
Exam August 16, 2016 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 790 84 40.

Allowed books: The formula sheet and β mathematics handbook,
(or Tachenbuch Mathematischer Formeln).

Solution methods: All conclusions should be properly motivated.

Note! Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Solve the optimization problem

min (x3 − 1)2 +
2∑

k=0

u2
k subj. to xk+1 = xk + uk, x0 = 0

using dynamic programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

2. The following subproblems do not require full solutions. It is enough
with an answer and a brief motivation. Remember that the value of a
minimization problem is ∞ if the constraint cannot be satisfied.

(a) Consider the optimal control problem

minx1(T ) + x2(T ) +

∫ T

0
f0(x, u)dt subject to


ẋ = f(x, u),

x(0) = x0,

x3(T ) = 1

The state vector has n-variables (x =
[
x1 x2 . . . xn

]T
). What

are the boundary conditions on the adjoint vector λ that can be
derived from PMP.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) Determine the optimal value of the time optimal control problem

minT subj.to


ẋ1 = u, x1(0) = 1 x1(T ) = 0

ẋ2 = 0, x2(0) = 1, x2(T ) = 0

|u| ≤ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)
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(c) Determine the optimal value of the time optimal control problem

minT subj.to

{
ẋ = u, x(0) = 1, x(T ) = 0

|u| ≤ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(d) What is the optimal feedback control for the problem

minx(1)2 +
1

2

∫ 1

0
u2(t)dt

{
ẋ = u, x(0) = 1/2,

|u| ≤ 1.

You may use that the Riccati equation corresponding to the un-
constrained problem, i.e., when |u| ≤ 1 is removed, has the solu-
tion

p(t) =
1

3− 2t
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

3. Consider the infinite horizon optimal control problem

min

∫ ∞
0

(|x(t)|p + u(t)2m)dt subject to

{
ẋ = u

x(0) = x0.

Here p ≥ 2 is a given real number and m ≥ 1 is a given integer.

(a) Compute the optimal feedback and the optimal cost. . . . . . . (8p)

(b) What does the feedback converge to as m→∞? . . . . . . . . . . (2p)

4. Consider the problem

min
u

∫ ∞
0

(y2 + ru2) dt, subj. to


ẋ =

[
0 1

0 −10

]
x+

[
0

1

]
u

y =
[
1 0

]
x, x(0) = x0

where r > 0 is a positive parameter.

(a) Determine the optimal feedback control and the optimal cost.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) Plot the root locus, i.e. the closed loop eigenvalue location as a
function of the parameter r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

5. Use PMP to solve the optimal control problem

min

∫ 2

0
(u− 1)xdt subject to

{
ẋ = (2u− 1)x, x(0) = 3, x(2) = 2

0 ≤ u ≤ 1.

Hint: First prove that x(t) > 0 when t ∈ [0, 2]. . . . . . . . . . . . . . . . . (10p)
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Solution outline

1. The dynamic programing recursion is

V (x, k + 1) = min
u

{
u2 + V (x+ u, k)

}
V (x, 3) = (x− 1)2

Simple calculations gives

u0 =
1

4
(1− x0) =

1

4
, x1 =

1

4

u1 =
1

3
(1− x1) =

1

4
, x2 =

1

2

u2 =
1

2
(1− x2) =

1

4
, x3 =

3

4

The optimal cost is given by V (0, x) = (1 − x)2/4 and is for x = 0
equal to 1/4.

2. (a) λ(T ) =



1
1

free
0
...
0


(b) There is no feasible solution, hence =∞
(c) J = 1

(d) The optimal control for the unconstrained problem, u(t) = − 2x(t)

3− 2t
,

satisfies the constraint |u(t)| ≤ 1 and is thus also optimal for
the constrained problem. Indeed, the closed loop state satisfies
|x(t)| ≤ 1.

3. Infinite time horizon HJBE gives

min
u

{
|x|p + u2m + λu

}
= 0.

By setting the derivative w.r.t. u to zero, we see that the minimizing
u is given by

u = −sign(λ)

(
|λ|
2m

) 1
2m−1

.

Next, plug into HJBE

|x|p +

(
|λ|
2m

) 2m
2m−1

− |λ|
(
|λ|
2m

) 1
2m−1

= 0
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and solve for λ:
λ = sign(x)α|x|β

where α = 2m

(2m−1)
2m−1
2m

and β = p2m−1
2m . The optimal cost is hence

given by

V (x) =
α

β + 1
|x|β+1

and the optimal control

u = −sign(x)

(
|x|p

2m− 1

) 1
2m

Noting that
(
|x|p

2m−1

) 1
2m → 1 as m → ∞ for any x 6= 0, the feedback

control converges to u = −sign(x) as m→∞.

4. (a) The ARE gives the system

1 =
1

r
P 2

12,

P11 − 10P12 =
1

r
P12P22,

2P12 − 20P22 =
1

r
P 2

22,

with the positive definite solution

P =

[√
100r + 2

√
r

√
r√

r −10r +
√

100r2 + 2r
√
r

]
.

and the optimal control

û = − 1√
r
x1 − (

√
100 +

2√
r
− 10)x2.

The optimal cost is J(x0) = xT0 Px0.

(b) The closed loop system is

ẋ =

[
0 1

− 1√
r
−
√

100 + 2√
r

]
x = Âx.

The eigenvalues of Â have negative real parts, so the closed loop
system is stable. The closed loop eigenvalues are located at

λ = −
√

25 +
1

2r
±
√

25− 1

2r

If we plot these two eigenvalues in the complex plane as a function
of r then we get the root locus. Plot it!
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5. We have on t ∈ [0, 2]

x(t) = e
∫ t
0 (2u(s)−1)ds > 0.

The Hamiltonian becomes H(x, u, λ) = (u−1)x+λ(2u−1)x. Pointwise
minimization gives

argminu∈[0,1]{(u− 1)x+ λ(2u− 1)x} =


1, σ < 0

0, σ > 0

∈ [0, 1], σ = 0

where the switching function is σ = (2λ + 1) (since x(t) > 0). The
adjoint equation is

λ̇ = −(u− 1)− (2u− 1)λ.

Hence,

σ̇ = 2λ̇ = −2(u− 1)− 2(2u− 1)λ

Since, σ = 0 if λ = −1/2, we get

σ̇|σ=0 = 1.

This means that we have at most one switch. We have the possible
control sequences {0}, {1}, and {1, 0}. The first two are impossible
since then either x(2) = 3e−2 < 2 or x(2) > 2. We have

u(t) =

{
1, 0 ≤ t ≤ t̄
0, t̄ < t ≤ 2

It remains to determine t̄. Integration of the system equation gives

x(2) = 3e−(2−t̄)et̄ = 2.

Hence, t̄ = 1− 1
2 ln(3/2).
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