
CHAPTER 2

Linear State Equations

2.1. Systems of linear differential equations

Consider the homogeneous system of first-order differential equations

ẋ(t) = A(t)x(t) ; x(t0) = a(8)

where A is an n×n matrix valued continuous function of time t. One can
show that (8) has a unique solution through x(t0) = a on every bounded
interval containing t0 and for all a ∈ R

n.

Let Φk(t, t0), k = 1, 2, . . . , n, be the unique solutions of (8) with initial
conditions
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and define the n × n transition matrix

Φ(t, t0) = [Φ1(t, t0), Φ2(t, t)), . . . ,Φn(t, t0)].

Then we have
{

∂Φ
∂t

(t, s) = A(t)Φ(t, s)

Φ(s, s) = I
.

Since
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by the superposition principle, the system (8) with x(t0) = a has the
solution

x(t) = a1Φ1(t, t0) + a2Φ2(t, t0) + · · · + anΦn(t, t0)

that is

x(t) = Φ(t, t0)a.

Let us list some properties of the transition matrix function Φ:

(1) Φ(t, s) = Φ(t, τ)Φ(τ, s) for all (t, s, τ) as illustrated by the com-
mutative diagram

X
Φ(τ,s)
−→X

Φ(t, s) ց ↓Φ(t, τ)

X

Proof. Consider the unique solution of
{

ẋ(σ) = A(σ)x(σ)

x(s) = a

x

t

2

x1

s τ t

a
x (τ) x(t)

Then, as illustrated in the figure x(t) = Φ(t, s)a, x(t) = Φ(t, τ)x(τ)
and x(τ) = Φ(τ, s)a, and hence

Φ(t, τ)Φ(τ, s)a = Φ(t, s)a.

that is

[Φ(t, τ)Φ(τ, s) − Φ(t, s)]a = 0

Since this must hold for all a ∈ R
n property (1) follows.

(2) Φ(t, s) is nonsingular, and Φ(t, s)−1 = Φ(s, t).

Proof. This follows immediately from

Φ(t, s)Φ(s, t) = I(9)

which is a consequence of property (1).

(3) ∂Φ
∂s

(t, s) = −Φ(t, s)A(s).

Proof. Differentiating (9) with respect to s yields that

∂Φ

∂s
(t, s)Φ(s, t) + Φ(t, s)A(s)Φ(s, t) = 0

Since Φ(s, t) is nonsingular, property (3) follows.
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Let us next consider the solution of the control system

{

ẋ(t) = A(t)x(t) + B(t)u(t)

x(t0) = a
.

Set z(t) := Φ(t0, t)x(t), i.e x(t) = Φ(t, t0)z(t). Then,

ż = −Φ(t0, t)A(t)x(t) + Φ(t0, t)ẋ(t)

so that

{

ż = Φ(t0, t)B(t)u(t)

z(t0) = a

and therefore,

z(t) = a +

∫ t

t0

Φ(t0, s)B(s)u(s)ds,

or, premultiplying by Φ(t, t0),

x(t) = Φ(t, t0)a +

∫ t

t0

Φ(t, s)B(s)u(s)ds.

Notice that this equality also holds for t ≤ t0.

The following proposition provides us with a procedure to determine
Φ(t, s).

Proposition 2.1.1. Let X be an arbitrary n × n matrix solution of

Ẋ(t) = A(t)X(t) ; X(t0) = C

where C is nonsingular, this is called a regular matrix solution. Then

X(t) is nonsingular for all t and

Φ(t, s) = X(t)X(s)−1.

Proof. Since C and Φ(t, s) are nonsingular (Property 2), then so is X(t) =
Φ(t, t0)C and hence

X(t)X(s)−1 = Φ(t, t0)CC−1Φ(t0, s) = Φ(t, s)

The proof is complete.
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For time-invariant systems determining the transition matrix function
becomes much simpler in that it can be expressed in terms of the matrix
exponential.

Definition 2.1.2. eA =
∑∞

k=0
1
k!

Ak.

Note that, since
∑N

k=0
1
k!
‖A‖k ≤ e‖A‖ < ∞, the sum converges.

We collect some properties of matrix exponentials. The proofs are left
for readers as exercises.

(1) If D = diag (λ1, λ2, . . . , λn), eD = diag (eλ1 , eλ2 , . . . , eλn);

(2) eP−1AP = P−1eAP ;

(3) If AB = BA, then, eAeB = eA+B; Warning: In general, eAeB 6=

eA+B.

(4) (eA)−1 = e−A;

(5) d

dt
eAt = AeAt = eAtA;

It follows from property (5) above that

X(t) = eAt

is a regular matrix solution of the time-invariant system

ẋ = Ax

where A is constant. Then, by Proposition 2.1.1

Φ(t, s) = X(t)X(s)−1 = eAt(eAs)−1 = eAte−As,

that is

Φ(t, s) = eA(t−s)(10)

Therefore the solution of the time-invariant system

ẋ = Ax + Bu

becomes

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−s)Bu(s)ds.
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Remark 2.1.3. One might ask whether (10) can be generalized to the
time-varying case, i.e. is it true that

Φ(t, s) = exp{

∫ t

s

A(τ)dτ}(11)

when A(t) is time varying? The answer is that a sufficient condition for

(11) to hold is that A(t) and
∫ t

s
A(τ)dτ commute.

2.2. Systems of linear difference equations

The corresponding analysis for discrete-time system is quite analogous.
In fact, considering the following discrete-time system

x(t + 1) = A(t)x(t),

the transition matrix is generated by

Φ(t + 1, s) = A(t)Φ(t, s)

Φ(t, t) = I.

It is not hard to see that

Φ(t, s) = A(t − 1)A(t − 2) · · ·A(s) for t > s

and Φ(t, s) is defined for t < s only if Φ(s, t) is invertible, i.e. A(k)−1 for
k = s, s+1, . . . , t− 1. In this case, Φ(t, s) = Φ(s, t)−1. In addition Φ(t, s)
has the following properties.

(1) Φ(t, s) = Φ(t, τ)Φ(τ, s);
(2) Φ(t, s − 1) = Φ(t, s)A(s − 1)

Hence, the solution of the control system

x(t + 1) = A(t)x(t) + B(t)u(t)

becomes

x(t) = Φ(t, s)x(s) +
t−1
∑

σ=s

Φ(t, σ + 1)B(σ)u(σ).

For time-invariant systems, the transfer matrix

Φ(t, s) = At−s

is invertible if and only if A−1 exists. Note that eAt in continuous time
corresponds to At in discrete time. Here lies one of the fundamental
differences between the continuous-time and discrete-time setting. Indeed
eAt is never singular, whereas At might be.


