of d, certain degree blocks become
and stay linear dependent on all preceeding rows: allows to count
and seperate affine zeros from zeros at ∞

– ‘A bout de souffle’: Effect of zeros at ∞ ‘dies’ out (nilpotency).
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Modelling the null space: singular nD autonomous systems

Weierstrass Canonical Form decoupling affine and infinity
roots (

v(k + 1)

w(k − 1)

)
=

(
A 0

0 E

)(
v(k)

w(k)

)
,

Action of Ai and Ei represented in grid of monomials

x1

x2

E2

E1

A2

A1
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Modelling the null space: singular nD autonomous systems

Roots at Infinity: nD Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity[
v(k + 1)
w(k − 1)

]
=
[
A 0
0 E

] [
v(k)
w(k)

]

Singular nD Attasi model (for n = 2)

v(k + 1, l) = Axv(k, l)
v(k, l + 1) = Ayv(k, l)

w(k − 1, l) = Exw(k, l)
w(k, l− 1) = Eyw(k, l)

with Ex and Ey nilpotent matrices.
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Modelling the null space: singular nD autonomous systems

Summary

– Rooting multivariate polynomials

= (numerical) linear algebra
= (fund. thm. of algebra)

⋂
(fund. thm. of linear algebra)

= nD realization theory in null space of Macaulay matrix

– Decisions based upon (numerical) rank

Dimension of variety = degree of Hilbert polynomial: follows
from corank (nullity);
For 0-dimensional varieties (‘isolated’ roots): corank stabilizes
= # roots (nullity)
‘Mind-the-gap’ splits affine zeros from zeros at ∞
# affine roots (dimension column compression)

– not discussed

Multiplicity of roots (‘confluent’ generalized Vandermonde
matrices)
Macaulay matrix columnspace based methods (‘data driven’)
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Introduction

Polynomial Optimization Problems are EVP

min
x,y

x2 + y2

s. t. y − x2 + 2x− 1 = 0

Lagrange multipliers: necessary conditions for optimality:

L(x, y, z) = x2 + y2 + z(y − x2 + 2x− 1)

∂L/∂x = 0 → 2x− 2xz + 2z = 0
∂L/∂y = 0 → 2y + z = 0
∂L/∂z = 0 → y − x2 + 2x− 1 = 0
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Introduction

Observations:

– all equations remain polynomial

– all ‘stationary’ points (local minima/maxima, saddle points)
are roots of a system of polynomial equations

– shift with objective function to find minimum: only
minimizing roots are needed !

Let
AxV = V Dx

and
AyV = V Dy

then find minimum eigenvalue of

(A2
x +A2

y)V = V (D2
x +D2

y)
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System Identification: Prediction Error Methods

PEM System identification

Measured data {uk, yk}Nk=1

Model structure

yk = G(q)uk +H(q)ek

Output prediction

ŷk = H−1(q)G(q)uk + (1−H−1)yk

Model classes: ARX, ARMAX, OE, BJ

A(q)yk = B(q)/F (q)uk+C(q)/D(q)ek

H(q)

G(q)

e

u y

Class Polynomials

ARX A(q), B(q)

ARMAX A(q), B(q),
C(q)

OE B(q), F (q)

BJ B(q), C(q),
D(q), F (q)
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System Identification: Prediction Error Methods

Minimize the prediction errors y − ŷ, where

ŷk = H−1(q)G(q)uk + (1−H−1)yk,

subject to the model equations

Example

ARMAX identification: G(q) = B(q)/A(q) and H(q) = C(q)/A(q), where
A(q) = 1 + aq−1, B(q) = bq−1, C(q) = 1 + cq−1, N = 5

min
ŷ,a,b,c

(y1 − ŷ1)
2 + . . .+ (y5 − ŷ5)

2

s. t. ŷ5 − cŷ4 − bu4 − (c− a)y4 = 0,

ŷ4 − cŷ3 − bu3 − (c− a)y3 = 0,

ŷ3 − cŷ2 − bu2 − (c− a)y2 = 0,

ŷ2 − cŷ1 − bu1 − (c− a)y1 = 0,
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Structured Total Least Squares

Static Linear Modeling

Rank deficiency

minimization problem:

min
∣∣∣∣[ ∆A ∆b

]∣∣∣∣2
F
,

s. t. (A + ∆A)v = b + ∆b,

v
T
v = 1

Singular Value Decomposition:
find (u, σ, v) which minimizes σ2

Let M =
[
A b

]


Mv = uσ

MT u = vσ

vT v = 1

uT u = 1

Dynamical Linear Modeling

Rank deficiency

minimization problem:

min
∣∣∣∣[∆A ∆b

]∣∣∣∣2
F
,

s. t. (A + ∆A)v = b + ∆b,

v
T
v = 1[

∆A ∆b
]

structured

Riemannian SVD:
find (u, τ, v) which minimizes τ2

Mv = Dvuτ

MT u = Duvτ

vT v = 1

uTDvu = 1 (= vTDuv)
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Structured Total Least Squares

min
v

τ2 = vTMTD−1
v Mv

s. t. vT v = 1.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

theta

ph
i

 

 

STLS Hankel cost function

TLS/SVD soln

STSL/RiSVD/invit steps

STLS/RiSVD/invit soln

STLS/RiSVD/EIG global min

STLS/RiSVD/EIG extrema

method TLS/SVD STLS inv. it. STLS eig
v1 .8003 .4922 .8372
v2 -.5479 -.7757 .3053
v3 .2434 .3948 .4535

