
Exam May 31, 2017 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 790 84 40.

Allowed books: The formula sheet and β mathematics handbook,
(or Tachenbuch Mathematischer Formeln).

Solution methods: All conclusions should be properly motivated.

Note: Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Consider the optimal control problem

min

∫ 1

0
(3x(t)2 + u(t)2)dt subj. to ẋ(t) = x(t) + u(t), x(0) = x0

(i) Determine the optimal feedback control. . . . . . . . . . . . . . . . . . . (6p)

(ii) Determine the optimal cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

2. We will solve two similar optimal control problems.

(a) Use PMP to solve

min

∫ 2

0
(u1(t)2 + u2(t)2)dt subj. to


[
ẋ1(t)

ẋ2(t)

]
=

[
u1(t)

u2(t)

]
,

x(0) = 0, x(2) ∈ S2

where S2 = {x ∈ R2 : x2
2 − x1 + 1 = 0}.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(b) Use PMP to solve

min

∫ 2

0
(u1(t)2 + u2(t)2)dt subj. to


[
ẋ1(t)

ẋ2(t)

]
=

[
u1(t)

u2(t)

]
,

x(0) ∈ S0, x(2) ∈ S2

where S0 = {x ∈ R2 : x2
2 + x1 = 0} and S2 is as above. . . . . (7p)
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3. The differential equation

ẋ(t) = −0.1x(t) + u(t), x(0) = 0

describes the reservoir in Figure 1. The variable x(t) corresponds to
the hight of the water and u(t) is the net inflow of water to the reservoir
at time t. It is assumed that 0 ≤ u(t) ≤M .

(a) Find the optimal control law that maximizes the cost

J =

∫ 100

0
x(t)dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(b) Find the optimal control law that maximizes the cost in (a) sub-
ject to the additional control constraint∫ 100

0
u(t)dt = K

where K is a given constant that satisfies 0 < K < 100M . .(7p)

x(t)

u(t)

Figure 1: Reservoir.
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4. Consider the problem

min
u

∫ ∞
0

(y2 + ru2) dt, subj. to


ẋ =

[
0 1

0 −10

]
x+

[
0

1

]
u

y =
[
1 0

]
x, x(0) = x0

where r > 0 is a positive parameter.

(a) Determine the optimal feedback control and the optimal cost.
(7p)

(b) Determine the closed loop system and compute the closed loop
eigenvalue location as a function of the parameter r. . . . . . . (3p)

5. Consider the optimization problem

minT +
1

2
x1(T )2 subj. to



[
ẋ1(t)

ẋ2(t)

]
=

[
x2(t)

u(t)

]
,

x(0) = x0, x2(T ) = 0,

|u(t)| ≤ 1,

T free.

(a) Formulate the TPBVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) Deduce the structure of any optimal control. . . . . . . . . . . . . . . . (2p)

(c) Assume that the initial condition satisfies x2(0) = 0 and x1(0) >
0. Determine for which values x1(0) the solution T ∗ = 0 is opti-
mal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(d) Which points in Sf = {x ∈ R2 : x2 = 0} may be the final point
x(T ) for some optimal solution? . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Good luck!
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1. The Riccati equation (which can easily be derived using PMP or dy-
namic programming) associated with the optimal control problem is

ṗ+ 2p+ 3− p2 = 0, p(1) = 0

By using the separation of variables method we get

dp

(p+ 1)(p− 3)
=

1

4

(
1

p− 3
− 1

p+ 1

)
dp = dt

Integration gives

ln

(
p− 3

p+ 1

)
= 4(t+ c1) ⇔ p(t)− 3

p(t) + 1
= c2e

4t

Using the terminal condition gives c2 = −3e−4 and

p(t) = 3
e4(1−t) − 1

3 + e4(1−t)

(a) u(t) = −p(t)x(t)

(b) J∗ = p(0)x2
0

2. Both problems have the same solution. Here we only give the proof of
part (b), which is a bit harder that (a). The Hamiltonian is

H(x, u, λ) = u2
1 + u2

2 + λ1u1 + λ2u2

Pointwise minimization gives

u∗ = µ(λ) =

[
−λ1/2
−λ2/2

]
The adjoint equation is[

λ̇1

λ̇2

]
=

[
0
0

]
⇒

[
λ1(t)
λ2(t)

]
=

[
λ0

1

λ0
2

]
The boundary conditions for the adjoint variable reduces to

λ(0) =

[
1

22(0)

]
ν1, λ(2) =

[
−1

2x2(2)

]
ν2

where ν1ν2 ∈ R. Since λ(t) = λ0 (constant) we must have ν2 = −ν1.
Clearly, this requires that x2(0) = x2(2) = 0, which gives the control

u =

[
ν1

0

]
The solution becomes

x(t) =

[
ν1t
0

]
In order for x(2) ∈ S1 we must have ν2 = 0.5.
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3. We only provide a detail solution for (b).

(a) The optimal solution is u∗(t) = M , t ∈ [0, 100].

(b) We introduce the state

y(t) =

∫ t

0
u(τ)dτ.

