
Exam October 28, 2021 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 790 84 40.

Allowed aids: The formula sheet and mathematics handbook (by R̊ade
and Westergren). (Note that calculator is not allowed.)

Solution methods: All conclusions should be properly motivated.

Note: Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Determine the optimal control for the following two problems.

(a) Let tf be a fixed time and solve:

min
u(·)

1

2

∫ tf

0
(t3 + u(t)2)dt subj. to

{
ẋ(t) = u(t), x(0) = x0

x(tf ) = 0

Hint: When tf is fixed the objective function can be simplified.
(4p)

(b) Let tf be a free variable and solve:

min
u(·),tf≥0

1

2

∫ tf

0
(t3 + u(t)2)dt subj. to

{
ẋ(t) = u(t), x(0) = x0

x(tf ) = 0, tf ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

2. The following subproblems do not require full solutions. It is enough
with an answer and a brief motivation. Remember that the value of a
minimization problem is ∞ if the constraint cannot be satisfied.

(a) Consider the optimal control problem

minx1(T ) + x3(T ) +

∫ T

0
f0(x, u)dt subject to


ẋ = f(x, u),

x(0) = x0,

x4(T ) = 10

The state vector has n-variables (x =
[
x1 x2 . . . xn

]T
). What

are the boundary conditions on the adjoint vector λ that can be
derived from PMP.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)
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(b) Determine the optimal value of the time optimal control problem

minT subj.to


ẋ1 = u, x1(0) = 1 x1(T ) = 0

ẋ2 = 2u, x2(0) = 1, x2(T ) = 0

|u| ≤ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) Determine the optimal value of the time optimal control problem

minT subj.to

{
ẋ = x+ u, x(0) = 2, x(T ) = 0

|u| ≤ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(d) Determine the optimal value of the time optimal control problem

minT subj.to

{
ẋ = −x+ u, x(0) = 2, x(T ) = 0

|u| ≤ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

3. An investor receives an annual income of amount xk (each year k).
From the xk received, the investor may reinvest one part xk − uk and
keep uk for spending. The reinvestment results in an increase of the
capital income as

xk+1 = xk + θ(xk − uk)

where θ > 0 is given.

The investor wants to maximize his total consumption over N years,
i.e., she wants to maximize the utility

∑N−1
k=0 uk. The resulting opti-

mization problem is

max
N−1∑
K=0

uk subj. to

{
xk+1 = xk + θ(xk − uk)

0 ≤ uk ≤ xk, x0 > 0 is given

(a) Formulate the dynamic programming recursion that solves this
optimization problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b) Solve the problem when N = 4, x0 = 10, θ = 0.4. . . . . . . . . . (5p)

4. Solve the following infinite horizon control problem

min

∫ ∞
0

(
3x(t)2 +

(∫ t

0
(x(s) + 2u(s))ds

)2

+ u(t)2

)
dt

subj. to ẋ(t) = u(t), x(0) = x0.

Give an expression for the optimal “feedback” (describe the optimal
u(t) in terms of x(t), x(s), and u(s) for s < t). . . . . . . . . . . . . . . . . (10p)
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5. Consider the following infinite horizon optimal control problem

J∗(xi) = min
xk,uk,k=0,1,...

∞∑
0

(
‖Cxk‖22 + uTkRuk

)
(1)

subject to

{
xk+1 = Axk +Buk

x0 = xi,

where xk ∈ Rn, uk ∈ Rm, R ∈ Rm×m, C ∈ Rn×n. Assume that
(A,B) is controllable, C is full rank, and R > 0.

(a) Check if all assumptions hold in Theorem 2 in the formula sheet.
(2p)

(b) Make the ansatz V (x) = xTPx and determine the minimizing
argument in the Bellman equation, i.e., the optimal feedback u
expressed as a function of P and x (and the system matrices).
(3p)

(c) Determine the matrix equation that P needs to satisfy in order
for the Bellman equation to hold for all x ∈ Rn, i.e., so that
J∗(x) = xTPx is the minimum cost for (1). . . . . . . . . . . . . . . . (5p)

Good luck!
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Solution

1. Solution 1

The Hamiltonian is

H(t, x, u, λ) =
1

2
(t3 + u2) + λu,

and minimizing with respect to u gives

u = −λ.