τ2 4.8438 3.0518 2.3822
global solution? no no yes
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Maximum Likelihood Estimation: DNA

CpG Islands

genomic regions that contain a high frequency of sites where a
cytosine (C) base is followed by a guanine (G)

rare because of methylation of the C base

hence CpG islands indicate functionality

Given observed sequence of DNA:

CTCACGTGATGAGAGCATTCTCAGA

CCGTGACGCGTGTAGCAGCGGCTCA

Problem

Decide whether the observed sequence came from a CpG island
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Maximum Likelihood Estimation: DNA

The model

4-dimensional state space [m] = {A,C,G,T}
Mixture model of 3 distributions on [m]

1 : CG rich DNA
2 : CG poor DNA
3 : CG neutral DNA

Each distribution is characterised by probabilities of observing
base A,C,G or T

Table: Probabilities for each of the distributions (Durbin; Pachter & Sturmfels)

DNA Type A C G T

CG rich 0.15 0.33 0.36 0.16

CG poor 0.27 0.24 0.23 0.26

CG neutral 0.25 0.25 0.25 0.25
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Maximum Likelihood Estimation: DNA

The probabilities of observing each of the bases A to T are given by

p(A) = −0.10 θ1 + 0.02 θ2 + 0.25

p(C) = +0.08 θ1 − 0.01 θ2 + 0.25

p(G) = +0.11 θ1 − 0.02 θ2 + 0.25

p(T ) = −0.09 θ1 + 0.01 θ2 + 0.25

θi is probability to sample from distribution i (θ1 + θ2 + θ3 = 1)

Maximum Likelihood Estimate:

(θ̂1, θ̂2, θ̂3) = argmax
θ

l(θ)

where the log-likelihood l(θ) is given by

l(θ) = 11 logp(A) + 14 logp(C) + 15 logp(G) + 10 logp(T )

Need to solve the following polynomial system
∂l(θ)
∂θ1

=
∑4
i=1

ui
p(i)

∂p(i)
∂θ1

= 0

∂l(θ)
∂θ2

=
∑4
i=1

ui
p(i)

∂p(i)
∂θ2

= 0
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Maximum Likelihood Estimation: DNA

Solving the Polynomial System

corank(M) = 9

Reconstructed Kernel

K =



1 1 1 1 . . .

0.52 3.12 −5.00 10.72 . . .

0.22 3.12 −15.01 71.51 . . .

0.27 9.76 25.02 115.03 . . .

0.11 9.76 75.08 766.98 . . .

...
...

...
...

...



1

θ1

θ2

θ21
θ1θ2

...

.

θi’s are probabilities: 0 ≤ θi ≤ 1

Could have introduced slack variables to impose this constraint!

Only solution that satisfies this constraint is θ̂ = (0.52, 0.22, 0.26)
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And Many More

Applications are found in

Polynomial Optimization Problems

Structured Total Least Squares

H2 Model order reduction

Analyzing identifiability of nonlinear model structures
(differential algebra)

Robotics: kinematic problems

Computational Biology: conformation of molecules

Algebraic Statistics

Signal Processing

nD dynamical systems; Partial difference equations

. . .
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Conclusions

Finding roots: linear algebra and realization theory!

Polynomial optimization: extremal eigenvalue problems

(Numerical) linear algebra/systems theory translation of
algebraic geometry/symbolic algebra

Many problems are in fact eigenvalue problems !

Algebraic geometry
System identification (PEM)
Numerical linear algebra (STLS, affine EVP Ax = xλ+ a, etc.)
Multilinear algebra (tensor least squares approximation)
Algebraic statistics (HMM, Bayesian networks, discrete
probabilities)
Differential algebra (Glad/Ljung)

Projecting up to higher dimensional space (difficult in low
number of dimensions; ‘easy’ (=large EVP) in high number of
dimensions)
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Conclusions

Current work:
Subspace identification for spatially-temporarilly correlated signals
(partial difference equations)
Modelling in the era of IoT (Internet-of-Things) with its tsunami of
data: in space and time (e.g. trajectories over time); or e.g. in MSI
(mass spectrometry imaging): spectrum (1D) per space-voxel (3D)
over time (1D) = 5D-tensor. How to model ?
Example: Advection - diffusion equation space-time with
input-output data:
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Research on Three Levels

Conceptual/Geometric Level

Polynomial system solving is an eigenvalue problem!
Row and Column Spaces: Ideal/Variety ↔ Row space/Kernel of M ,
ranks and dimensions, nullspaces and orthogonality
Geometrical: intersection of subspaces, angles between subspaces,
Grassmann’s theorem,. . .

Numerical Linear Algebra Level

Eigenvalue decompositions, SVDs,. . .
Solving systems of equations (consistency, nb sols)
QR decomposition and Gram-Schmidt algorithm

Numerical Algorithms Level

Modified Gram-Schmidt (numerical stability), GS ‘from back to front’
Exploiting sparsity and Toeplitz structure (computational complexity
O(n2) vs O(n3)), FFT-like computations and convolutions,. . .
Power method to find smallest eigenvalue (= minimizer of polynomial
optimization problem)
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“At the end of the day,
the only thing we really understand,

is linear algebra”.

Sculpture by Joos Vandewalle

A variety in algebraic geometry

Anders ‘free will’ Lindquist

Ad multos annos !!
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