
Exam October 27, 2022 in SF2852/FSF3852 Optimal Control.

Examiner: Johan Karlsson. Phone: 08-7908440.

Allowed aids: The formula sheet and mathematics handbook (by R̊ade
and Westergren). (Note that calculator is not allowed.)

Solution methods: All conclusions should be properly motivated.

Note: Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Consider the discrete optimal control problem

min

2∑
k=0

(|xk|+ 5|uk|) s.t


xk+1 = 0.5xk + uk

xk ∈ Xk

uk ∈ {−1,−0.5, 0, 0.5, 1}

where the state space is defined by

X0 = {2}, X1 = {0, 1, 2}, X2 = {0, 1, 2}, X3 = {1}

Solve the problem using dynamic programming.
Hint: It may be useful to introduce the control constraint sets U(k, x)
that specify the feasible control values for each xk ∈ Xk. . . . . . . . (10p)

2. Solve the following time-variant optimal control problem

min

∫ T

0
(u2 + t)dt

subject to

ẋ = x+ u, x ∈ R, u ∈ R
x(0) = x0

x(T ) = 0

T > 0,

where the terminal time T is also a variable. . . . . . . . . . . . . . . . . . . (10p)

3. Consider the scalar linear quadratic optimal control problem

min

∫ ∞
0

(3x2 + u2)dt subject to ẋ = −x+ u, x(0) = 1 (1)
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(a) Compute the optimal stabilizing feedback control and the corre-
sponding optimal cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(b) Compute the closed loop poles. . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Now consider the finite truncation of (1)

min

∫ T

0
(3x2 + u2)dt subject to ẋ = −x+ u, x(0) = 1 (2)

(c) Use the Hamilton-Jacobi-Bellman equation to compute the opti-
mal feedback control and the corresponding optimal cost.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(d) Let p(t, T ) be the Riccati solution corresponding to (2), where the
final time is made explicit as an argument. Compute limT→∞ p(t, T )
and compare with the solution to the ARE corresponding to (1).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

4. Consider multiplication of N matrices

M1M2 . . .MkMk+1 . . .MN

where each Mk has dimension nk×nk+1. The order in which the muti-
plications are carried out is generally crucial. As an example, if n1 = 1,
n2 = 10, n3 = 1 and n4 = 10 then the calculation ((M1M2)M3) re-
quires 20 scalar multiplications while (M1(M2M3)) requires 200 scalar
multiplications.

(a) Determine a dynamic programming recursion for finding the mul-
tiplication order which gives the smalest number of scalar multi-
plications.
Hint 1: Multiplying an nk−1×nk matrix by an nk×nk+1 requires
nk−1nknk+1 scalar multiplications.
Hint 2: As a state space vector you can use the set xk ⊂ {1, 2, . . . , N + 1}
with N+1−k elements, which represents the indices correspond-
ing to the dimensions of the matrices resulting from multiplica-
tions done so far. The initial state is x0 = {1, 2, . . . , N + 1} and
the terminal state is xN−1 = {1, N + 1}. The control uk corre-
sponds to the element that is removed from xk \ {1, N + 1} to
define the next multiplication of the neighboring matrices with
column and row dimension nuk

, respectively. For example, if
x0 = {1, 2, 3} then the only possible control is u0 = 2 and the
cost becomes n1n2n3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) Solve the problem when N = 3 and n1 = 3, n2 = 10, n3 = 5, and
n4 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)
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5. Compute the optimal control u(t) for the following problem:

minx(1) +
1

2

∫ 1

0
u(t)2dt subject to


ẋ(t) = x(t) + u(t),

x(0) = 0,∫ 1
0 x(t)dt = 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

Good luck!
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Solutions

1. Let

U(0, 2) = {−1, 0, 1},

U(1, x) =


{0, 1}, x = 0

{−0.5, 0.5}, x = 1

{−1, 0, 1}, x = 2,

U(2, x) =


{1}, x = 0

{0.5}, x = 1

{0}, x = 2.

