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1 Dynamic Programming

1.1 Discrete Dynamic Programming

General multistage decision problem

minφ(xN) + ΣN−1
k=0 f0(k, xk, uk) subj. to


xk+1 = f(k, xk, uk)
x0 given
uk ∈ U(k, xk)

(1)

Introduce the optimal cost-to-go function

J∗(n, x) = minφ(xN) + ΣN−1
k=n f0(k, xk, uk) subj. to


xk+1 = f(k, xk, uk)
xn = x
uk ∈ U(k, xk)

for n = 0, . . . , N − 1 and J∗(N, x) = φ(x). In particular, the optimal solution
of (1) is J∗(0, x0).

Theorem 1. Consider the backwards dynamic programming recursion

J(N, x) = φ(x),

J(n, x) = min
u∈U(n,x)

{f0(n, x, u) + J(n+ 1, f(n, x, u))}, n = N − 1, N − 2, . . . , 0

Then

(a) J∗(n, x) = J(n, x) for all n = 0, . . . , N , x ∈ Xn.

(b) The optimal feedback control in each stage is obtained as

u∗n = µ(n, x) = argminu∈U(n,x){f0(n, x, u) + J(n+ 1, f(n, x, u))}.
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1.2 Infinite Time Horizon Optimization

Multistage decision problems over an infinite time horizon

J∗(xi) = min Σ∞k=0f0(xk, uk) subj. to


xk+1 = f(xk, uk)
x0 = xi
uk ∈ U(xk).

(2)

Assumption 1. We assume (w.l.o.g) that 0 ∈ X, {0} ∈ U(0), f(0, 0) = 0 and
f0(0, 0) = 0.

Assumption 2. We assume that f0 is strictly positive definite, i.e., there exists
ε > 0 such that f0(x, u) ≥ ε(‖xk‖2 + ‖uk‖2).

Theorem 2. Suppose Assumption 1 and Assumption 2 hold. If there exists a
strictly positive definite and quadratically bounded function V : X → R+ that
satisfies the Bellman equation

V (x) = min
u∈U(x)

{f0(x, u) + V (f(x, u))} (3)

then

(a) V (x) = J∗(x)

(b) u∗ = µ(x) = argminu∈U(x) {f0(x, u) + V (f(x, u))} is an optimal feedback
control that results in a globally convergent closed loop system, i.e. for any
x0 ∈ X the optimal solution satisfies (xk, µ(xk))→ 0 as k →∞.

1.3 Continuous Time Dynamic Programming

Consider the optimal control problem

minφ(x(tf )) +

∫ tf

ti

f0(t, x(t), u(t))dt subj. to

{
ẋ(t) = f(t, x(t), u(t))

x(ti) = xi, u(t) ∈ U
(4)

where ti and tf are fixed initial and terminal times and xi is a fixed initial point.
The end point x(tf ) is free and can take any value in Rn. The control is a piecewise
continuous function, which satisfies the constraint u(t) ∈ U , for t ∈ [ti, tf ].

We define the optimal cost-to-go function as (this is also called the value
function)

J∗(t0, x0) = min
u(·)

J(t0, x0, u(·))

where the minimization is performed with respect to all admissible controls. This
means in particular that the optimization problem (4) can be written

J∗(ti, xi) = min
u(·)

J(ti, xi, u(·)).
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Proposition 1. The optimal-cost-to-go satisfies the Dynamic Programming Equa-
tion

J∗(t0, x0) = min
u(·)

{∫ t

t0

f0(s, x(s), u(s))ds+ J∗(t, x(t))

}
.

Theorem 3. Suppose

(i) V : [ti, tf ]×Rn → R is C1 (in both arguments) and solves HJBE

−∂V
∂t

(t, x) = min
u∈U

{
f0(t, x, u) +

∂V

∂x
(t, x)Tf(t, x, u)

}
V (tf , x) = φ(x)

(5)

(ii) µ(t, x) = arg min
u∈U

{
f0(t, x, u) +

∂V

∂x
(t, x)Tf(t, x, u)

}
is admissible.

Then

(a) V (t, x) = J∗(t, x) for all (t, x) ∈ [ti, tf ]×Rn.

(b) µ(t, x) is the optimal feedback control law, i.e. u∗(t) = µ(t, x(t)).

For a given optimal control problem on the form (4) we take the following
steps1

1. Define the Hamiltonian

H(t, x, u, λ) = f0(t, x, u) + λTf(t, x, u).

