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1. Discrete Time Optimal Control

1.1 An investor receives an annual income of amount xk (each year k). From
the xk received, the investor may reinvest one part xk − uk and keep uk for
spending. The reinvestment results in an increase of the capital income as

xk+1 = xk + θ(xk − uk)

where θ > 0 is given.

The investor wants to maximize his total consumption over N years, i.e. he
wants to maximize the utility

∑N−1
k=0 uk. The resulting optimization problem

is

max
N−1∑
K=0

uk subj. to

{
xk+1 = xk + θ(xk − uk)

0 ≤ uk ≤ xk, x0 > 0 is given

(a) Formulate the dynamic programming recursion that solves this optimiza-
tion problem.

(b) Solve the problem when N = 3, x0 = 1, θ = 0.1.

1.2 Consider the discrete optimal control problem

min

1∑
k=0

(|xk|+ 5|uk|) s.t

{
xk+1 = 0.5xk + uk

xk ∈ Xk;uk ∈ {−1,−0.5, 0, 0.5, 1}

where the state space is defined by

X0 = {−2}, X1 = {−2,−1, 0, 1, 2}, X2 = {0}

Solve the problem using dynamic programming.
Hint: It may be useful to introduce the control constraint sets U(k, x) that
specify the feasible control values for each xk ∈ Xk.

1.3 In this problem you will solve the following optimal control problem

min

2∑
k=0

(x2k + u2k) subj. to

{
xk+1 = xk + uk, x0 = 0; x3 = 2

uk ∈ Uk(xk) = {u : 0 ≤ xk + u ≤ 2;u is an integer}

(a) Formulate the dynamic programming algorithm for this problem.

(b) Use the dynamic programming recursion to find the optimal solution.

1.4 Let zk denote the number of university teachers at time k and let yk denote the
number of scientists at time k. The number of teachers and scientists evolve
according to the equations

zk+1 = (1− δ)zk + γzkuk,

yk+1 = (1− δ)yk + γzk(1− uk)

where 0 < δ < 1 and γ > 0 are constants and 0 < α ≤ uk ≤ β < 1.
The interpretation of these equations is that by controlling the funding of
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the university system it is possible to control the fraction of newly educated
teachers that become scientists, i.e. funding affects the control uk. We assume
z0 > 0 and y0 = 0 and in the above equations we allow both zk and yk to
be non-integer valued in order to simplify the problem. This is a reasonable
approximation if, for example, one unit is 105 persons.

(a) We would like to determine the control uk so that the number of scientists
is maximal at year N . Formulate the dynamic programming recursion
that solves this problem.

(b) Use dynamic programming to solve the problem in (a) when δ = 0.5,
γ = 0.5, α = 0.2, β = 0.8, z0 = 1, y0 = 0 and N = 2.

2. Infinite Horizon Discrete Time Optimal Control

2.1 Consider the optimal control problem

min

∞∑
k=0

(x2k + u2k) subj.to xk+1 = 2xk + uk, x0 = 2

(a) Use the Bellman equation

V (x) = min
u

{f0(x, u) + V (f(x, u))}

to compute the optimal control and the optimal cost.

(b) Compute the eigenvalue of the closed loop system.

3. Model Predictive Control

3.1 The model predictive control algorithm

(i) Measure xt|t := xt.

(ii) Determine ut|t by solving

minx2t+2|t + u2t+1|t + u2t|t

subj. to
{
xt+k+1|t = xt+k|t + ut+k|t, k = 0, 1

(iii) Apply ut := u∗t|t

(iv) Let t := t+ 1 and go to 1.

can be solved either using on-line optimization or by obtaining an explicit
solution.

(a) Determine an explicit solution ut|t = µ(xt|t) to this MPC problem.

(b) Is the closed loop system stable? In other words is the system xt+1 =
xt + µ(xt) converging to zero, where µ(·) is the feedback law computed
in problem (a).?

3.2 In this problem we investigate two model predictive control problems.
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(a) The model predictive control algorithm

(i) Measure xt|t := xt.

(ii) Determine ut|t by solving

min 2|xt+1|t|+ |ut|t|

subj. to

{
xt+1|t = xt|t + ut|t,

|ut|t| ≤ 1,

(iii) Apply ut := u∗t|t
(iv) Let t := t+ 1 and go to i.

can be solved either using on-line optimization or by obtaining an ex-
plicit solution. Determine an explicit solution ut|t = µ(xt|t) to this MPC
problem.

