SF3828 Large scale convex optimization and monotone operators, 2024.

Home assignments, collection number 1.

Solve all the problems. Hand in the solutions to problems 2, 6 and 7. Due date: March 13, 2024.

Note: You may discuss the problems with other students, but you should write your own solutions, "in your own words".

Throughout assume that \mathbf{R}^{n} is a Hilbert space with inner produce $\langle x, y\rangle=\sum_{i} x_{i} y_{i}$.

1. Compute the subdifferentials of the following functionals $f: \mathbf{R}^{n} \rightarrow \overline{\mathbf{R}}$:

- $f(x)=\frac{1}{2}\|x\|_{2}^{2}$,
- $f(x)=\frac{1}{2}\|x\|_{2}$,
- $f(x)=\frac{1}{2}\|x\|_{1}$.

2. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be the max function given by $f(x)=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Show that f is convex.
- Compute the directional derivative

$$
f^{\prime}(x, d)=\lim _{\alpha \rightarrow 0^{+}} \frac{f(x+\alpha d)-f(x)}{\alpha}
$$

for all $x, d \in \mathbf{R}^{n}$.

- Calculate $\partial f(x)$ for all $x \in \mathbf{R}^{n}$.

3. Compute the conjugate functions of the following functionals $f: \mathbf{R}^{n} \rightarrow \overline{\mathbf{R}}$

- $f(x)=\frac{1}{2}\|x\|_{2}^{2}$
- $f(x)=\frac{1}{2}\|x\|_{2}$
- $f(x)=\frac{1}{2}\|x\|_{1}$
- Let $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear operator. Let $b \in \mathbf{R}^{m}$, and let $V=\{x \mid L x=b\}$ be nonempty. Compute the conjugate of $f(x)=\delta_{V}(x)$.
- Let $C=\{x \mid x \leq 0\}$. Compute the conjugate of $f(x)=\delta_{C}(x)$.

Here δ_{C} denotes the indicator function, defined by

$$
\delta_{C}(x):= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise }\end{cases}
$$

4. Let $f: \mathbf{R}^{n} \rightarrow \overline{\mathbf{R}}$ be CCP and let $x \in \operatorname{ridom} f$. Show that f is subdifferentiable at x. (Hint: You may use for example an argument building on separating hyperplanes. Note what part of the argument that do not hold when $x \in \operatorname{dom} f \backslash \operatorname{ridom} f$)
5. Let $f: \mathbf{R}^{n} \rightarrow \overline{\mathbf{R}}$ be CCP. Show that the following two definitions of μ-strongly convex functions (with $\mu>0$) are equivalent

- $f(x)-\frac{\mu}{2}\|x\|_{2}^{2}$ is convex
- $\langle\partial f(x)-\partial f(y), x-y\rangle \geq \mu\|x-y\|_{2}^{2}$ for all x, y.

6. Let $f: \mathbf{R}^{n} \rightarrow \overline{\mathbf{R}}$ and suppose that f is CCP function (and that ridom $f \neq \emptyset$). Further suppose, if nothing else is stated, that f is μ-strongly convex with $\mu>0$.
7. Show that the (nonempty) level-sets of f are bounded.
8. Show that $f(y) \rightarrow \infty$ as $\|y\| \rightarrow \infty$.
9. Show that the infimum of f is attained, i.e., show that $\operatorname{argmin}_{x} f(x)$ exists.
10. Find a counter-example that shows $\operatorname{argmin}_{x} f(x)$ need not exist if f is only strictly convex.
11. For $f, g: \mathbf{R}^{n} \rightarrow \overline{\mathbf{R}}$ proper and convex functions, the Fenchel dual problem to

$$
\begin{equation*}
\inf _{x \in \mathbf{R}^{n}} f(x)+g(x) \tag{P}
\end{equation*}
$$

is defined as

$$
\begin{equation*}
\sup _{y \in \mathbf{R}^{n}}-f^{*}(-y)-g^{*}(y) . \tag{D}
\end{equation*}
$$

- For $f, g: \mathbf{R}^{2} \rightarrow \overline{\mathbf{R}}$ defined by

$$
\begin{aligned}
& f(x)= \begin{cases}\max \left(-1,-\sqrt{x_{1} x_{2}}\right), & \text { if } x_{1} \geq 0, x_{2} \geq 0 \\
+\infty & \text { otherwise }\end{cases} \\
& g(x)=\delta_{\left\{x \mid x_{1}=0\right\}}(x),
\end{aligned}
$$

show that there is a duality gap. In particular, $\inf (P)=0$, while $\sup (D)=-1$.

- For $f, g: \mathbf{R} \rightarrow \overline{\mathbf{R}}$ defined by

$$
\begin{aligned}
& f(x)= \begin{cases}x(\log (x)-1), & \text { if } x>0 \\
0 & \text { if } x=0 \\
+\infty & \text { otherwise },\end{cases} \\
& g(x)= \begin{cases}\frac{1}{2} x^{2}, & \text { if } x \leq 0 \\
+\infty & \text { otherwise },\end{cases}
\end{aligned}
$$

show that $\inf (P)=0$, while $\sup (D)=0$, but that there is no optimal solution for the dual problem.

Good luck!