Here λ ∈ Rn is a parameter vector.

2. Optimize pointwise over u to obtain

µ̃(t, x, λ) = arg min
u∈U

H(t, x, u, λ) = arg min
u∈U

{
f0(t, x, u) + λTf(t, x, u)

}
.

3. Solve the partial differential equation

−∂V
∂t

(t, x) = H

(
t, x, µ̃(t, x,

∂V

∂x
(t, x)),

∂V

∂x
(t, x)

)
subject to the initial condition V (tf , x) = φ(x).

Then µ(t, x) = µ̃(t, x,
∂V

∂x
(t, x)) is the optimal feedback control law, i.e. u∗(t) =

µ(t, x(t)).

1The same optimization as in step 2 is a part of the conditions in PMP.
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2 PMP

Autonomous Systems

We consider the optimization problem

minφ(x(tf )) +

∫ tf

0

f0(x(t), u(t))dt subj. to


ẋ(t) = f(x(t), u(t))

x(0) ∈ Si, x(tf ) ∈ Sf
u(t) ∈ U, tf ≥ 0

(6)

where Sf = {x : G(x) = 0} and

G(x) =

g1(x)
...

gp(x)

 .
We have the following optimality conditions for problem (6): (Note: We IG-

NORE the pathological case and USE λ0 = 1.)
PMP: Autonomuous Systems: Define the Hamiltonian

H(x, u, λ) = f0(x, u) + λTf(x, u)

Assume that (x∗(t), u∗(t), t∗f ) is an optimal solution to (6). Then there exists an
adjoint function λ(·) that satisfies the following conditions

(i) λ̇(t) = −Hx(x
∗(t), u∗(t), λ(t))

(ii) H(x∗(t), u∗(t), λ(t)) = minv∈U H(x∗(t), v, λ(t)) = 0 for all t ∈ [0, t∗f ] (∗)

(iii) λ(0) ⊥ Si

(iv) λ(t∗f )−∇φ(x∗(t∗f )) ⊥ Sf

Remark 1. Condition (iv) is equivalent to

(λ(t∗f )− λ0∇φ(x∗(t∗f )))
Tv = 0 for all v s.t.


∂g1(x∗(t∗f ))

∂x1
. . .

∂g1(x∗(t∗f ))

∂xn
...

...
∂gp(x∗(t∗f ))

∂x1
. . .

∂gp(x∗(t∗f ))

∂xn

 v = 0

which also can be written λ(t∗f )−λ0∇φ(x∗(t∗f )) ⊥ Sf . Another equivalent formu-
lation of this transversality condition is

λ(t∗f ) = λ0∇φ(x∗(t∗f )) +Gx(x(t∗f ))
Tν

= λ0∇φ(x∗(t∗f )) +

p∑
k=1

νk∇gk(x∗(t∗f ))

for some vector ν ∈ Rp.
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Special Case 1: It is reasonable to assume that the terminal cost and the termi-
nal manifold involve two disjoint set of states. For example, φ(x) = φ(xp+1, . . . , xn)
and gk(x) = gx(x1, . . . , xp), k = 1, . . . , p. Then the transversality condition re-
duces to λp+1(t

∗
f )

...
λn(t∗f )

 =


∂φ(x(t∗f ))

∂xp+1

...
∂φ(x(t∗f ))

∂xn

 (7)

and the remaining variables (λ1(t
∗
f ), . . . , λp(t

∗
f )) remain undetermined.

Special Case 2: If Si = {xi} (a given point) then there is no constraint on λ(0).
Special Case 3: If Sf = Rn then λ(tf ) = ∇φ(x∗(t∗f )).
Special Case 4: If Sf = Rn and φ = 0 then λ(t∗f ) = 0.
Special Case 5: If Sf = {xf} (a given point) and φ = 0 then there is no con-
straint on λ(tf ).
Special Case 6: If the final time is fixed then (∗) is replaced byH(x∗(t), u∗(t), λ(t)) =
min
v∈U

H(x∗(t), v, λ(t)) = const for all t ∈ [0, tf ].