(b) Solve the same problem when step (ii) is replaced by

min 2|xt+2|t|+ |ut+1|t|+ |ut|t|

subj. to

{
xt+k+1|t = xt+k|t + ut+k|t, k = 0, 1

|ut+k|t| ≤ 1, k = 0, 1

4. Dynamic Programming in Continuous Time

4.1 This problem consists of two questions.

(a) Determine which of the following partial differential equations (a) − (d)
corresponds to the following optimal control problem

min
u

x(1)2 s.t

{
ẋ = 2u, x(0) = x0

|u| ≤ 1

(a) −Vt = −2Vxsign(Vx), V (1, x) = x2

(b) −Vt = −2Vxsign(Vx), V (1, x) = 2x

(c) −Vt = −2Vx, V (1, x) = x2

(d) −Vt = − sin(Vx)(1 + 2Vx), V (1, x) = x2

(b) Consider the optimal control problem

J(x0) =min
u

∫ 1

0
f01(x, u)dt+

∫ 2

1
f02(x, u)dt

s.t.

{
ẋ = f1(x, u), 0 ≤ t ≤ 1, x(0) = x0

ẋ = f2(x, u), 1 ≤ t ≤ 2

Below are two attempts of solving the problem. They cannot both be
correct (and may both be wrong). Find and explain the error(s) in the
reasoning. Is any of the two attempts correct?
Attempt 1:

J∗(x0) = minu1

∫ 1
0 f01(x1, u1)dt

s.t. ẋ1 = f1(x1, u1), x1(0) = x0

+ minx1(1)minu
∫ 2
1 f02(x2, u2)dt

s.t. ẋ2 = f2(x2, u2), x2(1) = x1(1)

= min
x1(1)

J∗
1 (x0) + J∗

2 (x1(1))
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Attempt 2:

J∗(x0) = minu{
∫ 1
0 f01(x, u)dt

s.t. ẋ = f1(x, u), x(0) = x0

+ minu
∫ 2
1 f02(x, u)dt

s.t. ẋ = f2(x, u),

}

= minu

{∫ 1
0 f01(x, u)dt+ J∗

2 (x(1))
}

s.t. ẋ = f1(x, u), x(0) = x0

where

J∗
k (x0) = minu

∫ k
k−1 f0k(xk, u)dt

s.t. ẋk = fk(xk, u), xk(k − 1) = x0

4.2 Consider the following value function (cost-to-go function)

V (t0, x0) = max
u∈R

∫ T

t0

√
u(s)ds s.t. ẋ(t) = βx(t)− u(t), x(t0) = x0

where β > 0. Verify that V (t, x) = f(t)
√
x, where

f(t) =

√
eβ(T−t) − 1

β

Comment: Note that the value function is only defined on [0, T ]×R+, where
R+ = (0,∞) (i.e. V : [0, T ] × R+ → R+). The theorems presented in the
course are also valid when the domain is restricted to such a set.

4.3 Consider the nonlinear optimal control problem

minx(1)2 +

∫ 1

0
(x(t)u(t))2dt subj. to ẋ(t) = x(t)u(t), x(0) = 1

Solve the problem using dynamic programming.

Hint: Use the ansatz V (t, x) = p(t)x2.

4.4 In this problem you will investigate an optimal control problem with au-
tonomous dynamics. The constraint that the final state state is zero has certain
implications that you will investigate.

(a) Consider the optimal control problem

min

∫ tf

0
(x2 + u2)dt s.t.

{
ẋ = x+ u, x(0) = x0

x(tf ) = 0, tf > 0

where the final time is a free variable to be optimized. If we apply dynamic
programming then we get two possible feedback solutions

u = −(1±
√
2)x

Are both optimal?
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(b) Now consider the more general case

min

∫ tf

0
(‖x‖2 + u2)dt s.t.

{
ẋ = Ax+Bu, x(0) = x0

x(tf ) = 0, tf > 0

where (A,B) is a controllable pair. How do you compute the optimal
solution? Justify your answer.

(c) Solve (b) when

A =

[
0 1
0 0

]
, B =

[
0
1

]
, x0 =

[
1
1

]
4.5 The purpose of this problem is investigate continuous time dynamic program-

ming applied to optimal control problems with discounted cost and apply it
to an investment problem.

(a) Consider the optimal control problem

min
u

e−αTΦ(x(T )) +

∫ T

0
e−αtf0(t, x(t), u(t))dt

subj.to. ẋ(t) = f(t, x(t), u(t)), x(t0) = x0

Let V (x, t) = e−αtW (x, t). Use the Hamilton-Jacobi-Bellman Equation
(HJBE) to derive a new (HJBE) for W (t, x) (the discounted cost HJBE).

(b) Solve the following investment problem

max
u

∫ T

0
e−αt

√
u(t)dt subj. to ẋ(t) = βx(t)− u(t), x(0) = x0

where x0 is the initial amount of savings, u is the rate of expenditure,
and β is the interest rate on the savings.
Hint: You may use problem (a) with W (t, x) = w(t)

√
x, where w(t) is a

function to be determined.

