
Exam December 16, 2020 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 790 84 40.

Allowed aids: The formula sheet and mathematics handbook (by R̊ade
and Westergren). (Note that calculator is not allowed.)

Solution methods: All conclusions should be properly motivated.

Note: Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Consider the sequential decision problem

max
N−1∑
k=0

βku1−νk subj. to

{
xk+1 = α(xk − uk), 0 ≤ uk ≤ xk
x0 = W

The problem is to maximize the utility of spending uk amount of cap-
ital each time instance given an initial fund x0 = W . We assume that
β, α > 0, and 1 > ν > 0 are given.

(a) Do two iterations of the dynamic programming algorithm and
determine the optimal control at stage N − 1 and N − 2. . (6p)

(b) Determine the optimal value function at stage N − 1 and N − 2.
Hint: The derivation of the value function at stage N − 2 is
simplified if you put γ = (βα1−ν)1/ν . . . . . . . . . . . . . . . . . . . . . . . (4p)

2. Find the optimal solution (if such exists) and the optimal value of the
following optimal control problem

min

∫ 2

0
(u2(t) + (1− t)u(t))dt subj. to


ẋ(t) = u(t),

x(0) = 0, x(2) = 1/2,

u(t) ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

3. Consider the following nonlinear optimal control problem

minx(1)2 +

∫ 1

0
(x(t)u(t))2dt subj. to

{
ẋ = x(t)u(t)

x(0) = 1,

Solve the problem using dynamic programming.

Hint: Use the ansatz V (t, x) = p(t)x2. . . . . . . . . . . . . . . . . . . . . . . . . . (10p)
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4. Consider the following optimal control problem

maxx2(T ) subj. to


ẋ1 = −x2 + u, x1(0) = 0

ẋ2 = x1, x2(0) = 0∫ T
0 u2(t)dt = 1,

where T > 0 is given.

(a) Reformulate the optimal control problem as a problem on state
space form (with constraints as considered in the course). . (1p)

(b) Solve the optimal control problem. . . . . . . . . . . . . . . . . . . . . . . . . (7p)

(c) What happens with x2(T ) when T →∞. . . . . . . . . . . . . . . . . . (2p)

5. Consider the following infinite horizon optimal control problem

min

∫ ∞
0

(
x1(t)

2 + x2(t)
2 + u(t)2

)
dt s.t.


ẋ1(t) = x2(t) + u(t),

ẋ2(t) = 2x2(t)− x1(t) + u(t),

x1(0) = x10,

x2(0) = x20.

(1)

(a) Find the optimal feedback solution (when such exists) and the
optimal value of the optimal control problem (1). . . . . . . . . . (8p)

(b) Is the solution in (a) unique? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

(c) Is the closed loop system stable? . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Good luck!
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Solutions

1. Dynamic programming gives

Vk(x) = sup
0≤u≤x

{βku1−ν + Vn+1(α(x− u))}

VN (x) = 0

We obtain

VN−1(x) = βN−1x1−ν and uN−1(x)∗ = x,

i.e., we should spend all our capital in the last step. For the next prior
step we have

VN−2(x) = sup
0≤u≤x

{
βN−2u1−ν + βN−1α1−ν(x− u)1−ν

}
Setting the derivative of the above expression to zero and solving for
u gives

(1− ν)u−ν = βα1−ν(1− ν)(x− u)−ν .

From this we get

u∗N−2 = (1 + (βα1−ν)1/ν)−1x

which is in the interval (0, x). We have

VN−2(x) = βN−2(1 + (βα(1−ν))1/ν)νx1−ν .

Note that if ν = 1 then the control is irrelevant.

2. The Hamiltonian is

H(x, u, λ) = u2 + (1− t)u+ λu,

and note that λ is constant since

λ̇ = −∂H
∂x

= 0.

Minimizing the Hamiltonian with respect to u ≥ 0 gives

u(t) = max(0, (t− 1− λ)/2).

We now need to find λ such that this control is feasible, i.e.,

1/2 = x(2) = x(0) +

∫ 2

0
u(t)dt =

∫ 2

0
max(0, (t− 1− λ)/2)dt

=

∫ 2

1+λ
(t− 1− (λ)/2)dt = (λ− 1)2/4.
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This is satisfied if λ = 1 ±
√

2, and the only reasonable value is λ =
1−
√

2. This gives

u(t) = max(0, (t− 2 +
√

2)/2).

Plugging this in gives the objective value (2
√

(2)− 3)/6.

