Exam October 28, 2021 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 7908440.
Allowed aids: The formula sheet and mathematics handbook (by Råde and Westergren). (Note that calculator is not allowed.)

Solution methods: All conclusions should be properly motivated.
Note: Your personal number must be stated on the cover sheet. Number your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit $=$ exam credit + bonus from homeworks): 23-24 credits give grade Fx (contact examiner asap for further info), 25-27 credits give grade E, $28-32$ credits give grade D, $33-38$ credits give grade C, 39-44 credits give grade B, and 45 or more credits give grade A.

1. Determine the optimal control for the following two problems.
(a) Let t_{f} be a fixed time and solve:

$$
\min _{u(\cdot)} \frac{1}{2} \int_{0}^{t_{f}}\left(t^{3}+u(t)^{2}\right) d t \text { subj. to }\left\{\begin{array}{l}
\dot{x}(t)=u(t), x(0)=x_{0} \\
x\left(t_{f}\right)=0
\end{array}\right.
$$

Hint: When t_{f} is fixed the objective function can be simplified. (4p)
(b) Let t_{f} be a free variable and solve:

$$
\min _{u(\cdot), t_{f} \geq 0} \frac{1}{2} \int_{0}^{t_{f}}\left(t^{3}+u(t)^{2}\right) d t \text { subj. to }\left\{\begin{array}{l}
\dot{x}(t)=u(t), x(0)=x_{0} \tag{6p}\\
x\left(t_{f}\right)=0, t_{f} \geq 0
\end{array}\right.
$$

2. The following subproblems do not require full solutions. It is enough with an answer and a brief motivation. Remember that the value of a minimization problem is ∞ if the constraint cannot be satisfied.
(a) Consider the optimal control problem
$\min x_{1}(T)+x_{3}(T)+\int_{0}^{T} f_{0}(x, u) d t$ subject to $\left\{\begin{array}{l}\dot{x}=f(x, u), \\ x(0)=x_{0}, \\ x_{4}(T)=10\end{array}\right.$
The state vector has n-variables ($x=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]^{T}$). What are the boundary conditions on the adjoint vector λ that can be derived from PMP.
(b) Determine the optimal value of the time optimal control problem

$$
\min T \quad \text { subj.to } \begin{cases}\dot{x}_{1}=u, & x_{1}(0)=1 \tag{2p}\\ \dot{x}_{2}=2 u, & x_{1}(T)=0 \\ |u| \leq 1\end{cases}
$$

(c) Determine the optimal value of the time optimal control problem

$$
\min T \quad \text { subj.to }\left\{\begin{array}{l}
\dot{x}=x+u, \quad x(0)=2, \quad x(T)=0 \tag{2p}\\
|u| \leq 1
\end{array}\right.
$$

(d) Determine the optimal value of the time optimal control problem

$$
\min T \quad \text { subj.to } \quad\left\{\begin{array}{l}
\dot{x}=-x+u, \quad x(0)=2, \quad x(T)=0 \tag{2p}\\
|u| \leq 1
\end{array}\right.
$$

3. An investor receives an annual income of amount x_{k} (each year k). From the x_{k} received, the investor may reinvest one part $x_{k}-u_{k}$ and keep u_{k} for spending. The reinvestment results in an increase of the capital income as

$$
x_{k+1}=x_{k}+\theta\left(x_{k}-u_{k}\right)
$$

where $\theta>0$ is given.
The investor wants to maximize his total consumption over N years, i.e., she wants to maximize the utility $\sum_{k=0}^{N-1} u_{k}$. The resulting optimization problem is

$$
\max \sum_{K=0}^{N-1} u_{k} \quad \text { subj. to } \quad\left\{\begin{array}{l}
x_{k+1}=x_{k}+\theta\left(x_{k}-u_{k}\right) \\
0 \leq u_{k} \leq x_{k}, x_{0}>0 \text { is given }
\end{array}\right.
$$

(a) Formulate the dynamic programming recursion that solves this optimization problem.
(b) Solve the problem when $N=4, x_{0}=10, \theta=0.4$.
4. Solve the following infinite horizon control problem

$$
\begin{aligned}
\min \int_{0}^{\infty}\left(3 x(t)^{2}\right. & \left.+\left(\int_{0}^{t}(x(s)+2 u(s)) d s\right)^{2}+u(t)^{2}\right) d t \\
\text { subj. to } \quad \dot{x}(t) & =u(t), \quad x(0)=x_{0}
\end{aligned}
$$

Give an expression for the optimal "feedback" (describe the optimal $u(t)$ in terms of $x(t), x(s)$, and $u(s)$ for $s<t)$.
(10p)
5. Consider the following infinite horizon optimal control problem

$$
\begin{align*}
J^{*}\left(x_{i}\right)= & \min _{x_{k}, u_{k}, k=0,1, \ldots} \tag{1}
\end{align*} \sum_{0}^{\infty}\left(\left\|C x_{k}\right\|_{2}^{2}+u_{k}^{T} R u_{k}\right),
$$

where $x_{k} \in \mathbf{R}^{n}, u_{k} \in \mathbf{R}^{m}, R \in \mathbf{R}^{m \times m}, C \in \mathbf{R}^{n \times n}$. Assume that (A, B) is controllable, C is full rank, and $R>0$.
(a) Check if all assumptions hold in Theorem 2 in the formula sheet. (2p)
(b) Make the ansatz $V(x)=x^{T} P x$ and determine the minimizing argument in the Bellman equation, i.e., the optimal feedback u expressed as a function of P and x (and the system matrices). (3p)
(c) Determine the matrix equation that P needs to satisfy in order for the Bellman equation to hold for all $x \in \mathbf{R}^{n}$, i.e., so that $J^{*}(x)=x^{T} P x$ is the minimum cost for (1). (5p)

Good luck!

