Exam October 27, 2022 in SF2852/FSF3852 Optimal Control.

Examiner: Johan Karlsson. Phone: 08-7908440.
Allowed aids: The formula sheet and mathematics handbook (by Råde and Westergren). (Note that calculator is not allowed.)

Solution methods: All conclusions should be properly motivated.
Note: Your personal number must be stated on the cover sheet. Number your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit $=$ exam credit + bonus from homeworks): 23-24 credits give grade Fx (contact examiner asap for further info), 25-27 credits give grade E, $28-32$ credits give grade D, $33-38$ credits give grade C, 39-44 credits give grade B, and 45 or more credits give grade A.

1. Consider the discrete optimal control problem

$$
\min \sum_{k=0}^{2}\left(\left|x_{k}\right|+5\left|u_{k}\right|\right) \quad \text { s.t } \quad\left\{\begin{array}{l}
x_{k+1}=0.5 x_{k}+u_{k} \\
x_{k} \in X_{k} \\
u_{k} \in\{-1,-0.5,0,0.5,1\}
\end{array}\right.
$$

where the state space is defined by

$$
X_{0}=\{2\}, X_{1}=\{0,1,2\}, X_{2}=\{0,1,2\}, X_{3}=\{1\}
$$

Solve the problem using dynamic programming.
Hint: It may be useful to introduce the control constraint sets $U(k, x)$ that specify the feasible control values for each $x_{k} \in X_{k} . \ldots . . .(10 \mathrm{p})$
2. Solve the following time-variant optimal control problem

$$
\min \int_{0}^{T}\left(u^{2}+t\right) d t
$$

subject to

$$
\begin{align*}
\dot{x} & =x+u, x \in R, u \in R \\
x(0) & =x_{0} \\
x(T) & =0 \\
T & >0, \tag{10p}
\end{align*}
$$

where the terminal time T is also a variable.
3. Consider the scalar linear quadratic optimal control problem

$$
\begin{equation*}
\min \int_{0}^{\infty}\left(3 x^{2}+u^{2}\right) d t \quad \text { subject to } \quad \dot{x}=-x+u, x(0)=1 \tag{1}
\end{equation*}
$$

(a) Compute the optimal stabilizing feedback control and the corresponding optimal cost.
(b) Compute the closed loop poles.

Now consider the finite truncation of (1)

$$
\begin{equation*}
\min \int_{0}^{T}\left(3 x^{2}+u^{2}\right) d t \quad \text { subject to } \quad \dot{x}=-x+u, x(0)=1 \tag{2}
\end{equation*}
$$

(c) Use the Hamilton-Jacobi-Bellman equation to compute the optimal feedback control and the corresponding optimal cost.
(d) Let $p(t, T)$ be the Riccati solution corresponding to (2), where the final time is made explicit as an argument. Compute $\lim _{T \rightarrow \infty} p(t, T)$ and compare with the solution to the ARE corresponding to (1).
4. Consider multiplication of N matrices

$$
M_{1} M_{2} \ldots M_{k} M_{k+1} \ldots M_{N}
$$

where each M_{k} has dimension $n_{k} \times n_{k+1}$. The order in which the mutiplications are carried out is generally crucial. As an example, if $n_{1}=1$, $n_{2}=10, n_{3}=1$ and $n_{4}=10$ then the calculation $\left(\left(M_{1} M_{2}\right) M_{3}\right)$ requires 20 scalar multiplications while ($\left.M_{1}\left(M_{2} M_{3}\right)\right)$ requires 200 scalar multiplications.
(a) Determine a dynamic programming recursion for finding the multiplication order which gives the smalest number of scalar multiplications.
Hint 1: Multiplying an $n_{k-1} \times n_{k}$ matrix by an $n_{k} \times n_{k+1}$ requires $n_{k-1} n_{k} n_{k+1}$ scalar multiplications.
Hint 2: As a state space vector you can use the set $x_{k} \subset\{1,2, \ldots, N+1\}$ with $N+1-k$ elements, which represents the indices corresponding to the dimensions of the matrices resulting from multiplications done so far. The initial state is $x_{0}=\{1,2, \ldots, N+1\}$ and the terminal state is $x_{N-1}=\{1, N+1\}$. The control u_{k} corresponds to the element that is removed from $x_{k} \backslash\{1, N+1\}$ to define the next multiplication of the neighboring matrices with column and row dimension $n_{u_{k}}$, respectively. For example, if $x_{0}=\{1,2,3\}$ then the only possible control is $u_{0}=2$ and the cost becomes $n_{1} n_{2} n_{3} . \ldots \ldots$................................
(b) Solve the problem when $N=3$ and $n_{1}=3, n_{2}=10, n_{3}=5$, and $n_{4}=2$.
. (4p)
5. Compute the optimal control $u(t)$ for the following problem:

$$
\min x(1)+\frac{1}{2} \int_{0}^{1} u(t)^{2} d t \quad \text { subject to } \quad\left\{\begin{array}{l}
\dot{x}(t)=x(t)+u(t) \\
x(0)=0 \\
\int_{0}^{1} x(t) d t=1
\end{array}\right.
$$

(10p)
Good luck!

Solutions

1. Let

$$
\begin{aligned}
& U(0,2)=\{-1,0,1\}, \\
& U(1, x)= \begin{cases}\{0,1\}, & x=0 \\
\{-0.5,0.5\}, & x=1 \\
\{-1,0,1\}, & x=2,\end{cases} \\
& U(2, x)= \begin{cases}\{1\}, & x=0 \\
\{0.5\}, & x=1 \\
\{0\}, & x=2 .\end{cases}
\end{aligned}
$$

These control values ensure that the state constraint $x_{k} \in X_{k}$ remains satisfied.

The dynamic programming iteration can be formulated as

$$
\begin{aligned}
& J_{3}(x)= \begin{cases}0, & x \in X_{3}=\{1\} \\
\infty, & \text { otherwise }\end{cases} \\
& J_{k}(x)=\min _{u \in U(k, x)}\left\{|x|+5|u|+J_{k+1}(0.5 x+u)\right\}
\end{aligned}
$$

In the stage $k=2$ we get

$$
J_{2}(x)=\min _{u \in U(k, x)} \underbrace{\left\{x+5|u|+J_{3}(0.5 x+u)\right\}}_{J_{2}(x, u)}
$$

The cost $J_{2}\left(x_{2}, u_{2}\right)$ for all feasible pairs $\left(u_{2}, x_{2}\right)$ are given in the following table.

$x_{2} \backslash u_{2}$	-1	$-1 / 2$	0	$1 / 2$	1
0	-	-	-	-	5
1	-	-	-	3.5	-
2	-	-	2	-	-

which implies the follow optimal solution

x_{2}	$J_{2}\left(x_{2}\right)$	$\mu\left(2, x_{2}\right)$
0	5	1
1	3.5	$1 / 2$
2	2	0

In the stage $k=1$ we get

$$
J_{1}(x)=\min _{u \in U(k, x)} \underbrace{\left\{x+5|u|+J_{2}(0.5 x+u)\right\}}_{J_{1}(x, u)}
$$

The cost $J_{1}\left(x_{1}, u_{1}\right)$ for all feasible pairs $\left(u_{1}, x_{1}\right)$ are given in the following table.

$x_{1} \backslash u_{1}$	-1	$-1 / 2$	0	$1 / 2$	1
0	-	-	5	-	8.5
1	-	8.5	-	7	-
2	12	-	5.5	-	9

which implies the follow optimal solution

x_{1}	$J_{1}\left(x_{1}\right)$	$\mu\left(1, x_{1}\right)$
0	5	0
1	7	$1 / 2$
2	5.5	0

In the initial stage $k=0$ we get

$$
J_{0}(x)=\min _{u \in U(k, x)} \underbrace{\left\{x+5|u|+J_{1}(0.5 x+u)\right\}}_{J_{0}(x, u)}
$$

The cost $J_{0}\left(x_{0}, u_{0}\right)$ for all feasible pairs $\left(u_{0}, x_{0}\right)$ are given in the following table.

$x_{0} \backslash u_{0}$	-1	$-1 / 2$	0	$1 / 2$	1
2	12	-	9	-	12.5

which implies the follow optimal solution

x_{0}	$J_{0}\left(x_{0}\right)$	$\mu\left(0, x_{0}\right)$
2	9	0

The optimal control is thus

$$
u_{0}^{*}=0, u_{1}^{*}=1 / 2, u_{2}^{*}=1 / 2
$$

and the corresponding optimal state trajectory is

$$
x_{0}^{*}=2, x_{1}^{*}=1, x_{2}^{*}=1, x_{3}^{*}=1
$$

2. Use PMP and one can get that $u^{*}(t)=-\frac{2 x_{0} e^{-t}}{1-e^{-2 T^{*}}}$, where the optimal time T^{*} is to be determined. Plug the optimal control to the objective function

$$
\begin{aligned}
\int_{0}^{T^{*}}\left(u^{*}(t)^{2}+t\right) d t & =\left(\frac{2 x_{0}^{2}}{\left(1-e^{-2 T^{*}}\right)^{2}}\right)\left(1-e^{-2 T^{*}}\right)+\left(T^{*}\right)^{2} / 2 \\
& =\frac{2 x_{0}^{2}}{1-e^{-2 T^{*}}}+\left(T^{*}\right)^{2} / 2 .
\end{aligned}
$$