3. The HJBE is

−∂V
∂x

= min
u

{
(xu)2 +

∂V

∂x
xu

}
= min

u

{
x2(u+

1

2x

∂V

∂x
)2 − 1

4

(
∂V

∂x

)2
}

V (1, x) = x2

whith the minimizing control u∗ = − 1

2x

∂V

∂x
. With the ansatz V (t, x) =

p(t)x2 the HJBE reduces to

−ṗ(t)x2 = −p(t)2x2

p(1)x2 = x2

which should hold identically for all (t, x) ∈ [0, 1] × R. We get the
following ODE for p:

ṗ(t) = p(t)2, p(1) = 1,

which has the solution p(t) = 1/(2− t). The resulting optimal control
is

u∗(t) = − 1

2− t
, 0 ≤ t ≤ 1.

Note that the solution to the state equation is

ẋ(t) = − 1

2− t
x(t), x(0) = 1

is x(t) = 1− 0.5t which is nozero on 0 ≤ t ≤ 1.

4. (a) If we let x3(t) =
∫ t
0 u

2(s)ds then the optimal control problem can
be reformulated as

min − x2(T ) subj. to


ẋ1 = −x2 + u, x1(0) = 0

ẋ2 = x1, x2(0) = 0

ẋ3 = u2, x3(0) = 0, x3(T ) = 1
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(b) Let us proceed as usual and introduce the HamiltonianH(x, u, λ) =
λ1(−x2 + u) + λ2x1 + λ3u

2. Pointwise minimization gives

arg min
u
H(x, u, λ) = arg min

u
λ1u+ λ3u

2 =

−
λ1
2λ3

, λ3 > 0

∞, λ3 ≤ 0

The adjoint system is
λ̇1 = −λ2, λ1(T ) = 0

λ̇2 = λ1, λ2(T ) = −1

λ̇3 = 0, λ3(T ) = ?

From the last equation we see that λ3 must be a constant. It is also
clear that λ3 = k > 0 since otherwise u∗ =∞, which is unreasonable.

Note that the transition matrix for both the primal system and the
adjoint system is

Φ(t) =

(
cos(t) − sin(t)
sin(t) cos(t)

)
.

Solving the adjoint equation gives λ1(t) = sin(T − t) and thus

u∗(t) = − 1

2k
sin(T − t)

where

k =
1

2

√∫ T

0
sin(T − t)2dt

which follows since x3(T ) =
∫ T
0 u2(t)dt = 1.

(c) k →∞ as T →∞, which implies u∗ → 0 as T →∞. For the state we
have

x2(T ) = − 1

2k

∫ T

0
sin2(T − t)dt = −

√∫ T

0
sin2(T − t)dt→ −∞

as T →∞.

5. a) The problem is a LQ problem on standard form with

A =

(
0 1
−1 2

)
, B =

(
1
1

)
, Q = I,R = 1.

However, note that it is not controllable since

[B,AB] =

(
1 1
1 1

)
,
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thus z = (1,−1)x is uncontrollabe and further note that

ż = (1,−1)ẋ = z,

hence z is unstable. Consider the equivalent formulation in x1
and z = x1 − x2, i.e., with x2 replaced by x1 − z:

min

∫ ∞
0

(
x1(t)

2 + (x1(t)− z(t))2 + u(t)2
)
dt s.t.


ẋ1(t) = x1(t)− z(t) + u(t)

ż(t) = z(t)

x1(0) = x10,

z(0) = x10 − x20.

Note that it is impossible to achieve a finite cost unless z(0) =
x10− x20 = 0, which gives z(t) ≡ 0 and x1(t) = x2(t) for all t. In
this case the problem becomes

min

∫ ∞
0

(
2x1(t)

2 + u(t)2
)
dt s.t.

{
ẋ1(t) = x1(t) + u(t)

x1(0) = x10.

This is a standard LQ problem with infinite time horizon, with
a = 1, b = 1, r = 1, q = 2, thus the Ricatti equation is

0 = 2pa+ q − b2p2r−1 = 2p+ 1− p2 = −(p− 1)2 + 2,

thus the solution is the positive root p = 1 +
√

2. The optimal
feedback is thus

u = −r−1bpx1 = −(1 +
√

2)x1

and the optimal cost is

V (x) =

{
x210(1 +

√
2) x10 = x20

∞ otherwise.
.

b) The optimum is unique if it exists, i.e., if x10 = x20.

c) The closed loop is unstable since there is one unstable uncontrol-
lable mode (z = x1 − x2).
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