The dynamics for the adjoint system is

λ̇ = −∂H
∂x

= 0,

hence λ is constant and thus u is also constant.

(a) In order for the control to be feasible the control must be

u = −x0/tf .

(b) When tf is free, this must be determined. Note that

0 =H(tf , x
∗(tf ), u∗(tf ), λ(tf ))

=
1

2
(t3f + u∗(tf )2) + λ(tf )u∗(tf )

=
t3f
2
−
(
x0
tf

)2

/2

which implies that tf = (x20)
1/5.

2. Solution 2

(a) The solution is

λk(T ) =


0, for k = 2, 5, 6, . . . , n

1, for k = 1, 3

free for k = 4.

(b) No feasible solution.

(c) No feasible solution.

(d) Optimal control u ≡ −1, which results in T ∗ = log(3).

3. Solution 3
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(a) The dynamic programming recursion is

J(N, x) = 0,

J(n, x) = max
0≤u≤x

u+ J(n+ 1, x+ θ(x− u)), for n = N − 1, N − 2, . . . , 0.

(b) Applying the recursion for N = 4, θ = 0.4 we get

J(4, x) = 0

J(3, x) = max
0≤u≤x

u = x, optimal u = x

J(2, x) = max
0≤u≤x

u+ x+ θ(x− u) = 2x, optimal u = x

J(1, x) = max
0≤u≤x

u+ 2(x+ θ(x− u)) = 3x, optimal u = x

J(1, x) = max
0≤u≤x

u+ 3(x+ θ(x− u)) = 4.2x, optimal u = 0.

4. Solution 4

Let y1(t) = x(t), y2(t) =
∫ t
0 (x(s) + 2u(s))ds. Then the problem can

be written as

min

∫ ∞
0

(
3y1(t)

2 + y2(t)
2 + u(t)2

)
dt

subject to ẏ1(t) = u(t), y1(0) = x0.

ẏ2(t) = x(t) + 2u(t), y2(0) = 0.

This is a standard infinite horizon LQ problem with

A =

(
0 0
1 0

)
, B =

(
1
2

)
, Q =

(
3 0
0 1

)
, R = 1.

Let P ∈ R2×2 be the matrix satisfying the Riccati equation

ATP + PA+Q = PBR−1BTP.

By solving this, we get P =

(
3 −1
−1 1

)
, and thus the optimal cost is

y(0)TPy(0) = 3x20, and the optimal control is

u(t) = −R−1BTPy(t) =
(
−1 −1

)
y(t) = −x(t)−

∫ t

0
(x(s) + 2u(s))ds.

5. Solution 5

(a) Assumption 1 is trivial. Assumption 2 can be verified by noting
that

‖Cx‖22 + uTRu = f0(x, u) ≥ ε(‖x‖2 + ‖u‖2)
whenever 0 < ε < min(λmin(R), λmin(CTC)), where λmin(R) de-
notes the smallest eigenvalue of R. Both λmin(R), λmin(CTC) are
positive since R > 0 and C is full rank.
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(b) Let V (x) = xTPx in the Bellman equation, which gives

xTPx = min
u
xTCTCx+ uTRu+ (Ax+Bu)TP (Ax+Bu).

Note that the objective of the right hand side is a non-negative
quadratic from (whenever P > 0), thus the minimum is attained
when the gradient of the objective function is zero, i.e.,

0 = 2Ru+ 2BTP (Ax+Bu)⇔ u = −(R+BTPB)−1BTAx.

(c) By plugging in the expression for the optimal controller in the
objective we arrive at

xTPx = xT (CTC +ATPA−ATPB(R+BTPB)−1BTPA)x.

For this to hold for all x we need that

P = CTC +ATPA−ATPB(R+BTPB)−1BTPA,

which is the discrete time Algebraic Riccati equation.
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