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These notes are based on a five-lecture summer school course given by the author at the

“Summer Workshop on Lattice Polytopes” at Osaka University in 2018. We give a short
introduction to the theory of valuations on lattice polytopes. Valuations are a classical

topic in convex geometry. The volume plays an important role in many structural re-

sults, such as Hadwiger’s famous characterization of continuous, rigid-motion invariant
valuations on convex bodies. Valuations whose domain is restricted to lattice polytopes

are less well-studied. The Betke-Kneser Theorem establishes a fascinating discrete ana-

log of Hadwiger’s Theorem for lattice-invariant valuations on lattice polytopes in which
the number of lattice points — the discrete volume — plays a fundamental role. From

there, we explore striking parallels, analogies and also differences between the world of
valuations on convex bodies and those on lattice polytopes with a focus on positivity

questions and links to Ehrhart theory.
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1. Lattice-invariant valuations

1.1. Hadwiger’s Characterization Theorem

A valuation is a map ϕ from a family of convex bodies P in Rd containing the

empty set into an abelian group G such that ϕ(∅) = 0 and

ϕ(P ∪Q) = ϕ(P ) + ϕ(Q)− ϕ(P ∩Q)

for all P,Q ∈ P for which P∪Q,P∩Q ∈ P. The prototypical example of a valuation

is the d-dimensional Euclidean volume Vol(P ) which has many desirable properties.

Besides being a valuation, it is rigid-motion invariant, positive, d-homogeneous

(that is, Vol(tP ) = tdVol(P ) for all convex bodies P ⊆ Rd and t ≥ 0), and con-

tinuous with respect to the Hausdorff metric. A natural question is to determine

all real-valued valuations with the same properties. Questions of that kind are a

classical theme in valuation theory and an answer to this particular one was given

by Hadwiger [12] who proved the following foundational result.

Theorem 1.1 (Hadwiger’s Characterization Theorem [12]). The family of

continuous, real-valued, rigid-motion invariant valuations on convex bodies is a

(d+ 1)-dimensional vector space spanned by the quermassintegrals.
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The quermassintegrals are the valuations W0,W1, . . . ,Wd that are related to the

volume via the Steiner polynomial

Vol(tP + Bd) =

d∑
i=0

(
d

i

)
Wi(P )ti .

Here, Bd denotes the unit ball, and “+” denotes the Minkowski sum which for

two convex bodies P and Q is defined by P + Q := {p + q : p ∈ P, q ∈ Q}. It

can furthermore be seen that all Wi are positive and, as coefficients of the Steiner

polynomial, i-homogeneous.

We continue this section by considering another interesting valuation and recall-

ing fundamentals from Ehrhart theory that serve us as base point and motivation in

the following. We state the Betke-Kneser Theorem for lattice-invariant valuations

and provide the main proof ideas given in [6]. Section 2 is devoted to translation-

invariant valuations and their behavior under dilation. Our main objective is to

recover a polynomiality and a reciprocity result due to McMullen [19]. In Section 3,

we present a notion of positivity for translation-invariant valuations introduced

in [14] that aligns with fundamental results in Ehrhart theory. In Section 4 we in-

troduce combinatorial mixed valuations extending the notion of mixed volumes and

address questions of positivity and monotonicity [13]. The purpose of these notes

is to give an overview over the content of the summer school course. The focus is

on results and proof ideas rather than giving full details (for which references are

provided). No specific prerequisites are needed but familiarity with combinatorial

concepts, in particular, with (lattice) polytopes is assumed. For further reading we

recommend [1, 11, 21, 26].

1.2. Ehrhart theory and the Betke-Kneser Theorem

Of central interest in the following is the valuation E(P ) := |P ∩ Zd| counting the

number of lattice points in a polytope P ⊂ Rd. It is also called the discrete volume

as it exhibits some strikingly parallel behavior to the volume, as we will see. For

example, the discrete volume is certainly not homogeneous; we leave it to the reader

to check small examples. However, if we view homogeneity as polynomiality in the

dilation factor then, restricted to the class of lattice polytopes, this carries over to

counting lattice points. The following result is due to Ehrhart [10] and constitutes

the foundation of a field called Ehrhart theory.