These control values ensure that the state constraint xk ∈ Xk remains
satisfied.

The dynamic programming iteration can be formulated as

J3(x) =

{
0, x ∈ X3 = {1}
∞, otherwise

Jk(x) = min
u∈U(k,x)

{|x|+ 5|u|+ Jk+1(0.5x+ u)}

In the stage k = 2 we get

J2(x) = min
u∈U(k,x)

{x+ 5|u|+ J3(0.5x+ u)}︸ ︷︷ ︸
J2(x,u)

The cost J2(x2, u2) for all feasible pairs (u2, x2) are given in the fol-
lowing table.

x2 \ u2 −1 −1/2 0 1/2 1

0 - - - - 5

1 - - - 3.5 -

2 - - 2 - -

which implies the follow optimal solution

x2 J2(x2) µ(2, x2)

0 5 1

1 3.5 1/2

2 2 0
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In the stage k = 1 we get

J1(x) = min
u∈U(k,x)

{x+ 5|u|+ J2(0.5x+ u)}︸ ︷︷ ︸
J1(x,u)

The cost J1(x1, u1) for all feasible pairs (u1, x1) are given in the fol-
lowing table.

x1 \ u1 −1 −1/2 0 1/2 1

0 - - 5 - 8.5

1 - 8.5 - 7 -

2 12 - 5.5 - 9

which implies the follow optimal solution

x1 J1(x1) µ(1, x1)

0 5 0

1 7 1/2

2 5.5 0

In the initial stage k = 0 we get

J0(x) = min
u∈U(k,x)

{x+ 5|u|+ J1(0.5x+ u)}︸ ︷︷ ︸
J0(x,u)

The cost J0(x0, u0) for all feasible pairs (u0, x0) are given in the fol-
lowing table.

x0 \ u0 −1 −1/2 0 1/2 1

2 12 - 9 - 12.5

which implies the follow optimal solution

x0 J0(x0) µ(0, x0)

2 9 0

The optimal control is thus

u∗0 = 0, u∗1 = 1/2, u∗2 = 1/2

and the corresponding optimal state trajectory is

x∗0 = 2, x∗1 = 1, x∗2 = 1, x∗3 = 1.
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2. Use PMP and one can get that u∗(t) = − 2x0e−t

1−e−2T∗ , where the optimal
time T ∗ is to be determined. Plug the optimal control to the objective
function∫ T ∗

0
(u∗(t)2 + t)dt =

(
2x2

0

(1− e−2T ∗)2

)
(1− e−2T ∗

) + (T ∗)2/2

=
2x2

0

1− e−2T ∗ + (T ∗)2/2.

Taking the derivative, we note that the optimal T ∗ is the unique so-
lution of the equation T ∗ = 4x2

0/(e
T ∗ − e−T

∗
)2. This can also be

determined by noting that the Hamiltonian is zero at T ∗

3. (a) The ARE becomes −2p + 3 = p2, which gives p = −1 ± 2. The
positive definite solution p = 1 corresponds to the stabilizing
solution. We get

i. The optimal stabilizing feedback control u = −x.

ii. The optimal cost J(x(0)) = x(0)2p = 1.

(b) The closed loop system becomes

ẋ = −x− x = −2x

Hence, the closed loop pole is at s = −2.

(c) HJBE gives rise to the Riccati equation

ṗ− 2p+ 3− p2 = 0

Separation of variables gives

dp

(p+ 3)(p− 1)
= dt

⇔ ln

(
1− p(t)
p(t) + 3

)
= 4t+ c1

⇔ 1− p(t)
p(t) + 3

= ce4t

where c = ec1 . The boundary condition p(T ) = 0 gives c =
e−4T /3. Hence,

p(t, T ) = 3
1− e4(t−T )

3 + e4(t−T )

The optimal feedback solution is u(t) = −p(t, T )x(t) and the
optimal cost-to-go is J(t, x) = p(t, T )x2.