5. Pontryagin Minimum Principle

5.1 Consider the optimal control problem.

min

∫ 1

0
(3x(t)2 + u(t)2)dt subj. to ẋ(t) = x(t) + u(t), x(0) = x0

(i) Determine the optimal feedback control.

(ii) Determine the optimal cost.

5.2 We will solve two similar optimal control problems.

(a) Use PMP to solve

min

∫ 2

0
(u1(t)

2 + u2(t)
2)dt subj. to


[
ẋ1(t)

ẋ2(t)

]
=

[
u1(t)

u2(t)

]
,

x(0) = 0, x(2) ∈ S2

where S2 = {x ∈ R2 : x22 − x1 + 1 = 0}.
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(b) Use PMP to solve

min

∫ 2

0
(u1(t)

2 + u2(t)
2)dt subj. to


[
ẋ1(t)

ẋ2(t)

]
=

[
u1(t)

u2(t)

]
,

x(0) ∈ S0, x(2) ∈ S2

where S0 = {x ∈ R2 : x22 + x1 = 0} and S2 is as above.

5.3 Use PMP to solve the optimal control problem

min

∫ 1

0
4(2− u)xdt subject to

{
ẋ = 2(2u− 1)x, x(0) = 2, x(1) = 4

0 ≤ u ≤ 2

Hint: First prove that x(t) has constant sign on t ∈ [0, 1].

5.4 Consider the optimal control problem

min

∫ tf

0
u(t)dt s.t.

{
ẋ(t) = −x(t) + u(t), x(0) = x0 x(tf ) = 0

u ∈ [0,m]

(5.1)

(a) Suppose tf is fixed. For what values of x0 is it possible to find a solution
to the above problem, i.e. for what values of x0 can the constraints be
satisfied?

(b) Find the optimal control to (5.1) (for those x0 you found in (a)).

(c) Let tf be free, i.e. consider the optimal control problem

min

∫ tf

0
u(t)dt s.t.

{
ẋ(t) = −x(t) + u(t), x(0) = x0 x(tf ) = 0

u ∈ [0,m]; tf ≥ 0

Solve this optimal control problem for the case when x0 < 0.

5.5 Determine the optimal control for the following optimal control problem using
PMP

max

∫ 1

0
(ln(u) + x)dt subj.to.

{
ẋ = x− u, x(0) = 0

0 < u ≤ 1

5.6 The first order optimality conditions (PMP) applied to a continuous time linear
quadratic control problem gives rise to the system[

ẋ(t)

λ̇(t)

]
=

[
A −BR−1BT

−Q −AT

]
︸ ︷︷ ︸

H

[
x(t)
λ(t)

]
,

where the matrix H is called the Hamiltonian matrix. The matrices Q and R
are symmetric, i.e. Q = QT and R = RT .
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(a) Show that the matrix H satisfies the following condition

HTJ + JH = 0, where J =

[
0 I
−I 0

]
.

Matrices that satisfies this condition are called symplectic.

(b) Compute the eigenvalues for the matrix H for the scalar case case when
A = a, B = b, Q = q and R = r, where q and r are strictly positive
numbers and a and b are any real numbers.

(c) The eigenvalues are distributed according to a certain symmetry rule.
Make a conjecture about the eigenvalues and prove your conjecture.

6. Infinite Time-Horizon Optimal Control

6.1 Consider the following infinite horizon optimal control problem

min

∫ ∞

0
(x1(t)

2 + u(t)2)dt subj. to

{
ẋ1(t) = x2(t), x1(0) = x10

ẋ2(t) = u(t), x2(0) = x20
(6.1)

(a) Formulate the problem on the standard form

min

∫ ∞

0
(x(t)TQx(t) + u(t)TRu(t))dt subj. to

{
ẋ(t) = Ax(t) +Bu(t),

x(0) = x0,

i.e. provide the values for all matrices and vectors.

(b) Do the factorization Q = CTC and verify that (C,A) is observable and
(A,B) is controllable, i.e. verify that the following matrices

O =


C
CA
...

CAn−1

 C =
[
B AB . . . An−1B

]

have full rank (n denotes the dimension of system in the optimal control
problem).

(c) Determine the optimal stabilizing state feedback solution to the optimal
control problem (6.1).

(d) Is the solution in (c) unique?

(e) Verify that the closed loop system is stable?

6.2 Consider the scalar linear quadratic optimal control problem

min

∫ ∞

0
(3x2 + u2)dt subject to ẋ = −x+ u, x(0) = 1 (6.1)

(a) Compute the optimal stabilizing feedback control and the corresponding
optimal cost.