Theorem 1.2 (Ehrhart [10]). Let P ⊂ Rd be a lattice polytope. Then |nP ∩ Zd|
is given by a polynomial EP (n) of degree dimP for integers n ≥ 0.

The polynomial EP (n) is called the Ehrhart polynomial of P . Since the dis-

crete volume is a valuation on lattice polytopes, also the Ehrhart polynomial

EP (n) = E0(P )+E1(P )n+ · · ·+Ed(P )nd itself as well as its coefficients P 7→ Ei(P )

define valuations. A fundamental question in Ehrhart theory is to characterize

these coefficients. The coefficients Ei are homogeneous, however, in contrast to
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the quermassintegrals, they can be negative (see, e.g., [1]). Towards a character-

ization of Ehrhart polynomials, Stanley [23] showed that the coefficients of the

Ehrhart polynomial of an r-dimensional lattice polytope with respect to the basis(
n+r
r

)
,
(
n+r−1

r

)
, . . . ,

(
n
r

)
are always nonnegative integers.

Theorem 1.3 (Stanley’s Nonnegativity Theorem [23]). Let P be a lattice

polytope of dimension r. Then there are natural numbers h∗0(P ), h∗1(P ), . . . , h∗r(P )

such that

EP (n) = h∗0(P )

(
n+ r

r

)
+ h∗1(P )

(
n+ r − 1

r

)
+ · · ·+ h∗r(P )

(
n

r

)
.

The vector h∗(P ) = (h∗0(P ), . . . , h∗d(P )) is called the h∗-vector, where h∗i (P ) := 0

for i > r and h∗P (t) = h∗0(P ) + h∗1(P )t + · · ·h∗d(P )td is called the h∗-polynomial

of P . Notice that, in contrast to the coefficients Ei(P ) of the monomial basis, the

coefficients h∗i (P ) are not valuations in general. This is due to the fact that the

chosen basis depends on the dimension of the polytope.

Unlike the volume, the discrete volume is not rigid-motion invariant. However,

it is lattice-invariant, that is, invariant under transformations preserving the in-

teger lattice Zd (that is, unimodular transformations). This property carries

over to the Ehrhart polynomial and its coefficients. Again, a natural question is to

characterize all such valuations. The Betke-Kneser Theorem gives a characteriza-

tion of lattice-invariant valuations and explains the particular role of the Ehrhart

polynomial in valuation theory.

Theorem 1.4 (Betke-Kneser Theorem [6]). The family of real-valued, lattice-

invariant valuations on lattice polytopes is a (d+1)-dimensional vector space spanned

by the coefficients of the Ehrhart polynomial.

In the remainder of this section we outline the approach taken in [6] to prove this

theorem.

1.3. Valuations and groups

A union P = P1 ∪ · · · ∪ Pm of d-dimensional polytopes P1, . . . , Pm is a dissection

of a d-dimensional polytope P if dim(Pi ∩ Pj) < d for all i 6= j. Let (F̃ d,+) be the

free abelian group generated by

{JP K : P d− dimensional lattice polytope in Rd}

and let R̃d be the collection of the following two types of relations:

• JP K− JT (P )K for any d-dimensional lattice polytope P and any unimodular

transformation T .

• JP K−
∑m

i=1JPiK for any dissection P = P1 ∪ · · · ∪Pm into lattice polytopes

P1, . . . , Pm.
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It turns out that π̃d := F̃ d/R̃d has a very simple structure, namely that of a cyclic

group. Let ∆d = conv (0, e1, . . . , ed) be the d-dimensional standard simplex.

Theorem 1.5 ([6]). The group π̃d is the infinite free cyclic group generated by

J∆dK.

For the proof the concept of visibility can be employed. A face F of a d-dimensional

polytope P is visible from a point q ∈ Rd if [q, p) ∩ P = ∅ for all points p ∈ F .

Here, [q, p) denotes the half-open segment {tq+ (1− t)p : 0 < t ≤ 1}. A face that is

not visible is called invisible. A point q ∈ Rd is general with respect to P if q is

not contained in any facet defining hyperplane of P . Visible and invisible facets can

be used to dissect conv (P ∪ {q}) in two different ways. For that, let F1, . . . , Fm be

the facets of P and let Iq(P ) = {i ∈ [m] : Fm visible}. Then

conv (P ∪ {q}) = P ∪
⋃

i∈Iq(P )

conv (Fi ∪ {q}) , (1)

=
⋃

i 6∈Iq(P )

conv (Fi ∪ {q}) , (2)

and the right hand side of (1) and (2) define dissections of conv (P ∪ {q}).