Nonautonomous systems

We consider the optimization problem

minφ(tf , x(tf )) +

∫ tf

ti

f0(t, x(t), u(t))dt subj. to


ẋ(t) = f(t, x(t), u(t))

x(ti) = xi, x(tf ) ∈ Sf (tf )
u(t) ∈ U, tf ≥ ti

(8)

where the terminal manifold may depend on time:

Sf (t) = {x ∈ Rn : G(t, x) = 0} where G(t, x) =

g1(t, x)
...

gp(t, x)


and as usual we assume that the functional matrix

∂g1(x)
∂x1

. . . ∂g1(x)
∂xn

∂g1(x)
∂t

...
...

∂gp(x)

∂x1
. . . ∂gp(x)

∂xn

∂gp(x)

∂t


has full rank.

We get the following optimality conditions for problem (8):(Note: We IG-
NORE the pathological case and USE λ0 = 1.)
PMP: Nonautonomuous Systems: Define the Hamiltonian function

H(t, x, u, λ) = f0(t, x, u) + λTf(t, x, u)
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Assume that (x∗(t), u∗(t), t∗f ) is an optimal solution to (8). Then there exists an
adjoint function λ(·) that satisfies the following conditions

(i) λ̇(t) = −Hx(t, x
∗(t), u∗(t), λ(t))

(ii) H∗(t) := H(t, x∗(t), u∗(t), λ(t)) = minv∈U H(t, x∗(t), v, λ(t)) satisfies

H∗(t) = H∗(t∗f )−
∫ t∗f

t

∂H

∂s
(s, x∗(s), u∗(s), λ(s))ds, t ∈ [ti, t

∗
f ]

H∗(t∗f ) = −
p∑

k=1

νk
∂gk
∂t

(t∗f , x
∗(t∗f ))−

∂φ

∂t
(t∗f , x

∗(t∗f ))

(9)

(iii) (λ(t∗f )−φx(t∗f , x∗(t∗f )) ⊥ Sf (t
∗
f ), which means that there must exist a vector

ν =
[
ν1 . . . νp

]T
such that

λ(t∗f ) =

p∑
k=1

νk
∂gk
∂x

(t∗f , x
∗(t∗f )) +

∂φ

∂x
(t∗f , x

∗(t∗f ))

Special Case: If the terminal time is fixed then we can remove the time depen-
dence of φ and Sf , i.e., the gk are now only functions of the state. Conditions
(ii) and (iii) are then replaced by

(ii) H∗(t) = minv∈U H(t, x∗(t), v, λ(t)) satisfies

H∗(t) = H∗(tf )−
∫ tf

t

∂H

∂t
(s, x∗(s), u∗(s), λ(s)ds, t ∈ [ti, tf ]

(ii) λ(tf )−∇φ(x∗(tf )) ⊥ Sf or equivalently

λ(tf ) =

p∑
k=1

νk
∂gk
∂x

(x∗(tf )) +
∂φ

∂x
(x∗(tf ))

for some suitable vector ν =
[
ν1 . . . νp

]T
.

3 How to USE PMP

A professional way to address optimal control problems is to start investigating
the vector field and the cost function to determine if

• it is possible to conclude that there must exist an optimal solution,

• the optimal solution is unique (generally hard).

6



The next step (in our case it would be the first) is to use PMP. We take the
following steps (we consider problem (8) and assume λ0 = 1)

1. Define the Hamiltonian: H(t, x, u, λ) = f0(t, x, u) + λTf(t, x, u)

2. Perform pointwise minimization: µ̃(t, x, λ) = argminu∈UH(t, x, u, λ), which
means that a candidate optimal control is u∗(t) = µ(t, x(t), λ(t)).

3. Solve the Two Point Boundary Value Problem (TPBVP)

λ̇(t) = −Hx(t, x(t), µ̃(t, x(t), λ(t)), λ(t)), λ(tf )−
∂φ

∂x
(tf , x(tf )) ⊥ Sf (tf )

ẋ(t) = Hλ(t, x(t), µ̃(t, x(t), λ(t)), x(ti) = xi, x(tf ) ∈ Sf (tf )

One of the difficulties when solving a TPBVP is to find appropriate bound-
ary conditions for x and λ. In order to obtain conditions that help us find
candidates for the optimal transition time we also use (9) or (*). Some-
times we can determine the unknown parameters by plugging a parameter-
ized control into the cost function and then optimize with respect to the
parameters. This is a finite dimensional optimization problem.

4. Compare the candidate solutions obtained using PMP.

4 Infinite Time Horizon Optimal Control

Consider the optimal control problem

min

∫ ∞
0

f0(x, u)dt subject to

{
ẋ = f(x, u)

x(0) = x0, u(t) ∈ U(x)
(10)

We assume without loss of generality that we want to control the system to an
equilibrium point at (x, u) = (0, 0). This means that we assume f(0, 0) = 0. In
order to obtain a finite cost we further need to assume f0(0, 0) = 0.

