SF3810 Convexity and optimization in linear spaces, 2023.

Home assignments, collection number 1.

Due date: February 22, 2023.
Note: You may discuss the problems with other students, but you should write your own solutions, "in your own words".

1. Let S be a given set in a linear space X. S may or may not be a convex set.

A point $x \in X$ is said to be a convex combination of elements in S if $x=\sum_{i=1}^{k} \alpha_{i} s_{i}$, for some integer $k \geq 1$, some elements s_{1}, \ldots, s_{k} in S, and some real numbers $\alpha_{1}, \ldots, \alpha_{k}$ which satisfy $\sum_{i=1}^{k} \alpha_{i}=1$ and $\alpha_{i} \geq 0$ for $i=1, \ldots, k$.
Let convcomb (S) denote the set of all convex combinations of elements in S.
Show that convcomb (S) is the smallest of all convex sets which contain S.
Hint: The following steps are recommended:
Show that $S \subseteq \operatorname{convcomb}(S)$.
Show that convcomb (S) is a convex set.
Show that if C is a convex set then convcomb $(C)=C$.
Show that if C is a convex set such that $S \subseteq C$, then $\operatorname{convcomb}(S) \subseteq C$.
2. Let X be the normed linear space consisting of real $n \times n$ matrices, with the natural definitions of addition and scalar multiplication, and with the norm defined by $\|A\|^{2}=\operatorname{trace}\left(A^{\top} A\right)$. (The trace of an $n \times n$ matrix is the sum of the n diagonal elements.) Let M be the subset of X consisting of symmetric matrices, and let C be the subset of M consisting of positive semidefinite (psd) matrices.

Show that M is a closed subspace of X, and that C is a closed convex cone in X.
Do not use any "advanced" properties of psd matrices (like non-negative eigenvalues), just use the basic definition $\left(y^{\top} A y \geq 0\right.$ for all $\left.y\right)$.
3. Let $X=l_{\infty}$, and consider the following two subsets M_{1} and M_{2} of X.

Let M_{1} be the set of sequences in l_{∞} having only a finite number of non-zero terms.
If $x \in M_{1}$ then $x=\left(\xi_{1}, \xi_{2}, \ldots\right) \in l_{\infty}$ with only a finite number of $\xi_{j} \neq 0$.
Let M_{2} be the set of sequences in l_{∞} which converge to zero.
If $x \in M_{2}$ then $x=\left(\xi_{1}, \xi_{2}, \ldots\right) \in l_{\infty}$ with $\xi_{j} \rightarrow 0$ as $j \rightarrow \infty$.
Show that M_{1} is a subspace of l_{∞}, but not a closed subspace.
Show that M_{2} is a closed subspace of l_{∞}.
Is the closure of M_{1} equal to M_{2} ? Proof or counterexample!
4. Let $S=\left\{x \in l_{2} \mid\|x\| \leq 1\right\}=$ the unit sphere in l_{2}, and let $f: l_{2} \rightarrow R$ be defined by $f(x)=\sum_{j} a_{j} \xi_{j}^{2}$, where $a_{j}=j /(j+1)$.
Show that S is not compact, by considering a certain (very simple) sequence $\left\{x_{n}\right\}$ with $x_{n} \in l_{2}$ and $\left\|x_{n}\right\|=1$.
Show that f is continuous (Hint: Hölders inequality), but that there is no $\hat{x} \in S$ such that $f(\hat{x}) \geq f(x)$ for all $x \in S$.

Good luck!

