Exam May 31, 2017 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 790 84 40.

Allowed books: The formula sheet and 5 mathematics handbook,
(or Tachenbuch Mathematischer Formeln).

Solution methods: All conclusions should be properly motivated.

Note: Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Consider the optimal control problem
1
min/ (3z(t)? +u(t)?)dt  subj. to @(t) = z(t) +u(t), x(0) =m0
0
(i) Determine the optimal feedback control. .................. (6p)
(77) Determine the optimal cost. .................ccoiiiiia. (4p)
2. We will solve two similar optimal control problems.
(a) Use PMP to solve
x‘l(t)] _ [ul(t)

2
min/ (u1(t)* + uz(t)?)dt  subj. to L’:g(t)
0 2(0) =0, z(2) € S,

where Sy = {z € R*: 23 — 21 + 1 =0}.
(b) Use PMP to solve

2 a(t)| _ |ual?)
min / (w(®)? + us(®D)dt subj. to 4 |ia(t)|  |ua(t)]
‘ 2(0) € So, x(2) € S

where Sy = {z € R? : 23 + 21 = 0} and 5> is as above. ....(7p)



3. The differential equation
z(t) = —=0.1z(t) + u(t), x(0)=0

describes the reservoir in Figure 1. The variable x(¢) corresponds to
the hight of the water and u(t) is the net inflow of water to the reservoir
at time ¢. It is assumed that 0 < u(t) < M.

(a) Find the optimal control law that maximizes the cost

100
J= / o(t)dt
0

(b) Find the optimal control law that maximizes the cost in (a) sub-
ject to the additional control constraint

100
/ u(t)dt = K
0

where K is a given constant that satisfies 0 < K < 100M. .(7p)

> x(t)

AR

Figure 1: Reservoir.



4. Consider the problem
. 0 1 0
: . 2 . T = T+ u
mln/ (y* +ru®)dt, subj. to 0 —-10 1
v Jo

where r > 0 is a positive parameter.

(a) Determine the optimal feedback control and the optimal cost.

(7p)
(b) Determine the closed loop system and compute the closed loop
eigenvalue location as a function of the parameter r. ...... (3p)

5. Consider the optimization problem

1
min T + §x1(T)2 subj. to z(0) = zg, x2(T) =0,

lu®)] <1,

T free.
(a) Formulate the TPBVP ... ... ... ..o it (2p)
(b) Deduce the structure of any optimal control................ (2p)

(c) Assume that the initial condition satisfies x2(0) = 0 and z1(0) >
0. Determine for which values x;(0) the solution 7™ = 0 is opti-

AL (3p)

(d) Which points in Sf = {# € R?* : 5 = 0} may be the final point

x(T') for some optimal solution? .......................... (3p)
Good luck!



1. The Riccati equation (which can easily be derived using PMP or dy-
namic programming) associated with the optimal control problem is

P+2p+3-p*=0, p(1)=0

By using the separation of variables method we get

dp 1 ( 1 1 )
———=— | —— ——— |dp=dt
(p+1(p-3) 4\p-3 p+l
Integration gives
p—3 p(t) —3 4t
In{—— | =4+c) & ——— = e
<p+1> G+a) pO)+1 7
Using the terminal condition gives co = —3e™* and
Al—t) _
p(t) = 33 T ed1-1)

(a) u(t) = —p(t)z(t)
(b) J* = p(0)a}

2. Both problems have the same solution. Here we only give the proof of
part (b), which is a bit harder that (a). The Hamiltonian is

H(z,u,\) = u? +u3 + A\jui + Aus
Pointwise minimization gives
* _>\1/2
uwt = p(A) =
W)= |3
The adjoint equation is

a=0 = D)=l

The boundary conditions for the adjoint variable reduces to

1 ] -1
)\(0) = |:22(0)_ v, )\(2) = |:21‘2(2):| 1%}
where 115 € R. Since A(t) = A (constant) we must have vy = —vy.

Clearly, this requires that z2(0) = x2(2) = 0, which gives the control
u=|"!
|0

x(t) = [”(ﬂ

In order for z(2) € S; we must have v = 0.5.

