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Representing externally positive systems through
minimal eventually positive realizations
Outline:

• Externally vs internally positive linear systems

• Eventually positive matrices

• Eventually positive minimal realizations are externally positive

• Viceversa: constructing an eventually positive minimal realization for an
externally positive system

• Downsampling of eventually positive realizations

• Continuous-time minimal eventually positive realizations: a “dual” to
Nyquist-Shannon sampling theorem



Externally vs Internally positive systems

• Discrete-Time SISO linear system

H(z) =
P (z)

Q(z)
=

∞∑
i=1

h(i)z−i

• Externally positive system

u(k) ≥ 0 ∀k =⇒ y(k) ≥ 0 ∀k

• Equivalent conditions:
• impulse response is non-negative
• Markov parameters h(i) ≥ 0 ∀ i = 0, 1, . . .



Externally vs Internally positive systems
• Discrete-Time SISO linear system

x(k + 1) = Ax(k) + b u(k) k = 0, 1, . . .

y(k) = c x(k)

• (Internally) positive system

u(k) ≥ 0 ∀k =⇒ x(k) ≥ 0 ∀k
y(k) ≥ 0 ∀k

• Equivalent conditions:

A ≥ 0 b ≥ 0 c ≥ 0

• External positivity ⇐=
6=⇒ Internal positivity



(Non)-minimal positive realization
Consider H(z) externally positive

Assumption: H(z) has a simple, strictly dominating pole.

Theorem:
H(z) is externally
positive

⇐⇒ H(z) has a (non-minimal) positive
realization

Problem: Given H(z) externally positive, a minimal positive realization
{A, b, c} may not exist!

Our task: Study the “gap” between external and (minimal) internal
positivity in the case of simple, strictly dominating pole



Constructing (non-minimal) positive realizations

Theorem: (Ohta, Maeda & Kodama, SIAM J. Con. Opt. 1984)
H(z) has a
(non-minimal) positive
realization

⇐⇒ For any minimal realization {A, b, c}
∃ a polyhedral cone K such that

AK ⊆ K
b ∈ K
c ∈ K∗

• If K ⊆ Rn+ =⇒ ∃ minimal positive realization
• Condition above is a Perron-Frobenius condition

Theorem: (Valcher & Farina, SIAM J. Mat. An. App. 2000)
∃ polyhedral cone K s.t.
AK ⊂ K

⇐⇒ P.F. holds: ρ(A) ∈ sp(A) with
ρ(A) simple, positive and s.t.
ρ(A) > |λ| ∀λ ∈ sp(A)



Gap between externally and internally positive

To describe the “gap” between externally positive and internally positive
systems:

Approach:
1. relax the positivity of A

2. construct a minimal realization A ≷ 0, b ≥ 0, c ≥ 0 s.t. the state x(k)
lacks positivity only transiently:

∀x(0) ≥ 0 ∃ ηo ∈ N s. t. x(k) ≥ 0 ∀ k ≥ ηo

Definition: A realization {Ae, be, ce} is said eventually positive if
x(k) ≥ 0 ∀ k ≥ ηo and ∀x(0) ≥ 0



Eventually positive matrices

Definition: A matrix Ae is called eventually positive if ∃ ηo such that
(Ae)

η > 0 ∀ η ≥ ηo

• notation for eventually positive: Ae
∨
> 0

• meaning: the negative entries of Ae disappear for higher powers
=⇒ disregarding the transient, the matrix is “positive”

• equivalent characterization: Perron-Frobenius property

Theorem: (Noutsos & Tsatsomeros, SIAM J. Mat. An. App. 2008)

Ae
∨
> 0 ⇐⇒ P.F. holds: ρ(Ae) ∈ sp(Ae) with ρ(Ae)

simple, positive and s.t. ρ(Ae) > |λ|
∀λ ∈ sp(Ae), with positive right and left
P.F. eigenvectors: v > 0 and w > 0



Perron-Frobenius property & Eventual Positivity

Theorem: (Altafini & Lini, IEEE Tr. Aut. Con., 2015)

Ae
∨
> 0 ⇐⇒ ∃ cone K s. t. AeK ⊂ K and

∀ η ≥ ηo

{
(Ae)

ηK ⊂ Rn+
(ATe )

ηK∗ ⊂ Rn+

• iterated cone "enters" in Rn+ (since v > 0)

AeK, A2
eK, . . . , AηeK ⊂ int(Rn+)

3D view top view



Perron-Frobenius property & Eventual Positivity

• Combining Ae
∨
> 0 with cone conditions on be and ce:

Theorem:
A minimal realization
{Ae, be, ce} of H(z)
is eventually positive

⇐⇒ Ae
∨
> 0, be ≥ 0, ce ≥ 0 and ∃ a cone

K such that

AeK ⊆ K
be ∈ K
ce ∈ K∗

• difference w.r.t. conditions in the literature: the cone K becomes
positive (after ηo iterations), hence the minimal realization {Ae, be, ce}
itself can be used (no need to construct a “larger” realization based on
the rays of K)



Sketch of the proof (practical meaning)

x(k) = xo(k) + xf (k) = Akex(0) +

k−1∑
j=0

Ak−j−1e beu(j)

1. Forced evolution xf (k)
• since xf (k) ∈ R = cone(be, Aebe, . . .)

if R ⊂ Rn
+ =⇒ xf (k) ≥ 0 ∀ k

• next slides: for a Markov observability realization this is always true

2. Free evolution xo(k)
• when P.F. holds, then

xo(k)→ span(v)

but the sign of

lim
k→∞

xo(k) =
v wTx(0)

wT v
is not determined;

• if in addition v > 0 and w > 0 then

x(0) ≥ 0 =⇒ xo(k) > 0 for k sufficiently large



Main result (and a conjecture)

Consider H(z) with a simple, strictly dominating pole.