Taking the derivative, we note that the optimal T^{*} is the unique solution of the equation $T^{*}=4 x_{0}^{2} /\left(e^{T^{*}}-e^{-T^{*}}\right)^{2}$. This can also be determined by noting that the Hamiltonian is zero at T^{*}
3. (a) The ARE becomes $-2 p+3=p^{2}$, which gives $p=-1 \pm 2$. The positive definite solution $p=1$ corresponds to the stabilizing solution. We get
i. The optimal stabilizing feedback control $u=-x$.
ii. The optimal cost $J(x(0))=x(0)^{2} p=1$.
(b) The closed loop system becomes

$$
\dot{x}=-x-x=-2 x
$$

Hence, the closed loop pole is at $s=-2$.
(c) HJBE gives rise to the Riccati equation

$$
\dot{p}-2 p+3-p^{2}=0
$$

Separation of variables gives

$$
\begin{aligned}
& \frac{d p}{(p+3)(p-1)}=d t \\
\Leftrightarrow & \ln \left(\frac{1-p(t)}{p(t)+3}\right)=4 t+c_{1} \\
\Leftrightarrow & \frac{1-p(t)}{p(t)+3}=c e^{4 t}
\end{aligned}
$$

where $c=e^{c_{1}}$. The boundary condition $p(T)=0$ gives $c=$ $e^{-4 T} / 3$. Hence,

$$
p(t, T)=3 \frac{1-e^{4(t-T)}}{3+e^{4(t-T)}}
$$

The optimal feedback solution is $u(t)=-p(t, T) x(t)$ and the optimal cost-to-go is $J(t, x)=p(t, T) x^{2}$.
(d) We have

$$
\lim _{T \rightarrow \infty} p(t, T)=1
$$

which is the same as the stabilizing solution to the ARE in problem (a).
4. (a) With the notation from the second hint we obtain the following optimal control problem for the minimization problem
$\min \sum_{k=0}^{N-1} f_{0}\left(x_{k}, u_{k}\right)$ subj. to $\left\{\begin{array}{l}x_{k+1}=x_{k} \backslash u_{k}, \quad u_{k} \in x_{k} \backslash\{1, N+1\} \\ x_{0}=\{1,2, \ldots, N+1\}\end{array}\right.$
where $f_{0}\left(x_{k}, u_{k}\right)=n_{l} n_{u_{k}} n_{r}$ and l is the largest element in x_{k} which is less than u_{k}, and r is the smallest element in x_{k}, which is larger than u_{k}, i.e.

$$
x_{k}=\left\{\ldots, l, u_{k}, r, \ldots\right\}
$$

if the set is ordered as a sequence of increasing numbers. The dynamic programming recursion becomes

$$
\begin{aligned}
J_{N-1}\left(x_{N-1}\right) & =0 \\
J_{k}\left(x_{k}\right) & =\min _{u_{k} \in x_{k} \backslash\{1, N+1\}}\left\{f_{0}\left(x_{k}, u_{k}\right)+J_{k+1}\left(x_{k} \backslash u_{k}\right)\right\}
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
J_{2}\left(x_{2}\right) & =0 \\
J_{1}\left(x_{1}\right) & =\min _{u_{1} \in x_{1} \backslash\{1,4\}}\left\{f_{0}\left(x_{1}, u_{1}\right)\right\}= \begin{cases}n_{1} n_{2} n_{4}, & x_{1}=\{1,2,4\} \\
n_{1} n_{3} n_{4}, & x_{1}=\{1,3,4\}\end{cases} \\
J_{0}\left(x_{0}\right) & =\min _{u_{0} \in x_{0} \backslash\{1,4\}}\left\{f_{0}\left(x_{0}, u_{0}\right)+J_{1}\left(x_{0} \backslash u_{0}\right)\right\} \\
& =\min \left(n_{1} n_{2} n_{3}+n_{1} n_{3} n_{4}, n_{2} n_{3} n_{4}+n_{1} n_{2} n_{4}\right) \\
& =\min (100+60,150+30)=160
\end{aligned}
$$

