SF3810 Convexity and optimization in linear spaces, 2023.

Home assignments, collection number 1.

Due date: February 22, 2023.

Note: You may discuss the problems with other students, but you should write your own solutions, "in your own words".

1. Let S be a given set in a linear space X. S may or may not be a convex set. A point $x \in X$ is said to be a *convex combination* of elements in S if $x = \sum_{i=1}^{k} \alpha_i s_i$, for some integer $k \geq 1$, some elements s_1, \ldots, s_k in S, and some real numbers $\alpha_1, \ldots, \alpha_k$ which satisfy $\sum_{i=1}^{k} \alpha_i = 1$ and $\alpha_i \geq 0$ for $i = 1, \ldots, k$. Let convcomb(S) denote the set of all convex combinations of elements in S.

Show that convcomb(S) is the *smallest* of all *convex* sets which contain S.

Hint: The following steps are recommended:

Show that $S \subseteq \text{convcomb}(S)$.

Show that convcomb(S) is a convex set.

Show that if C is a convex set then convcomb(C) = C.

Show that if C is a convex set such that $S \subseteq C$, then $convcomb(S) \subseteq C$.

2. Let X be the normed linear space consisting of real $n \times n$ matrices, with the natural definitions of addition and scalar multiplication, and with the norm defined by $||A||^2 = \text{trace}(A^{\mathsf{T}}A)$. (The trace of an $n \times n$ matrix is the sum of the *n* diagonal elements.) Let *M* be the subset of *X* consisting of symmetric matrices, and let *C* be the subset of *M* consisting of positive semidefinite (psd) matrices.

Show that M is a closed subspace of X, and that C is a closed convex cone in X.

Do not use any "advanced" properties of psd matrices (like non-negative eigenvalues), just use the basic definition $(y^{\mathsf{T}}A y \ge 0 \text{ for all } y)$.

3. Let $X = l_{\infty}$, and consider the following two subsets M_1 and M_2 of X. Let M_1 be the set of sequences in l_{∞} having only a finite number of non-zero terms. If $x \in M_1$ then $x = (\xi_1, \xi_2, ...) \in l_{\infty}$ with only a finite number of $\xi_j \neq 0$. Let M_2 be the set of sequences in l_{∞} which converge to zero. If $x \in M_2$ then $x = (\xi_1, \xi_2, ...) \in l_{\infty}$ with $\xi_j \to 0$ as $j \to \infty$.

Show that M_1 is a subspace of l_{∞} , but not a closed subspace. Show that M_2 is a closed subspace of l_{∞} .

Is the closure of M_1 equal to M_2 ? Proof or counterexample!

4. Let $S = \{x \in l_2 \mid ||x|| \le 1\}$ = the unit sphere in l_2 ,

and let $f: l_2 \to R$ be defined by $f(x) = \sum_j a_j \xi_j^2$, where $a_j = j/(j+1)$. Show that S is not compact, by considering a certain (very simple) sequence $\{x_n\}$ with $x_n \in l_2$ and $||x_n|| = 1$.

Show that f is continuous (Hint: Hölders inequality), but that there is no $\hat{x} \in S$ such that $f(\hat{x}) \ge f(x)$ for all $x \in S$.

Good luck!