Proof idea of Theorem 1.5. Since every lattice polytope can be triangulated

into empty lattice simplices (that is, simplices whose only lattice points are their

vertices), it suffices to show that for every empty lattice simplex S, JSK = V(S)J∆dK
where V(S) = d!Vol(S) denotes the normalized volume. The proof is by induction

on V(S). If V(S) = 1 then there is a unimodular transformation T with T (∆d) = S,

and we are done. If S is an empty lattice simplex with facets F1, . . . , Fm and

VolS > 1 then from (1) and (2) it follows that

JSK =
∑

i6∈Iq(S)

Jconv (Fi ∪ {q})K−
∑

i∈Iq(S)

Jconv (Fi ∪ {q})K .

If now q ∈ Zd is chosen in such a way that Vol(conv (Fi ∪ {q}q)) < Vol(S) for

all facets Fi then the claim follows by induction. In [6] such a q was explicitly

constructed.

Let (F d,+) be the free abelian group with generators

{JP K : P lattice polytope in Rd}

and let Rd be the collection of relations:

• JP K−JT (P )K for any lattice polytope P and any unimodular transformation

T .

• JP K −
∑
∅6=I⊆[m](−1)|I|−1J

⋂
i∈I PiK for any union P = P1 ∪ · · · ∪ Pm such

that
⋂

i∈I Pi is a lattice polytope for all I 6= ∅.
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Let πd := F d/Rd. The second condition corresponds to the inclusion-exclusion

property that is satisfied by any valuation ϕ on lattice polytopes [5, 20, 25]; for

every union P = P1 ∪ · · · ∪ Pm such that
⋂

i∈I Pi is a lattice polytope for all I 6= ∅

ϕ(P ) =
∑

∅6=I⊆[m]

(−1)|I|−1ϕ

(⋂
i∈I

Pi

)
.

It follows that every lattice-invariant valuation ϕ corresponds to a unique homo-

morphism of abelian groups ϕ̄ : πd → G defined by ϕ̄(JP K) = ϕ(P ). It turns out

that also πd has a very simple structure which can be seen by similar arguments as

in Theorem 1.5.

Theorem 1.6 ([6]). The group πd is a free abelian group with generators

{J∆iK}i=0,1,...,d.

An immediate corollary is the following.

Corollary 1.1 ([6]). Every lattice-invariant valuation is uniquely determined by

its values on the standard simplices {J∆iK}i=0,1,...,d.

Putting the pieces together we are now ready for the proof of the Betke-Kneser

Theorem.

Proof of the Betke-Kneser Theorem. By Corollary 1.1, the space of real-

valued rigid-motion invariant valuations is a vector space of dimension d+ 1. Thus,

by observing that the coefficients of the Ehrhart polynomial are homogeneous of

degrees 0, 1, . . . , d and therefore linearly independent, the proof is complete.

2. Translation-invariant valuations

2.1. Polynomiality

In the following let Λ denote Rd or Zd and let P(Λ) be the family of polytopes with

vertices in Λ called Λ-polytopes. A valuation ϕ : P(Λ)→ G is called translation-

invariant (or a Λ-valuation) if ϕ(P + t) = ϕ(P ) for all P ∈ P(Λ) and all t ∈ Λ.

Examples of Rd-valuations include the volume and the Euler characteristic χ

which evaluates to 1 on non-empty polytopes. An important example of a Zd-

valuation is the discrete volume. McMullen [19] generalized Ehrhart’s polynomiality

theorem [10] to translation-invariant valuations.

Theorem 2.1 (McMullen [19]). Let ϕ : P(Λ) → G be a translation-invariant

valuation and let P ∈ P(Λ) be a Λ-polytope. Then the function ϕ(nP ) agrees

with a polynomial ϕP (n) of degree at most dimP for all integers n ≥ 0.

Here, a polynomial is defined in the following combinatorial way. Let GZ denote the

collection of functions from Z to G. The shift operator S : GZ → GZ is defined by

(Sf)(n) = f(n+ 1) for all f : Z→ G. The difference operator ∆ is defined through
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(∆f)(n) = f(n+ 1)−f(n), that is, ∆ = S− I. A function Z→ G is a polynomial

of degree at most d if and only if ∆d+1f ≡ 0. In terms of generating polynomials

this can be characterized in the following way (see, e.g., Stanley [24]).

