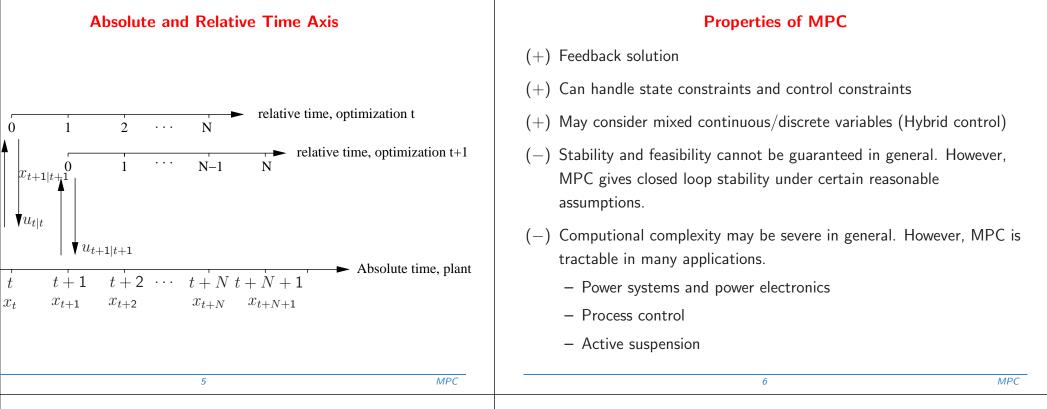


3

MPC

МРС



Online Optimization Versus Explicit MPC

Online optimization: Solve on-line in run-time the optimization $\min_{U_t} J(x_{t|t}, U_t)$, where

$$U_t = (u_{t|t}, u_{t+1|t}, \dots, u_{t+N-1|t})$$

$$I(x_{t|t}, U_t) = \sum_{k=0}^{N-1} f_0(x_{t+k|t}, u_{t+k|t})$$
subj. to
$$\begin{cases} x_{t+k+1|t} = f(x_{t+k|t}, u_{t+k|t}), \\ x_{t+k|t} \in \mathbf{X}, \ u_{t+k|t} \in \mathbf{U} \end{cases}$$

Find explicit solution

$$U_t^* = (\mu(0, x_{t|t}), \dots, \mu(N-1, x_{t+N-1|t})) = \operatorname{argmin}_{U_t} J(x_{t|t}, U_t)$$

and use $u^*_{t|t} = \mu(x_{t|t}) := \mu(0, x_{t|t})$ as state feedback function.

- $\bullet\,$ The explicit solution is possible to compute in case of
 - $1. \ Linear$ cost, linear dynamics, and linear constraints.
 - 2. Quadratic cost, linear dynamics, and linear constraints (harder)
- The optimal solution is a piecewise linear map or look-up table.

Two Tractable Cases

Linear dynamics and quadratic cost

$$\min \sum_{k=0}^{N-1} x_{t+k|t}^T Q x_{t+k|t} + u_{t+k|t}^T R u_{t+k|t}$$
subj. to
$$\begin{cases} x_{t+k+1|t} = A x_{t+k|t} + B u_{t+k|t}, \\ x_{t+k|t} \in \mathbf{X}, \ u_{t+k|t} \in \mathbf{U} \end{cases}$$

where $Q \ge 0$, R > 0, $\mathbf{X} = \{x : -1 \le Cx \le 1\}$, $\mathbf{U} = \{\alpha \le u \le \beta\}$.

- Solved using quadratic programming
 - ETH slides (Löfberg et. al.)

2. Linear dynamics and linear cost

$$\min \sum_{k=0}^{N-1} \|Qx_{t+k|t}\|_{p} + \|Ru_{t+k|t}\|_{p}$$

subj. to
$$\begin{cases} x_{t+k+1|t} = Ax_{t+k|t} + Bu_{t+k|t}, \\ x_{t+k|t} \in \mathbf{X}, \ u_{t+k|t} \in \mathbf{U} \end{cases}$$

e $p = 1$ or $p = \infty$, i.e. if $y = \begin{bmatrix} y_{1} & y_{2} & \dots & y_{n} \end{bmatrix}^{T}$ the

where
$$p = 1$$
 or $p = \infty$, i.e. if $y = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix}^T$ then
(a) $\|y\|_1 = \sum_{k=1}^n |y_k|$

(b)
$$||y||_{\infty} = \max_{k=1,...,n} |y_k|$$

Solution can be obtained using linear programming
 ETH slides (Löfberg et. al.)

10

9	МРС
Basic Stability Res	ult
$U_{t} = \left[u_{t t}, u_{t+1 t}, \dots, u_{t+N-1 t}\right]$ $u_{t}, U_{t}) = \sum_{k=0}^{N-1} f_{0}(x_{t+k t}, u_{t+k t}) \text{ subj. to}$	$\left\{egin{aligned} x_{t+k+1 t} &= f(x_{t+k t}, u_{t+k t}), \ x_{t+k t} \in \mathbf{X}, \ u_{t+k t} \in \mathbf{U} \ x_{t+N t} &= 0 \end{aligned} ight.$

the MPC algorithm can be formulated as

Measure $x_{t|t} := x_t$. Let $U_t^* = \left[u_{t|t}^*, u_{t+1|t}^*, \dots, u_{t+N-1|t}^*\right] = \min_{U_t} J(x_{t|t}, U_t)$ Apply $u_t := u_{t|t}^*$ Let t := t + 1 and go to 1. Theorem 1. Suppose

(i) $f_0(0,0) = 0$ and there exists $\epsilon > 0$ such that

$$f_0(x, u) \ge \epsilon(\|x\|^2 + \|u\|^2)$$

- (*ii*) f(0,0) = 0
- (iii) $0 \in \mathbf{X}$ and $0 \in \mathbf{U}$
- (*iv*) $\min_{U_t} J(x_{0|0}, U_t) < \infty$ (*initial feasibility*)

then the MPC algorithm on the previous slide gives a feasible and convergent closed loop trajectory (stability) $(x_t, u_t) \rightarrow (0, 0)$ as $t \rightarrow \infty$

- For a proof see the MPC slides (Löfberg et. al.).
- For an example see the hand-out on MPC problems.

MPC

Example

ose

$$\begin{aligned} x_{t|t}, U_t) &= \sum_{k=0}^{1} x_{t+k|t}^T Q x_{t+k|t} + u_{t+k|t}^2 \\ \text{subject to} &\begin{cases} x_{t+k+1|t} = A x_{t+k|t} + B u_{t+k|t} \\ -1 \le C x_{t+k|t} \le 1, \ k = 0, 1 \\ x_{t+2|t} = 0, \quad -1 \le u_{t+k|t} \le 1, \ k = 0, 1 \end{cases} \end{aligned}$$

е

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

rmine the stability region.

Stability Region

In a separate handout we show that the stability region is

$$\mathbf{X}_0 = \{ x : -1 \le x_1 + x_2 \le 1; -1 \le -2x_2 - x_1 \le 2 \}$$

13	МРС		14	МРС