Solution

1. Solution 1

The Hamiltonian is

$$
H(t, x, u, \lambda)=\frac{1}{2}\left(t^{3}+u^{2}\right)+\lambda u
$$

and minimizing with respect to u gives

$$
u=-\lambda
$$

The dynamics for the adjoint system is

$$
\dot{\lambda}=-\frac{\partial H}{\partial x}=0
$$

hence λ is constant and thus u is also constant.
(a) In order for the control to be feasible the control must be

$$
u=-x_{0} / t_{f}
$$

(b) When t_{f} is free, this must be determined. Note that

$$
\begin{aligned}
0 & =H\left(t_{f}, x^{*}\left(t_{f}\right), u^{*}\left(t_{f}\right), \lambda\left(t_{f}\right)\right) \\
& =\frac{1}{2}\left(t_{f}^{3}+u^{*}\left(t_{f}\right)^{2}\right)+\lambda\left(t_{f}\right) u^{*}\left(t_{f}\right) \\
& =\frac{t_{f}^{3}}{2}-\left(\frac{x_{0}}{t_{f}}\right)^{2} / 2
\end{aligned}
$$

which implies that $t_{f}=\left(x_{0}^{2}\right)^{1 / 5}$.
2. Solution 2
(a) The solution is

$$
\lambda_{k}(T)= \begin{cases}0, & \text { for } k=2,5,6, \ldots, n \\ 1, & \text { for } k=1,3 \\ \text { free } & \text { for } k=4\end{cases}
$$

(b) No feasible solution.
(c) No feasible solution.
(d) Optimal control $u \equiv-1$, which results in $T^{*}=\log (3)$.
3. Solution 3
(a) The dynamic programming recursion is

$$
\begin{aligned}
J(N, x) & =0, \\
J(n, x) & =\max _{0 \leq u \leq x} u+J(n+1, x+\theta(x-u)), \quad \text { for } n=N-1, N-2, \ldots, 0 .
\end{aligned}
$$

(b) Applying the recursion for $N=4, \theta=0.4$ we get

$$
\begin{aligned}
& J(4, x)=0 \\
& J(3, x)=\max _{0 \leq u \leq x} u=x, \text { optimal } u=x \\
& J(2, x)=\max _{0 \leq u \leq x} u+x+\theta(x-u)=2 x, \text { optimal } u=x \\
& J(1, x)=\max _{0 \leq u \leq x} u+2(x+\theta(x-u))=3 x, \text { optimal } u=x \\
& J(1, x)=\max _{0 \leq u \leq x} u+3(x+\theta(x-u))=4.2 x, \text { optimal } u=0 .
\end{aligned}
$$

4. Solution 4

Let $y_{1}(t)=x(t), y_{2}(t)=\int_{0}^{t}(x(s)+2 u(s)) d s$. Then the problem can be written as

$$
\begin{array}{cll}
\min & \int_{0}^{\infty}\left(3 y_{1}(t)^{2}+y_{2}(t)^{2}+u(t)^{2}\right) d t \\
\text { subject to } & \dot{y}_{1}(t)=u(t), & y_{1}(0)=x_{0} \\
& \dot{y}_{2}(t)=x(t)+2 u(t), & y_{2}(0)=0
\end{array}
$$

This is a standard infinite horizon LQ problem with

$$
A=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), B=\binom{1}{2}, Q=\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right), R=1
$$

Let $P \in \mathbf{R}^{2 \times 2}$ be the matrix satisfying the Riccati equation

$$
A^{T} P+P A+Q=P B R^{-1} B^{T} P
$$

By solving this, we get $P=\left(\begin{array}{cc}3 & -1 \\ -1 & 1\end{array}\right)$, and thus the optimal cost is $y(0)^{T} P y(0)=3 x_{0}^{2}$, and the optimal control is
$u(t)=-R^{-1} B^{T} P y(t)=\left(\begin{array}{ll}-1 & -1\end{array}\right) y(t)=-x(t)-\int_{0}^{t}(x(s)+2 u(s)) d s$.
5. Solution 5
(a) Assumption 1 is trivial. Assumption 2 can be verified by noting that

$$
\|C x\|_{2}^{2}+u^{T} R u=f_{0}(x, u) \geq \epsilon\left(\|x\|_{2}+\|u\|_{2}\right)
$$

whenever $0<\epsilon<\min \left(\lambda_{\min }(R), \lambda_{\min }\left(C^{T} C\right)\right)$, where $\lambda_{\min }(R)$ denotes the smallest eigenvalue of R. Both $\lambda_{\min }(R), \lambda_{\min }\left(C^{T} C\right)$ are positive since $R>0$ and C is full rank.
(b) Let $V(x)=x^{T} P x$ in the Bellman equation, which gives

$$
x^{T} P x=\min _{u} x^{T} C^{T} C x+u^{T} R u+(A x+B u)^{T} P(A x+B u) .
$$

Note that the objective of the right hand side is a non-negative quadratic from (whenever $P>0$), thus the minimum is attained when the gradient of the objective function is zero, i.e.,

$$
0=2 R u+2 B^{T} P(A x+B u) \Leftrightarrow u=-\left(R+B^{T} P B\right)^{-1} B^{T} A x .
$$

(c) By plugging in the expression for the optimal controller in the objective we arrive at

$$
x^{T} P x=x^{T}\left(C^{T} C+A^{T} P A-A^{T} P B\left(R+B^{T} P B\right)^{-1} B^{T} P A\right) x .
$$

For this to hold for all x we need that

$$
P=C^{T} C+A^{T} P A-A^{T} P B\left(R+B^{T} P B\right)^{-1} B^{T} P A,
$$

which is the discrete time Algebraic Riccati equation.