Then the optimal control problem can be formulated as

min

∫ 100

0
−x(t)dt subj. to


ẋ(t) = −0.1x(t) + u(t), x(0) = 0

ẏ(t) = u(t), y(0) = 0, y(100) = K

0 ≤ u(t) ≤M

The Hamiltonian is

H(x, y, u, λ1, λ2) = −x+ λ1(−0.1x+ u) + λ2u

Pointwise minimization gives

u∗ =


M, λ1 + λ2 < 0

[0,M ], λ1 + λ2 = 0

0, λ1 + λ2 > 0

Finally, the adjoint equation becomes

λ̇1 = 0.1λ1 + 1, λ1(100) = 0

λ̇2 = 0, λ2(100) = free

Hence λ2(t) = λ0
2 = const and

λ1(t) = e0.1tλ0
1 + 10(e0.1t − 1)

The boundary constraint λ1(100) = 0 gives λ0
1 = 10(e−10 − 1)

and hence

σ(t) = λ1(t) + λ2(t) = 10(e0.1t−10 − 1) + λ0
2

It follows that the switching function is increasing. This implies
that we must have the switching sequence {M, 0}. The switching
time is determined by the constraint∫ t∗f

0
Mdt = Mt∗f = K ⇒ t∗f = K/M.

Hence, the optimal control is

u∗(t) =

{
M, t ∈ [0,K/M ]

0, t ∈ (K/M, 100]
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4. (a) The ARE gives the system

1 =
1

r
P 2

12,

P11 − 10P12 =
1

r
P12P22,

2P12 − 20P22 =
1

r
P 2

22,

with the positive definite solution

P =

[√
100r + 2

√
r

√
r√

r −10r +
√

100r2 + 2r
√
r

]
.

and the optimal control

û = − 1√
r
x1 − (

√
100 +

2√
r
− 10)x2.

The optimal cost is J(x0) = xT0 Px0.

(b) The closed loop system is

ẋ =

[
0 1

− 1√
r
−
√

100 + 2√
r

]
x = Âx.

The eigenvalues of Â have negative real parts, so the closed loop
system is stable. The closed loop eigenvalues are located at

λ = −
√

25 +
1

2r
±
√

25− 1

2r

If we plot these two eigenvalues in the complex plane as a function
of r.

5. The Hamiltonian is given by

H(x, u, λ) = 1 + λ1x2 + λ2u,

hence the pointwise minimizing u is given by

u∗ =


1, λ2 < 0

[−1, 1], λ2 = 0

−1, λ2 > 0

6



The adjoint equation becomes

λ̇1 = −∂H
∂x1

= 0

λ̇2 = −∂H
∂x2

= −λ1

,

hence λ1 is constant and λ2(t) = λ2(0) − λ1t. Next, consider the
boundary conditions: λ2(T ) is free since x2(T ) is fixed, and λ1(T ) =
∂Φ
∂x2

(x(T )) = x1(T ). Finally, note that λ2 6≡ 0, since if λ2 ≡ 0 then
λ1 ≡ 0 which contradicts that H∗(T ) = 0. Consequently λ2(t) is only
zero in at most 1 point and there is at most one switch.

(a) To summarize. The TPBVP is

ẋ1(t) = x2(t)

ẋ2(t) = −sign(λ2(t))

λ̇1 = 0

λ̇2 − λ1,

with boundary conditions: x(0) = x0, x2(T ) = 0, λ1(T ) = x1(T ).

(b) Since the control is bang-bang with at most one switch, any op-
timal controller is of the form [−1, 1] or [1,−1].

(c) Assume that the initial condition is (x1,0, 0) where x1,0 > 0. The
optimal control must be of the form

u∗(t) =

{
−1, t < t0

1, t0 ≤ t ≤ 2t0
(1)

for some t0 ≥ 0 (note that there is at most one switch and one
needs to return to the x1-axis). Integrating the dynamics, one
arrives at the point x(2t0) = (x1,0 − t20, 0)T at time 2t0, which
corresponds to the cost 1

2(x1,0−t20)2+2t0. The cost corresponding
to t0 = 0 is 1

2x
2
1,0, so the question is if the cost is lower for some

t0 > 0. This can only happen if

1

2
(x1,0 − t20)2 + 2t0 <

1

2
x2

1,0

⇔
1

2
t40 − x1,0t

2
0 + 2t0 < 0

has a solution for some t0 > 0, i.e., if

1

2
t30 − x1,0t0 + 2 < 0
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has a solution for some t0 > 0. The minimum of LHS is at
t0 =

√
2x1,0/3, hence the minimum value of the LHS is

(1/3− 1)
√

2/3x
3/2
1,0 + 2 = 2− (2/3x1,0)3/2,

which is greater or equal to zero if and only if x1,0 ≤ 3/21/3. The
solution T ∗ = 0 is only optimal if x1,0 ≤ 3/21/3.

(d) Assume that x(T̂ ) with x1(T̂ ) ≥ 0 is a final point corresponding
to an optimal solution, and hence corresponds to the optimal
value T̂ + 1

2x1(T̂ )2. Noting that the cost is linear in T , this
final point could only correspond to an optimal optimal solution
if x1(T̂ ) ≤ 3/21/3. Otherwise one could use the controller (??)
according to (c) and achieve a lower cost. By symmetry of the
problem the same argument holds for x1(T̂ ) ≤ 0, and hence any
optimal solution must satisfy |x1(T ∗)| ≤ 3/21/3 and x2(T ∗) = 0
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