Theorem 2.2. A function f : Z → G is a polynomial of degree at most d if and

only if ∑
n≥0

f(n)tn =
h(t)

(1− t)d+1

as rational functions where h(t) = h0 + h1t+ · · ·+ hdt
d ∈ G[t] is a polynomial with

deg h ≤ d. Equivalently,

f(n) = h0

(
n+ d

d

)
+ h1

(
n+ d− 1

d

)
+ · · ·+ hd

(
n

d

)
for all n ≥ 0.

In particular, if f is the Ehrhart polynomial of a lattice polytope, then h is its

h∗-polynomial. We will outline a proof of Theorem 2.1 given in [14] that uses

Theorem 2.2 and provide an interpretation of the coefficients h0, h1, . . . , hd in the

case that f(n) = ϕP (n) for arbitrary translation-invariant valuations ϕ and Λ-

polytopes P .

Since every Λ-polytope can be triangulated into Λ-simplices, by the inclusion-

exclusion property it is sufficient to prove polynomiality of ϕ(nP ) for arbitrary

Λ-simplices P . However, to avoid inclusion-exclusion and thus considering lower

dimensional polytopes, we consider half-open polytopes and half-open decomposi-

tions. This will come in handy in regards to positivity questions in later sections.

Let P be a polytope with facets F1, . . . , Fm and let q ∈ affP be a point in general

position to P . We obtain the half-open polytope HqP by removing all visible

faces of P :

HqP = P \
⋃

i∈Iq(P )

Fi .

Proposition 2.1 ([15]). Let P = P1 ∪ · · · ∪ Pm be a dissection and let q ∈ Rd be

general with respect to Pi for all 1 ≤ i ≤ m. Then

HqP = HqP1 t · · · tHqPm

is a partition. In particular, if q ∈ relintP , then P can be decomposed into half-open

polytopes.

Any valuation on Λ-polytopes can be extended to half-open polytopes in a natural

way by using the inclusion-exclusion property [20], namely

ϕ(HqP ) := ϕ(P )−
∑

∅6=J⊆Iq(P )

(−1)|J|−1ϕ(FJ) ,

where FJ :=
⋂

i∈J Fi. The following is an immediate consequence of Proposition 2.1.
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Corollary 2.1. Let P = P1 ∪ · · · ∪ Pm be a triangulation into Λ-simplices and let

q ∈ relintP be general with respect to Pi for all 1 ≤ i ≤ m. Then

ϕ(P ) = ϕ(HqP1) + · · ·+ ϕ(HqPk) .

Thus, since every Λ-polytope can be triangulated into Λ-simplices, Theorem 2.1 is

a direct consequence of the following result.

Theorem 2.3. Let S̃ be an half-open simplex in P(Λ) and ϕ be a translation-

invariant valuation. Then ϕ(nS̃) agrees with a polynomial ϕS̃ of degree at most d

for integers n ≥ 0.

Proof idea. We illustrate the argument given in [14] on a half-open triangle. We

partition the dilated half-open triangle S̃ into congruent half-open triangles S̃ and

Ŝ as shown in Figure 1.

S̃
Ŝ

S̃ 2S̃ 3S̃

Fig. 1. Decomposition of integer dilates of S̃ into translates of S̃ and Ŝ.

By translation-invariance and Corollary 2.1,

ϕS̃(n) = ϕ(S̃)

(
n+ 1

2

)
+ ϕ(Ŝ)

(
n

2

)
.

This method can be generalized to higher dimensions. More precisely, let S̃ = HqS

for some Λ-simplex S and general point q with respect to S and let I = Iq(S). Let

F1, . . . , Fd+1 be its facets and v1, . . . , vd+1 be the vertices labeled in such a way that

vi 6∈ Fi. Furthermore, let v̄i := (vi, 1)T for all vertices vi. Extending a standard

method in Ehrhart theory we consider the half-open parallelepiped

Π = {µ1v̄1 + · · ·+ µd+1v̄d+1 : 0 ≤ µi < 1 if i 6∈ I, 0 < µi ≤ 1 otherwise} ⊂ Rd+1 .

