## SF3810 Convexity and optimization in linear spaces, 2023.

## Home assignments, collection number 2.

Due date: March 8, 2023.
Note: You may discuss the problems with other students, but you should write your own solutions, "in your own words".

1. Let $K$ be a closed convex cone in a Hilbert space $H$, let $h \in H$ be a given vector, and let $K^{\ominus}=\{y \in H ;(y \mid x) \leq 0$ for all $x \in K\}=$ "negative conjugate cone" of $K$.
(a) Prove that $K^{\ominus}$ is a closed convex cone in $H$.
(b) Consider the problem minimize $\|h-k\|$ subject to $k \in K$.

Prove (by using Theorem 1 in section 3.12) that $k_{0}$ is the unique optimal solution if and only if: $k_{0} \in K, \quad h-k_{0} \in K^{\ominus}$ and $\left(h-k_{0} \mid k_{0}\right)=0$.
(c) Prove that each $h \in H$ can be written in a unique way as $h=k+g$, where $k \in K, g \in K^{\ominus}$ and $(g \mid k)=0$.
(d) Prove that $\left(K^{\ominus}\right)^{\ominus}=K$.
(e) Consider the problem minimize $\|z\|$ subject to $h-z \in K^{\ominus}$.

Prove that $z=k_{0}$, with $k_{0}$ from (b) above, is the unique optimal solution.
2. Let $H$ be the Hilbert space consisting of $n \times n$ matrices, with the inner product defined by $(A \mid B)=\operatorname{trace}\left(A^{\top} B\right)$, and let $M$ be the closed subspace in $H$ consisting of symmetric matrices.
(a) What is $M^{\perp}$ in this case?
(b) Given a nonsymmetric $n \times n$ matrix $A$, what is the optimal solution $S_{0}$ to the problem minimize $\|A-S\|$ subject to $S \in M$ ?
3. Let $M$ be the Hilbert space consisting of symmetric $n \times n$ matrices, with the inner product defined as above, and let $K$ be the closed convex cone in $M$ consisting of positive semidefinite symmetric matrices.
(a) What is $K^{\ominus}$ in this case?
(b) Given an indefinite symmetric $n \times n$ matrix $S$, what is the optimal solution $P_{0}$ to the problem minimize $\|S-P\|$ subject to $P \in K$ ?
4. Let $H$ be as in problem 2 above, and let $K$ be the closed convex cone in $H$ consisting of positive semidefinite symmetric matrices.
Given a nonsymmetric $n \times n$ matrix $A$, what is the optimal solution $P_{0}$ to the problem minimize $\|A-P\|$ subject to $P \in K$ ?
5. Prove Lemma 1 in section 3.8:

An orthonormal sequence $\left\{e_{i}\right\}$ in a Hilbert space $H$ is complete if and only if the only vector $y \in H$ which satisfies $\left(y \mid e_{i}\right)=0$ for all $i$ is the null vector.

Good luck!

