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1 Dynamic Programming

1.1 Discrete Dynamic Programming

General multistage decision problem

Thp1 = f(k, Ti, up)
min ¢(zy) + Sn g fo(k, vk, ug)  subj. to xo given (1)
u, € U(k, xy)

Introduce the optimal cost-to-go function

Tpr1 = [ (K, zx, ug)
J*(n, ) = min ¢(zyn) + S0t fo(k, vk, ug) subj. to { z, =z
U € U(k,ﬂ?k)

forn =0,...,N —1 and J*(N,z) = ¢(x). In particular, the optimal solution
of (1) is J*(0, o).

Theorem 1. Consider the backwards dynamic programming recursion

J(N,z) = ¢(z),
J(TL7.1'): I[l’]l(ln ){fo(n,x,u)+J(n+1,f(n,x,u))}, n:N_laN_27>0
uel(n,x
Then
(a) J*(n,z) = J(n,z) for alln=0,...,N, z € X,,.

(b) The optimal feedback control in each stage is obtained as

uy, = p(n, r) = argmin, ey, o {fo(n, 2, u) + J(n+1, f(n,z,u))}.



1.2 Infinite Time Horizon Optimization

Multistage decision problems over an infinite time horizon

T = f(r, ur)

J*(x;) = min 322 fo(xg, ur)  subj. to To = T4 (2)
Assumption 1. We assume (w.l.o.g) that 0 € X, {0} € U(0), f(0,0) = 0 and
f0(0,0) = 0.

Assumption 2. We assume that f; is strictly positive definite, i.e., there exists
€ > 0 such that fo(z,u) > e(||lzel]® + ||uzl/?)-

Theorem 2. Suppose Assumption 1 and Assumption 2 hold. If there exists a
strictly positive definite and quadratically bounded function V : X — RY that
satisfies the Bellman equation

V()= min {folew) +V(f(zw) 6

then
(a) V() = J*(x)

(b) u* = p(xr) = argmin, ey, {fol(r,w) + V(f(z,u))} is an optimal feedback
control that results in a globally convergent closed loop system, i.e. for any
zo € X the optimal solution satisfies (xy, p(rg)) — 0 as k — oo.

1.3 Continuous Time Dynamic Programming

Consider the optimal control problem

:L’(t) = f(tv l’(t), u(t>>
x(t;) =z, u(t) €U

t
min ¢(x(ts)) + / ' fo(t,z(t),u(t))dt subj. to { (4)
t;

where ¢; and ¢; are fixed initial and terminal times and z; is a fixed initial point.
The end point z(t) is free and can take any value in R". The control is a piecewise
continuous function, which satisfies the constraint u(t) € U, for t € [t;, t/].

We define the optimal cost-to-go function as (this is also called the wvalue
function)

J*(to, xo) = m(l? J(to, xo, u(+))
where the minimization is performed with respect to all admissible controls. This
means in particular that the optimization problem (4) can be written

J (ti, z;) = m(l? J(ti, i, u(-)).



Proposition 1. The optimal-cost-to-go satisfies the Dynamic Programming Equa-
tion

T*(to,20) = min { /t: Fols, 2(s), u(s))ds + J*(¢, x(t))} |

Theorem 3. Suppose
(i) V :[ti,ts]] X R" — R is C' (in both arguments) and solves HIBE

ov

—E(t, T) = {Lne%l {fo(t,x, u) + aa—‘;(t, ) f(t, x,u)}

Vity, x) = ()

()

(17) p(t,x) = arg miUn {fo(t, z,u) + g—v(t,x)Tf(t,x,u)} is admissible.
ue xr
Then
(a) V(t,x) = J*(t,z) for all (t,z) € [t;,ts] X R".
(b) wu(t,z) is the optimal feedback control law, i.e. u*(t) = p(t, z(t)).

For a given optimal control problem on the form (4) we take the following
steps!

1. Define the Hamiltonian
H(t,z,u,\) = fot,z,u) + AT f(t, 2, u).
Here A € R" is a parameter vector.
2. Optimize pointwise over u to obtain

~ . . . . T
p(t,x, \) = arg min H(t,x,u,\) = arg min {fo(t, x,u) + A f(t, x, u)} )

3. Solve the partial differential equation

ov

—E(t,x) =H (t,x,ﬁ(t,x, ov t,x)), v t,:c))

Ox ( Oz (
subject to the initial condition V (t;,x) = ¢(z).
~ ov : : .
Then p(t,z) = u(t,x, =—(t,x)) is the optimal feedback control law, i.e. u*(t) =

ox
pu(t, z(t)).