Then the coefficients can be expressed in terms of the values of ϕ on the half-open

hypersimplices Πi = Π ∩ {x ∈ Rd+1 : xd+1 = i}; see [14] for further details. We

collect the full statement in the next corollary for later reference.
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Corollary 2.2 ([14]). Let S̃ be an half-open Λ-simplex and ϕ be a translation-

invariant valuation. Then with the notation as in the proof of Theorem 2.3,

ϕ(nS̃) =

d∑
r=0

ϕ(Πr)

(
n+ d− r

d

)
.

2.2. Reciprocity

By Theorem 2.1, ϕ(nP ) agrees with a polynomial ϕP (n) for all integers n ≥ 0. It is

a natural question to ask for an interpretation for evaluating this polynomial at neg-

ative integers. A fundamental result in Ehrhart theory is the Ehrhart-Macdonald

reciprocity theorem [10, 16] which relates the evaluation at negative integers to

counting interior lattice points. The following theorem due to McMullen [19] gen-

eralizes the reciprocity to translation-invariant valuations.

Theorem 2.4 (McMullen [19]; Ehrhart-Macdonald reciprocity [10, 16]).

Let P be a lattice polytope and ϕ be a Λ-valuation. Then

ϕP (−n) = (−1)dimPϕ(relint(−nP )) .

Here, ϕ(relintP ) :=
∑

F⊆P (−1)dimP−dimFϕ(F ).

Proof. We illustrate the proof idea given in [3, Chapter 5] considering the case that

P is a lattice polygon. By considering the polygon Q := mP we invite the reader to

convince herself that it is sufficient to prove that ϕP (−1) = (−1)dimPϕ(relint(−P )).

Let again S̃ be a half-open lattice triangle and let Ŝ be the half-open triangle as in

the proof of Theorem 2.3 (see Figure 1). We saw that

ϕS̃(n) = ϕ(S̃)

(
n+ 1

2

)
+ ϕ(Ŝ)

(
n

2

)
.

Evaluating the polynomial on the right hand side at −1 yields ϕ(Ŝ). Assuming that

S̃ was obtained from the triangle S by removing all faces visible from a point q we

then observe that Ŝ is obtained from −S by removing all facets that are invisible

from −q. Now let P = S̃1 ∪ . . .∪ S̃m be a decomposition into half-open Λ-triangles.

Then

ϕP (−1) =
∑

ϕS̃i
(−1) =

∑
(−1)dϕ(Ŝi) = ϕ(relint(−P )) ,

as illustrated in Figure 2. This argument can be generalized to higher dimensions.

3. Combinatorial positive valuations

3.1. Combinatorial positivity and combinatorial monotonicity

In the following, let G always be an ordered abelian group. In the last section we

have seen that for every translation-invariant valuation ϕ : P(Λ) → G and every
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S̃1

S̃2

S̃3

P

q

−q

Ŝ3

ϕP (−1) Ŝ2

Ŝ1

−relintP

Fig. 2. Half-open partitions of P and relint(−P ).

Λ-polytope P of dimension r the function ϕ(nP ) is given by a polynomial ϕP (n) of

degree at most r for all integers n ≥ 0. Thus, by Theorem 2.2 there exist coefficients

hϕ0 (P ), hϕ1 (P ), . . . , hϕr (P ) ∈ G such that

ϕP (n) = hϕ0 (P )

(
n+ r

r

)
+ hϕ1 (P )

(
n+ r − 1

r

)
+ · · ·+ hϕr (P )

(
n

r

)
.

The vector hϕ(P ) = (hϕ0 (P ), hϕ1 (P ), . . . , hϕd (P )) is called the h∗-vector of P with

respect to ϕ where we set hϕi (P ) := 0 for i > r. The polynomial hϕP (t) =∑r
i=0 h

ϕ
i (P )ti is called the h∗-polynomial of P with respect to ϕ. By Stanley’s

Nonnegativity Theorem (Theorem 1.3), the h∗-polynomial has only nonnegative

coefficients when considering the discrete volume of lattice polytopes. Moreover

Stanley [22] showed the following.

Theorem 3.1 ([22]). For all lattice polytopes P,Q ∈ P(Zd) satisfying P ⊆ Q

h∗i (P ) ≤ h∗i (Q) for all i = 0, . . . , d .

