CHAPTER 2

Linear State Equations

2.1. Systems of linear differential equations

Consider the homogeneous system of first-order differential equations
(8) w(t) = At)x(t) 5 x(to) =a

where A is an n X n matrix valued continuous function of time ¢. One can
show that (8) has a unique solution through z(t,) = a on every bounded
interval containing ¢, and for all a € R”.

Let ®(t,to), K =1,2,...,n, be the unique solutions of (8) with initial
conditions

1 0 0
0 1 0
$(to) = |0 ,.’L'(to) = |0 P ,l‘(to) = |0
_0_ _0_ _1_

and define the n x n transition matrix
(D(t, to) = [@1(t, to), ®2<t, t)), ey (:Dn(t, to)]

Then we have

{%mg—A@@@@

O(s,s)=1
Since
1] 0] [0]
0 1 0
a=a; [V +a |0 +-- +a, 9],
0 0 1)
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by the superposition principle, the system (8) with x(¢y) = a has the
solution

z(t) = a1 ®1(t, ) + as®s(t, to) + -+ + a, @, (t, to)

that is
z(t) = ®(t, tp)a.

Let us list some properties of the transition matrix function ®:
(1) ®(t,s) = ®(t,7)®(7,s) for all (¢,s,7) as illustrated by the com-

mutative diagram
@E})

X X
O(t,s) N\, [P(t,7)
X

Proof. Consider the unique solution of

{:b(a) = A(0)z(0) x(0 X(0)

z(s)=a S

Then, as illustrated in the figure 2:(t) = ®(t, s)a, x(t) = ®(¢,7)z(7)
and z(7) = ®(7, s)a, and hence

O(t, 7)P(T, s)a = P(t, s)a.
that is
[@(t, 7)P(T,s) — P(t,5)]a=0

Since this must hold for all a € R™ property (1) follows. O
(2) ®(t, s) is nonsingular, and ®(¢, )~ = (s, ).

Proof. This follows immediately from

(9) O(t,s)P(s,t) =1

which is a consequence of property (1). O
(3) 92(t,s) = —D(t,s)A(s).

Proof. Differentiating (9) with respect to s yields that

aa_(f(t’ $)B(s,1) + B(t, ) A(s)D(s, ) = 0

Since ®(s,t) is nonsingular, property (3) follows. [
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Let us next consider the solution of the control system

{:i:(t) = A(D)x(t) + B(t)u(t)

z(ty) = a
Set z(t) := D(to, t)x(t), i.e x(t) = D(t,10)z(t). Then,

2= —B(ty, ) A(t)x(t) + B(ty, t)i(t)

“© that {z = D(to, t) B(t)u(t)
z2(tg) = a

and therefore,

or, premultiplying by ®(, ),
t
z(t) = @(t, to)a + / d(t, ) B(s)u(s)ds.
to

Notice that this equality also holds for ¢ < ¢.

The following proposition provides us with a procedure to determine
d(t,s).

Proposition 2.1.1. Let X be an arbitrary n x n matriz solution of
X(t)=AMX() ;5 X(to)=C

where C' is nonsingular, this is called a regular matrix solution. Then
X(t) is nonsingular for all t and

B(t,s) = X(H)X(s)".

Proof. Since C' and ®(t, s) are nonsingular (Property 2), then so is X (t) =
®(t,tr)C and hence

X)X (s)™' = ®(t, ) CC ' D(ty, s) = B(t, 5)

The proof is complete. [
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For time-invariant systems determining the transition matrix function
becomes much simpler in that it can be expressed in terms of the matrix
exponential.

Definition 2.1.2. e =377  LAF

Note that, since E,ICVZO SIIAJ*F < el4l < oo, the sum converges.
We collect some properties of matrix exponentials. The proofs are left
for readers as exercises.

(1) If D = diag (A1, Aa, ..., \n), €@ = diag (eM,e*2,... er);
(2) e AP = p-leAPp;

(3) If AB = BA, then, e?e? = eA*8; Warning: In general, e“e? #

eAtB,

@) () = e

(5) LeAt = Aeft = et A,

It follows from property (5) above that
X(t) = e
is a regular matrix solution of the time-invariant system
T = Ax
where A is constant. Then, by Proposition 2.1.1
B(t,s) = X)X (s)7! = eM(e) ! = e,
that is

(10) B(t,s) = =)

Therefore the solution of the time-invariant system
= Ax + Bu

becomes

t
z(t) = etz (ty) —I—/ et~ Bu(s)ds.

to



2.2. SYSTEMS OF LINEAR DIFFERENCE EQUATIONS 13

Remark 2.1.3. One might ask whether (10) can be generalized to the
time-varying case, i.e. is it true that

(11) O(t,s) = exp{/ T)dT}

when A(t) is time varying? The answer is that a sufficient condition for
(11) to hold is that A(¢) and f A(7)dT commute. [

2.2. Systems of linear difference equations

The corresponding analysis for discrete-time system is quite analogous.
In fact, considering the following discrete-time system

z(t+1) = A(t)x(t),
the transition matrix is generated by
O(t+1,s) = A(t)®(t, s)
O(t,t) = 1.
It is not hard to see that
O(t,s) = At —1)A(t—2)---A(s) fort>s

and D (¢, s) is defined for t < s only if ®(s,t) is invertible, i.e. A(k)~! for
k=s,s+1,...,t—1. In this case, ®(t,s) = ®(s,t)"*. In addition ®(¢, s)
has the following properties.

(1) ®(t,s) = ®(t, 7)P(7,5);
(2) ®(t,s —1) = P(t,s)A(s — 1)

Hence, the solution of the control system
x(t+1) = A(t)x(t) + B(t)u(t)
becomes

z(t) = +Z (t,o + 1)B(o)u(o).

For time-invariant systems, the transfer matrix
Pt s) = A*

is invertible if and only if A~' exists. Note that e’ in continuous time
corresponds to A! in discrete time. Here lies one of the fundamental
differences between the continuous-time and discrete-time setting. Indeed

e is never singular, whereas A* might be.