The solution becomes



3. We only provide a detail solution for (b).

(a) The optimal solution is u*(t) = M, t € [0, 100].
(b) We introduce the state

Then the optimal control problem can be formulated as

100 #(t) = —0.1z(t) + u(t), z(0)=0
min/ —z(t)dt subj. to y(t) = u(t), y(0) = 0
’ 0<u(t) <M

The Hamiltonian is
H(ZL‘, Yy, u, )‘17 >\2) = —x+ )\1(—01$ + U) —+ )\Qu

Pointwise minimization gives

M, A+ A <0
ut = 0, M], A1 +X2=0
0, A+ >0

Finally, the adjoint equation becomes

A =010 + 1, A1(100) =
Ao =0, A2(100) = free

Hence Aa(t) = Ay = const and
A (t) = PN + 10(eH — 1)

The boundary constraint A1(100) = 0 gives A} = 10(e™10 — 1)
and hence

o(t) = A (t) + Aa(t) = 10(% 1710 — 1) +- A9

It follows that the switching function is increasing. This implies
that we must have the switching sequence {M,0}. The switching
time is determined by the constraint

t*
f * *
Mt =Mty =K =ty = K/M.

Hence, the optimal control is

) {M, t e [0, K/M]

0, te(K/M,100]

5



4.

(a)

The ARE gives the system
1
1=-P2
r 12>
1
P11 —10P12 = ;P12P22,

1

2Py — 20Py; = —P%,
T

with the positive definite solution

V1007 + 24/r T
N —107 4+ /10072 + 2r\/r|

and the optimal control

P =

1 2
= - 1 = 1 .
\/;:El ( 00 + \/; 0)%2

U =

The optimal cost is J(7g) = 28 Pxo.

The closed loop system is
0 1
1 2
vt /100 + 7

The eigenvalues of A have negative real parts, so the closed loop
system is stable. The closed loop eigenvalues are located at

1 1
A= —4/25+ — £4/25 — —
\/ +2r \/ 2r

If we plot these two eigenvalues in the complex plane as a function
of r.

z = Ax.

T =

5. The Hamiltonian is given by

H(z,u,\) =14+ M\xg + Aau,

hence the pointwise minimizing w is given by

1, A2 <0
ut = [*1, 1], )\2 =0
-1, Ao >0



The adjoint equation becomes

: OH
AM=——7—=0
! 8%‘1
: 0H
Ag = ——— ==\
2 6$2 1

9

hence A; is constant and A2(t) = A2(0) — A\it. Next, consider the
boundary conditions: Ao(7T) is free since xo(T) is fixed, and A\ (T') =
g—i(m(T)) = 21(7T). Finally, note that Ao # 0, since if Ay = 0 then

A1 = 0 which contradicts that H*(T') = 0. Consequently Aa(t) is only
zero in at most 1 point and there is at most one switch.

(a) To summarize. The TPBVP is

a1 (t) = wa(t)
a(t) = —sign(a ()
A =0
Ay — A,
with boundary conditions: z(0) = xg, z2(T) = 0, \i(T") = z1(T).

(b) Since the control is bang-bang with at most one switch, any op-
timal controller is of the form [—1,1] or [1, —1].

(c) Assume that the initial condition is (z1,,0) where z19 > 0. The
optimal control must be of the form

) = {1, t < to 0

1,  to<t<2t

for some ¢ty > 0 (note that there is at most one switch and one
needs to return to the xj-axis). Integrating the dynamics, one
arrives at the point x(2ty) = (z10 — t2,0)7 at time 2ty, which
corresponds to the cost %@1,0 —12)?+2ty. The cost corresponding
totg =0is %:L‘io, so the question is if the cost is lower for some
to > 0. This can only happen if

1 1
5(1‘1’0 — t%)2 + 2tg < 533%70

=

1754— 2+ 2t <0
20 1'1700‘1‘ 0 <

has a solution for some tg > 0, i.e., if

1 3
Eto —x10to +2<0



has a solution for some ¢ty > 0. The minimum of LHS is at
to = \/2x1,0/3, hence the minimum value of the LHS is

(1/3 = 1)V/2/32¢ +2 =2 = (2/321,0)*%,

which is greater or equal to zero if and only if 219 < 3/ 21/3 The
solution 7™ = 0 is only optimal if 19 < 3/21/3,

~ N

Assume that z(T') with z1(T) > 0 is a final point corresponding
to an optimal solution, and hence corresponds to the optimal
value 7' + %IL‘l(T)z Noting that the cost is linear in 7', this
final point could only correspond to an optimal optimal solution
if 21(T) < 3/2'/3. Otherwise one could use the controller (??)
according to (c) and achieve a lower cost. By symmetry of the

problem the same argument holds for z1(7") < 0, and hence any
optimal solution must satisfy |z1(7*)| < 3/2Y/3 and zo(T*) = 0