(d) We have

lim
T→∞

p(t, T ) = 1

which is the same as the stabilizing solution to the ARE in prob-
lem (a).
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4. (a) With the notation from the second hint we obtain the following
optimal control problem for the minimization problem

min
N−1∑
k=0

f0(xk, uk) subj. to

{
xk+1 = xk \ uk, uk ∈ xk \ {1, N + 1}
x0 = {1, 2, . . . , N + 1}

where f0(xk, uk) = nlnuk
nr and l is the largest element in xk

which is less than uk, and r is the smallest element in xk, which
is larger than uk, i.e.

xk = {. . . , l, uk, r, . . .}

if the set is ordered as a sequence of increasing numbers. The
dynamic programming recursion becomes

JN−1(xN−1) = 0

Jk(xk) = min
uk∈xk\{1,N+1}

{f0(xk, uk) + Jk+1(xk \ uk)}

(b) We have

J2(x2) = 0

J1(x1) = min
u1∈x1\{1,4}

{f0(x1, u1)} =

{
n1n2n4, x1 = {1, 2, 4}
n1n3n4, x1 = {1, 3, 4}

J0(x0) = min
u0∈x0\{1,4}

{f0(x0, u0) + J1(x0 \ u0)}

= min(n1n2n3 + n1n3n4, n2n3n4 + n1n2n4)

= min(100 + 60, 150 + 30) = 160

Hence M1(M2M3) gives the minimum number of multiplications
160.

5. Let y(t) =
∫ t

0 x(t)dt, then the problem is of the form of a standard
optimal control problem

min x(1) +
1

2

∫ 1

0
u(t)2dt

subject to ẋ(t) = x(t) + u(t), x(0) = 0,

ẏ(t) = x(t), y(0) = 0, y(1) = 1.

The Hamiltonian corresponding to this problem is

H((x, y), u, λ) =
1

2
u2 + λ1(x+ u) + λ2x.

The minimizing argument u of the Hamiltonian is given by

µ((x, y), λ) = arg min
u
H((x, y), u, λ) = −λ1
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The dynamics for the adjoint variables λ are given by

λ̇1 = −∂H
∂x

= −λ1 − λ2

λ̇2 = −∂H
∂y

= 0.

The first adjoint variable satisfies λ1(1) = ∂Φ(x)
∂x = 1 since the final

cost is equal to Φ(x(1)) = x(1). There is no condition on the second
adjoint variable at the end (i.e., λ2(1) is free) since y(1) is fixed. The
two point boundary value problems is thus

ẋ(t) = x(t)− λ1(t), x(0) = 0,

ẏ(t) = x(t), y(0) = 0, y(1) = 1,

λ̇1(t) = −λ1(t)− λ2(t), λ1(1) = 1,

λ̇2(t) = 0.

Clearly, λ2 is constant, thus λ1(t) = (1 + λ2)e1−t − λ2. This gives
u(t) = λ2 − (1 + λ2)e1−t, but where we need to determine λ2.

Next, x(t) is given by

x(t) =

∫ t

0
et−s(−λ1(s))ds =

∫ t

0
et−s(λ2 − (1 + λ2)e1−s)ds

=

(
−et−sλ2 +

1 + λ2

2
et+1−2s

)∣∣∣∣t
0

= λ2(et − 1) +
1 + λ2

2
(e1−t − e1+t),

and thus the condition in y(1) becomes

1 = y(1) =

∫ 1

0
x(t)dt =

∫ 1

0

(
λ2(et − 1) +

1 + λ2

2
(e1−t − e1+t)

)
dt

=

(
λ2(et − t)− 1 + λ2

2
(e1−t + e1+t)

)∣∣∣∣1
0

= λ2(e− 2) +
1 + λ2

2
(2e− 1− e2)

= λ2(4e− 5− e2)/2 + (2e− 1− e2)/2,

and gives

λ2 =
e2 + 3− 2e

4e− 5− e2
.

Thus the optimal control is given by

u(t) = −e1−t +
e2 + 3− 2e

4e− 5− e2
(1− e1−t).
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