IThe same optimization as in step 2 is a part of the conditions in PMP.
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2 PMP

Autonomous Systems
We consider the optimization problem
#(t) = f2(t), u(t))

min ¢(z(ty)) + / ' fo(z(t),u(t))dt subj. to z(0) € S;, x(ty) € S (6)
0 u(t) e U, t; >0

where Sy = {z : G(z) = 0} and

91(x)

Glz)=|
9p(2)

We have the following optimality conditions for problem (6): (Note: We IG-
NORE the pathological case and USE \g = 1.)
PMP: Autonomuous Systems: Define the Hamiltonian

}¥($7U>A) ::jb(x,u)~+,XTf(x,u)

Assume that (z*(t),u"(t),t}) is an optimal solution to (6). Then there exists an
adjoint function A(-) that satisfies the following conditions

(i) A(t) = —Hay(a*(t), u"(1), A(t))

(13) H(x*(t),u*(t), A(t)) = minyey H(x*(t), v, A(t)) = 0 for all ¢ € [0, t}] (%)
(zii) A(0) L S;
() A(t}) — Vo(z*(t})) L Sy

Remark 1. Condition (iv) is equivalent to

D91 (& (1)) Og1 (& (1)
Oz T Oxn
(A(t}) — /\OVQS(a:*(t;Z)))TU =0 forall vs.t. : : v=20
Agp(z*(t})) Ogp (™ (t}))
ox1 T Oxn

which also can be written A(t}) — Ao V(z*(t})) L Sy. Another equivalent formu-
lation of this transversality condition is

A(t) = XV (z* (7)) + Gul(t}) v

=NV (@ () + > nVau(z*(t}))

k=1

for some vector v € RP.



Special Case 1: It is reasonable to assume that the terminal cost and the termi-
nal manifold involve two disjoint set of states. For example, ¢(z) = ¢(zps1, ..., Tn)
and gx(z) = gu(z1,...,2,), k = 1,...,p. Then the transversality condition re-
duces to

. D(a(t3))
Apr1(t}) axp:;
Lo = (7)
A, (E 20(a(t}))
(t5) BT
and the remaining variables (A1(t%), ..., A,(¢})) remain undetermined.

Special Case 2: If S; = {z;} (a given point) then there is no constraint on A(0).
Special Case 3: If Sy = R" then A(ty) = Vo(z*(t})).

Special Case 4: If Sy = R" and ¢ = 0 then A(t}) = 0.

Special Case 5: If Sy = {z;} (a given point) and ¢ = 0 then there is no con-
straint on A(t).

Special Case 6: If the final time is fixed then (%) is replaced by H (z*(t), u*(t), A\(t)) =
E}Ié%l H(z"(t),v, A(t)) = const for all t € [0,t¢].

Nonautonomous systems

We consider the optimization problem

t w(t) = f(t x(t), u(t))
min ¢(t, z(ts)) +/ fo(t,z(t),u(t))dt subj. to x(t;) = x4, x(ty) € S(ty)
b u(t) e U, ty >t
(8)

where the terminal manifold may depend on time:

g1 (ta .T)
Se(t) ={x e R": G(t,z) =0} where G(t,x)= :
gp(t, )
and as usual we assume that the functional matrix
9g1(z) 991(z) 9g1(z)
Ox1 e Oxn ot
dgp(a) dgp(z)  Bgp(x)
o0x1 ot Oxn ot

has full rank.

We get the following optimality conditions for problem (8):(Note: We IG-
NORE the pathological case and USE A\g = 1.)
PMP: Nonautonomuous Systems: Define the Hamiltonian function

H(t,z,u,\) = folt,z,u) + N f(t,z,u)
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Assume that (z*(t), u*(t),t}) is an optimal solution to (8). Then there exists an
adjoint function A(-) that satisfies the following conditions

(i) A(t) = —Ha(t, 2*(t), u"(t), A(1))
(13) H*(t) := H(t,z*(t),u*(t), A(t)) = min,ey H(t, 2*(t),v, A(t)) satisfies

% OH

H*(t) = H*(t}) — t g(s,x*(s),u*(s),/\(s))ds, t € [ti t}]

99

' o @
HE () = = Y v (5,07 () — o (8,07 (£)

(491) (A(t}) — b2 (t}, 2" (t})) L Sy(t}), which means that there must exist a vector

V= [yl .. yp]T such that

. Og 0¢
Aty =) v (7, 27(t7)) + o (7, 27(t7)
k=1

Special Case: If the terminal time is fixed then we can remove the time depen-
dence of ¢ and Sy, i.e., the g, are now only functions of the state. Conditions
(#7) and (i77) are then replaced by

(1) H*(t) = minyey H(t, x*(t), v, A\(t)) satisfies

H*(t) = H"(t5) — / ' %—[_t[(s,x*(s),u*(s),)\(s)ds, t e [t ty]

t
(i7) A(tg) — Vo(a*(tf)) L Sy or equivalently

Mg = S O (1)) + 2w (1)

: T
for some suitable vector v = [ ... p,] .

3 How to USE PMP

A professional way to address optimal control problems is to start investigating
the vector field and the cost function to determine if

e it is possible to conclude that there must exist an optimal solution,

e the optimal solution is unique (generally hard).
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The next step (in our case it would be the first) is to use PMP. We take the
following steps (we consider problem (8) and assume Ay = 1)

1. Define the Hamiltonian: H(t,z,u, ) = fo(t,z,u) + AT f(t, 2, u)

2. Perform pointwise minimization: f(t, x, \) = argmin,;H (¢, x,u, \), which
means that a candidate optimal control is u*(t) = u(t, z(t), A(¢)).