Theorem:
H(z) admits a minimal eventually
positive realization

=⇒
??⇐=

H(z) externally positive

Proof:
“=⇒” ∃ a cone K such that AeK ⊆ K, be ∈ K and ce ∈ K∗.

Then cebe ≥ 0, Aebe ∈ K =⇒ ceAebe ≥ 0, . . .

“ ??⇐=” A proof is missing, but a constructive algorithm is available,
and always terminate successfully...



Example

H(z) =
0.105z3 + 0.13z2 − 0.022z − 0.015

z5 − 0.96z4 − 0.058z3 + 0.035z2 − 0.01z − 0.003

• externally positive system, without minimal positive realization
• Markov observability form

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0.003 0.01 −0.035 0.058 0.96

 , b =


0
0.105
0.23
0.21
0.19

 c =


1
0
0
0
0


T

• by construction: R ⊂ Rn+ =⇒ xf (k) ≥ 0 ∀ k



Example

• spectral radius: ρ(A) = 1

• P.F. eigenvectors:

w =


0.003
0.014
−0.021
0.037
0.999

 v = 1 =⇒

{
(A)ηK ⊂ R5

+

(AT )ηK∗ * R5
+

• =⇒ A is not eventually positive

lim
k→∞

xo(k) =
v wTx(0)

wT v

• =⇒ xo(k) can have any sign ∀ k



Example

• changing basis with M = I5 + [m43]

Ae =


0 1 0 0 0
0 0 1 0 0
0 0 0.608 1 0
0 0 −0.369 −0.608 1

0.003 0.01 0.0003 0.058 0.96

 , be =


0

0.105
0.23
0.067
0.19

 ce = c

• P.F. eigenvectors:

we =


0.003
0.014
0.0012
0.037
1

 ve =


1
1
1

0.39
1

 =⇒

{
(Ae)

ηK ⊂ R5
+

(ATe )
ηK∗ ⊂ R5

+

=⇒ Ae
∨
> 0



Example
Practical meaning:
• in the “Markov observability basis”:
• y never violates positivity
• x may violate positivity (and remain non-positive forever)

• in the “eventually positive basis”
• y never violates positivity
• x can transiently violate positivity
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Recovering positivity through dowsampling
Consider H(z) =

∑∞
i=1 h(i)z

−i with a simple strictly dominating pole.

Theorem:
H(z) admits a
minimal eventually
positive realization
{Ae, be, ce}

=⇒ ∃ η ∈ N s.t. {Aηe , be, ce} is a minimal
positive realization of the decimated
subsequence of Markov parameters
{hη(k) = h((k − 1)η + 1)}∞k=1

• Meaning: downsampling an eventually positive realization one gets a
minimal positive realization

Conjecture: Every externally positive system has subsequences of
Markov parameters which admit minimal positive realizations



Example

Original

{Ae, be, ce} minimal
eventually positive
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Downsampled (η = 8)

{(Ae)8, be, ce} minimal
(internally) positive
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Continuous-time eventually positive realizations

• CT SISO linear system

ẋ = Ax+ bu

y = cx

• ZOH discretization

x(k + 1) = Aδ x(k) + bδ u(k)

y(k) = cδ x(k)

where

Aδ = eAT bδ =

∫ T

0

eAτ bdτ cδ = c



Continuous-time eventually positive realizations

Consider H(s) with a simple, strictly dominating pole.

Theorem:
H(s) admits a minimal eventually
positive realization

=⇒
??⇐=

H(s) externally positive

Proof:
“=⇒” Same as D.T. case
“ ??⇐=” constructive algorithm ...



A “dual” to Nyquist-Shannon sampling theorem

Theorem:
H(s) admits a
minimal eventually
positive realization
and R ⊂ Rn+

=⇒ ∃ sample time To s.t. ∀T ≥ To the
realization {Aδ, bδ, cδ} is a minimal
positive realization of the ZOH system

• Meaning: sampling with a sufficiently long sample time, an eventually
positive realization leads to a minimal positive realization for the ZOH
system

• dual to Nyquist-Shannon sampling theorem: when sampling with
sufficiently long sample time the non-positive transient is guaranteed to
to be avoided

Conjecture: Every externally positive C.T. system has ZOH discretiza-
tions which admit minimal positive realizations



Examples

• ZOH sampling giving a minimal positive realization may or may not
lead to a “faithful” DT system

Similar to original
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Conclusion
• attempt to understand the gap between externally and internally
positive linear systems: eventually positive systems

• properties:
1. A can have negative entries
2. powers of A become positive

• meaning:
1. states can become negative even if x(0) > 0
2. after a transient the entire state must becomes positive

• interpretation
1. the lack of minimal positive realization is due to the transient of the free

evolution xo(k)
2. Perron-Frobenius dictates the asymptotic behavior

• conjecture:
1. for the case of simple, strictly dominant P.F. eigenvalue, the eventually

positive realizations “fill the gap” between externally and internally
positive systems

2. ∃ always a basis in which the asymptotic behavior of the state belongs
to Rn

+



Thank you!

(other “false positives” when you google “Anders Lindquist”)
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