(b) Compute the closed loop poles.



7. Mixed Problems 9

Now consider the finite truncation of (6.1)

min

∫ T

0
(3x2 + u2)dt subject to ẋ = −x+ u, x(0) = 1 (6.2)

(c) Use the Hamilton-Jacobi-Bellman equation to compute the optimal feed-
back control and the corresponding optimal cost.

(d) Let p(t, T ) be the Riccati solution corresponding to (6.2), where the fi-
nal time is made explicit as an argument. Compute limT→∞ p(t, T ) and
compare with the solution to the ARE corresponding to (6.1).

7. Mixed Problems

7.1 For the following four problems you only need to give a short answer with a
brief motivation. Note that if the constraint set is empty, i.e., there does not
exist a control satisfying the conditions in the constraint, then the optimal
value is ∞.

(a) What is the optimal value for

J = min

∫ ∞

0
(xTQx+ uTRu)dt subj. to

{
ẋ = Ax+Bu,

x(0) = 0

where Q ≥ 0 and R > 0.

(c) What is the optimal value for

J = min tf subj. to

{
ẋ = u, x(0) = 1, x(tf ) = 0

u ∈ [0, 1], tf ≥ 0

(b) Consider the optimal control problem

minx2(T ) +

∫ T

0
f0(x, u)dt subject to

{
ẋ = f(x, u), x(0) = x0

x1(T ) = 1

The state vector has n-variables (x =
[
x1 x2 . . . xn

]T
). What are the

boundary conditions on the adjoint vector λ that can be derived from
PMP.

(d) Consider the problem

min

∫ tf

0
f0(t, x(t), u(t))dt subj. to

{
ẋ = f(t, x(t), u(t))

x(0) = x0,

Suppose the solution (x∗(·), u∗(·)), and the function λ(·) satisfies the con-
ditions of PMP. Assume further that

Huu(t, x
∗(t), u∗(t), λ(t)) = 2

Hux(t, x
∗(t), u∗(t), λ(t)) = 1

Hxx(t, x
∗(t), u∗(t), λ(t)) = 2

Is (x∗(·), u∗(·)) a local minimum?
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x

Figure 7.1: Miniumum-time landing of a rocket on the moon.

7.2 Figure 7.1 shows a space craft in the terminal phase of a minimum-time landing
on the surface of the moon. The dynamics describing the system are

ẋ1(t) = x2(t), x1(0) = x0,

ẋ2(t) = −g − k

x3(t)
u(t), x2(0) = v0,

ẋ3(t) = u(t), x3(0) = m0,

u(t) ∈ [−M, 0]

where x1 = x, x2 = ẋ and x3 = m, the mass of the rocket. The gravitational
constant is denoted g and k is a constant representing the relative exhaust
velocity of gases.

(a) Formulate the problem of performing the landing in minimum time as
an optimal control problem. The rocket should move from the initial
condition (x1(t0), x2(t0), x3(t0)) = (x0, v0,m0) to the surface of the moon
(x1(tf ), x2(tf )) = (0, 0) subject to the control constraint u(t) ∈ [−M, 0].

(b) Use PMP to formulate the two-point boundary-value problem (TPBVP)
from which the optimal control can be solved. You do not need to solve
the (TPBVP) but all conditions from PMP must be stated.
Remark: You may assume that there are no singular solutions

7.3 PMP gives candidiates for optimality for nonlinear optimal control problems
on the form

minφ(x(tf )) +

∫ tf

0
f0(t, x, u) subject to ẋ = f(t, x, u), x(0) = x0.

It is possible to use the second order variation to prove local optimality of such
candidiates. The second order optimality conditions reduces to proving that a
particular linear quadratic optimal control problem is strictly positive definite.
We will touch on this problem for a special case. Consider the following scalar
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problem

min q0x(tf )
2 +

∫ tf

0
(q(t)x(t)2 + r(t)u(t)2)dt

subject to

{
ẋ(t) = a(t)x(t) + b(t)u(t),

x(0) = 0

(7.1)

(a) Prove that

d

dt
(p(t)x(t)2) + q(t)x(t)2 + r(t)u(t)2 = r(t)

(
u(t) +

p(t)b(t)

r(t)
x

)2

where p(t) is the solution to the Riccati equation corresponding to (7.1).

(b) Assume r(t) > 0. Use (a) to show that

q0x(tf )
2 +

∫ tf

0
(q(t)x(t)2 + r(t)u(t)2)dt > 0

for all nonzero solutions to ẋ(t) = a(t)x(t) + b(t)u(t), x(0) = 0. Note
that we don’t demand that q0 > 0 or q > 0.