3. Solve the Two Point Boundary Value Problem (TPBVP)

/\<t> = —Hx(t,iﬁ(t),ﬁ(tﬂﬁ(t), )‘(t))7 /\(t))’ )‘(tf) - %(tfv x(tf)) 1 Sf<tf)
i(t) = Ha(t, x(t), p(t, x(t), A(t),  a(t;) = i, x(ty) € Sy(ty)

One of the difficulties when solving a TPBVP is to find appropriate bound-
ary conditions for x and A. In order to obtain conditions that help us find
candidates for the optimal transition time we also use (9) or (*). Some-
times we can determine the unknown parameters by plugging a parameter-
ized control into the cost function and then optimize with respect to the
parameters. This is a finite dimensional optimization problem.

4. Compare the candidate solutions obtained using PMP.

4 Infinite Time Horizon Optimal Control

Consider the optimal control problem

T = f(x,u)

z(0) = xg, u(t) € U(x) (10)

min/ fo(z,u)dt subject to {
0

We assume without loss of generality that we want to control the system to an
equilibrium point at (z,u) = (0,0). This means that we assume f(0,0) = 0. In
order to obtain a finite cost we further need to assume f(0,0) = 0.

Definition 1. A function V : R" — R is called positive semi-definite if V(0) = 0
and V(z) > 0 for all x € R". If it satisfies the stronger condition V(z) > 0
for all z # 0 then it is called positive definite. It is called radially unbounded if
V(z) — oo when ||z|| — oo.

Example 1. A quadratic form V(z) = 27 Px, where P = PT | is positive definite
(semi-definite) if P > 0 (P > 0), i.e., if all eigenvalues of P are positive (non-
negative). It is radially unbounded if P > 0.

Assumption 3. We assume that f is positive semi-definite and positive definite
in u, i.e., fo(z,u) >0, ¥Y(z,u) € R"™™ and fy(z,u) > 0 when u # 0.
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Assumption 4. We will assume that the artificial output h(z) = fo(x,0) of the
system @ = f(x,0) is observable in the sense that h(x(t)) = 0 for all ¢ > 0 implies
that x(t) = 0 for all t > 0.

Let us now define the optimal cost-to-go function (value function) correspond-
ing to (10)

J*(zo) = Hl(lgl/ fo(z,u)dt.

The value function is independent of time since the dynamics and cost function
of (10) both are independent of time.

Theorem 4. Suppose Assumption 3 and Assumption 4 hold and

(i) V € C" is positive definite, radially unbounded, and satisfies the (infinite
horizon) HJBE

min {fo(:c,u) + g—‘x/(x)Tf(:I:, u)} =0 (11)

uelU

(i) () = axgmin, ey {Fola w) + 22 ()" f(, 0)}.
Then
(@) V() = J*(z)
() u = p(x) is an optimal globally asymptotically stabilizing feedback control.
We next consider the special case of linear quadratic optimal control

Theorem 5. Consider
J*(xg) = min/ (27 Qx + u” Ru)dt
0

T = Ax + Bu

subject to
) {x(()) = Zo

where Q = CTC and R > 0. We assume that (C, A) is observable and that (A, B)
1 controllable. Then

(a) J*(zo) = xl Pxy, where P is symmetric and positive definite (P = PT > 0)
is the unique positive definite solution to the Algebraic Riccati Equation
(ARE)

AP+ PA+Q=PBR'B"P. (12)
(b) u(z) = —R™'BT Pz is the optimal, stabilizing, feedback control.
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Remark 2. Conclusion (b) in particular means that the closed loop system matrix
A — BR7'BT P has all eigenvalues in the open left half plane.

The linear quadratic regulator in Theorem 5 satisfies certain robustness prop-
erties. The following inequality derived from the ARE is of key importance

Proposition 2. Let L = R™'BTP, where P is a solution to the ARE in (12).
Then the transfer function

G(s)=L(sI — A)'B
satisfies the inequality

(I +GGw) R(I + G(jw)) = R (13)

5 Second order variations
Consider

B = flam)

min é(z(t;)) + /0 7 ot a(t), u(t)dt subj to {xm) o
where ¢, fo, and f are twice continuously differentiable with respect to z and .
Proposition 3. Suppose (z*(), u*(-)), and A(-) are such that
(i) #*(t) = f(t, 2"(t), u(t)), %(0) = o,
(ida) A(t) = —Hy(t, 2" (t),u*(£), A1), A(ty) = du(a*(ts))
(4b) H,(t,z*(t),u"(t), A(t)) =0
(#4ia) ¢ue(2*(ts)) >0
Hy, (t) Hy,(t)

xru

Hig(t) Hy(1)
Hr, andHfjw.

(z3ib) H},(t) > 0 and [

and similarly for H,

1.%’

Then (z*(+),u*(+)) is a local minimum of (14).

} > 0, where HY (t) = Hy(t, x*(t), u*(t), A(t)

)