Hence $M_{1}\left(M_{2} M_{3}\right)$ gives the minimum number of multiplications 160.
5. Let $y(t)=\int_{0}^{t} x(t) d t$, then the problem is of the form of a standard optimal control problem

$$
\begin{aligned}
\min \quad x(1) & +\frac{1}{2} \int_{0}^{1} u(t)^{2} d t \\
\text { subject to } \dot{x}(t) & =x(t)+u(t), \quad x(0)=0, \\
\dot{y}(t) & =x(t), \quad y(0)=0, \quad y(1)=1 .
\end{aligned}
$$

The Hamiltonian corresponding to this problem is

$$
H((x, y), u, \lambda)=\frac{1}{2} u^{2}+\lambda_{1}(x+u)+\lambda_{2} x .
$$

The minimizing argument u of the Hamiltonian is given by

$$
\mu((x, y), \lambda)=\arg \min _{u} H((x, y), u, \lambda)=-\lambda_{1}
$$

The dynamics for the adjoint variables λ are given by

$$
\begin{aligned}
& \dot{\lambda}_{1}=-\frac{\partial H}{\partial x}=-\lambda_{1}-\lambda_{2} \\
& \dot{\lambda}_{2}=-\frac{\partial H}{\partial y}=0
\end{aligned}
$$

The first adjoint variable satisfies $\lambda_{1}(1)=\frac{\partial \Phi(x)}{\partial x}=1$ since the final cost is equal to $\Phi(x(1))=x(1)$. There is no condition on the second adjoint variable at the end (i.e., $\lambda_{2}(1)$ is free) since $y(1)$ is fixed. The two point boundary value problems is thus

$$
\begin{aligned}
\dot{x}(t) & =x(t)-\lambda_{1}(t), & & x(0)=0, \\
\dot{y}(t) & =x(t), & & y(0)=0, \quad y(1)=1, \\
\dot{\lambda}_{1}(t) & =-\lambda_{1}(t)-\lambda_{2}(t), & & \lambda_{1}(1)=1, \\
\dot{\lambda}_{2}(t) & =0 . & &
\end{aligned}
$$

Clearly, λ_{2} is constant, thus $\lambda_{1}(t)=\left(1+\lambda_{2}\right) e^{1-t}-\lambda_{2}$. This gives $u(t)=\lambda_{2}-\left(1+\lambda_{2}\right) e^{1-t}$, but where we need to determine λ_{2}.
Next, $x(t)$ is given by

$$
\begin{aligned}
x(t) & =\int_{0}^{t} e^{t-s}\left(-\lambda_{1}(s)\right) d s=\int_{0}^{t} e^{t-s}\left(\lambda_{2}-\left(1+\lambda_{2}\right) e^{1-s}\right) d s \\
& =\left.\left(-e^{t-s} \lambda_{2}+\frac{1+\lambda_{2}}{2} e^{t+1-2 s}\right)\right|_{0} ^{t} \\
& =\lambda_{2}\left(e^{t}-1\right)+\frac{1+\lambda_{2}}{2}\left(e^{1-t}-e^{1+t}\right)
\end{aligned}
$$

and thus the condition in $y(1)$ becomes

$$
\begin{aligned}
1 & =y(1)=\int_{0}^{1} x(t) d t=\int_{0}^{1}\left(\lambda_{2}\left(e^{t}-1\right)+\frac{1+\lambda_{2}}{2}\left(e^{1-t}-e^{1+t}\right)\right) d t \\
& =\left.\left(\lambda_{2}\left(e^{t}-t\right)-\frac{1+\lambda_{2}}{2}\left(e^{1-t}+e^{1+t}\right)\right)\right|_{0} ^{1} \\
& =\lambda_{2}(e-2)+\frac{1+\lambda_{2}}{2}\left(2 e-1-e^{2}\right) \\
& =\lambda_{2}\left(4 e-5-e^{2}\right) / 2+\left(2 e-1-e^{2}\right) / 2
\end{aligned}
$$

and gives

$$
\lambda_{2}=\frac{e^{2}+3-2 e}{4 e-5-e^{2}}
$$

Thus the optimal control is given by

$$
u(t)=-e^{1-t}+\frac{e^{2}+3-2 e}{4 e-5-e^{2}}\left(1-e^{1-t}\right)
$$