Definition 1. A function V : Rn → R is called positive semi-definite if V (0) = 0
and V (x) ≥ 0 for all x ∈ Rn. If it satisfies the stronger condition V (x) > 0
for all x 6= 0 then it is called positive definite. It is called radially unbounded if
V (x)→∞ when ‖x‖ → ∞.

Example 1. A quadratic form V (x) = xTPx, where P = P T , is positive definite
(semi-definite) if P > 0 (P ≥ 0), i.e., if all eigenvalues of P are positive (non-
negative). It is radially unbounded if P > 0.

Assumption 3. We assume that f0 is positive semi-definite and positive definite
in u, i.e., f0(x, u) ≥ 0, ∀(x, u) ∈ Rn×m and f0(x, u) > 0 when u 6= 0.
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Assumption 4. We will assume that the artificial output h(x) = f0(x, 0) of the
system ẋ = f(x, 0) is observable in the sense that h(x(t)) = 0 for all t ≥ 0 implies
that x(t) = 0 for all t ≥ 0.

Let us now define the optimal cost-to-go function (value function) correspond-
ing to (10)

J∗(x0) = min
u(·)

∫ ∞
0

f0(x, u)dt.

The value function is independent of time since the dynamics and cost function
of (10) both are independent of time.

Theorem 4. Suppose Assumption 3 and Assumption 4 hold and

(i) V ∈ C1 is positive definite, radially unbounded, and satisfies the (infinite
horizon) HJBE

min
u∈U

{
f0(x, u) +

∂V

∂x
(x)Tf(x, u)

}
= 0 (11)

(ii) µ(x) = argminu∈U
{
f0(x, u) + ∂V

∂x
(x)Tf(x, u)

}
.

Then

(a) V (x) = J∗(x)

(b) u = µ(x) is an optimal globally asymptotically stabilizing feedback control.

We next consider the special case of linear quadratic optimal control

Theorem 5. Consider

J∗(x0) = min

∫ ∞
0

[xTQx+ uTRu]dt

subject to

{
ẋ = Ax+Bu

x(0) = x0

where Q = CTC and R > 0. We assume that (C,A) is observable and that (A,B)
is controllable. Then

(a) J∗(x0) = xT0 Px0, where P is symmetric and positive definite (P = P T > 0)
is the unique positive definite solution to the Algebraic Riccati Equation
(ARE)

ATP + PA+Q = PBR−1BTP. (12)

(b) µ(x) = −R−1BTPx is the optimal, stabilizing, feedback control.
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Remark 2. Conclusion (b) in particular means that the closed loop system matrix
A−BR−1BTP has all eigenvalues in the open left half plane.

The linear quadratic regulator in Theorem 5 satisfies certain robustness prop-
erties. The following inequality derived from the ARE is of key importance

Proposition 2. Let L = R−1BTP , where P is a solution to the ARE in (12).
Then the transfer function

G(s) = L(sI − A)−1B

satisfies the inequality

(I +G(jω))∗R(I +G(jω)) ≥ R (13)

5 Second order variations

Consider

minφ(x(tf )) +

∫ tf

0

f0(t, x(t), u(t))dt subj to

{
ẋ = f(t, x(t), u(t))

x(0) = x0,
(14)

where φ, f0, and f are twice continuously differentiable with respect to x and u.

Proposition 3. Suppose (x∗(·), u∗(·)), and λ(·) are such that

(i) ẋ∗(t) = f(t, x∗(t), u(t)), x∗(0) = x0,

(iia) λ̇(t) = −Hx(t, x
∗(t), u∗(t), λ(t)), λ(tf ) = φx(x

∗(tf ))

(iib) Hu(t, x
∗(t), u∗(t), λ(t)) = 0

(iiia) φxx(x
∗(tf )) ≥ 0

(iiib) H∗uu(t) > 0 and

[
H∗xx(t) H∗xu(t)
H∗ux(t) H∗uu(t)

]
≥ 0, where H∗uu(t) = Huu(t, x

∗(t), u∗(t), λ(t))

and similarly for H∗xx, H
∗
xu and H∗ux.

Then (x∗(·), u∗(·)) is a local minimum of (14).

9