That is, the (Ehrhart) h∗-vector is componentwisely monotone with respect to in-

clusion.

In accordance with Stanleys results (Theorem 1.3 and Theorem 3.1) we define

a translation-invariant valuation ϕ to be combinatorially positive if hϕi (P ) ≥ 0

for all P ∈ P(Zd) and all i, and combinatorially monotone if hϕi (P ) ≤ hϕi (Q)

for all i whenever P ⊆ Q. Examples of combinatorial positive and combinatorially

monotone valuations are, of course, the discrete volume, the volume as it can be

seen that the corresponding h∗-polynomial equals (up to a scalar) the Eulerian

polynomial (see, e.g., [1]), and the so-called solid-angle polynomials [2]. It is left

as an exercise to the reader that the Euler characteristic is not combinatorially

positive.

In the spirit of the classification results in Section 1 we would like to characterize

combinatorial positive and combinatorial monotone valuations. It turns out that

both notions are equivalent and a simple characterization can be given [14].
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Theorem 3.2 ([14]). Let ϕ be a translation-invariant valuation. Then the follow-

ing are equivalent:

(i) ϕ is combinatorially positive.

(ii) ϕ is combinatorially monotone.

(iii) ϕ(relint∆) ≥ 0 for all simplices ∆ ∈ P(Λ).

Proof idea. We outline the proof given in [14]. The h∗-vector with respect to a

valuation can be naturally extended to half-open Λ-polytopes. If S̃ is a half-open

simplex of dimension r. Then, by Corollary 2.2, hϕr (S̃) = ϕ(Πr). In particular, if

S = S̃ is a closed simplex, then hϕr (S) = ϕ(−relintS) from which we see (i)⇒ (iii).

The implication (ii) ⇒ (i) is clear since the empty polytope is contained in any

other polytope. If P = HqP1 t · · · t HqPm is a half-open decomposition, by the

inclusion-exclusion principle it follows that hϕ(P ) = hϕ(HqP1) + · · · + hϕ(HqPm).

In particular, to show positivity of hϕ(P ) it is sufficient to assume that P = S̃ is an

half-open simplex and hϕi (S̃) = ϕ(Πi) for all i. We observe that Πi is a partially open

polytope, (that is a polytope with certain faces removed). Using a triangulation of

the corresponding closed polytope into Λ-simplices it can therefore be partitioned as

Πi =
⊔

l relintTl where Tl are simplices in the triangulation contained in Πi. Thus,

ϕ(Πi) =
∑

l ϕ(relintTl) and, assuming (iii), we obtain combinatorial positivity. To

get combinatorial monotonicity a slightly more refined argument is needed and we

refer the reader to [14].

3.2. Combinatorially positive lattice-invariant valuations.

In case of lattice-invariant valuations on lattice polytopes combinatorial positivity

has an even simpler characterization.

Theorem 3.3 ([14]). A lattice-invariant valuation ϕ : P(Zd)→ G is combinatori-

ally positive if and only if ϕ(relint∆i) ≥ 0 for all 0 ≤ i ≤ d.

Proof. The proof will become apparent from the next two results; namely Theo-

rem 3.4 and Lemma 3.1.

That is, in case of lattice-invariant valuations condition (iii) in Theorem 3.2 needs

only to be checked on the standard unimodular simplices. In particular, the cone

of combinatorial positive valuations in polyhedral. We can describe this cone more

concretely by considering the coefficients of the Ehrhart polynomial with respect to

the basis
(
n−1
0

)
,
(
n−1
1

)
, . . . ,

(
n−1
d

)
.

EP (n) = f∗0 (P )

(
n− 1

0

)
+ f∗1 (P )

(
n− 1

1

)
+ · · ·+ f∗d (P )

(
n− 1

d

)
.

These coefficients f∗i (P ) where first considered by Breuer [7] who coined the name

f∗-vectors and showed that they are always nonnegative on relatively open com-

plexes. The following theorem completely characterizes combinatorially positive

lattice-invariant valuations.
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Theorem 3.4 ([14]). Let ϕ be a lattice invariant valuation. Then ϕ is combina-

torially positive if and only if

ϕ = α0f
∗
0 + α1f

∗
1 + · · ·+ αdf

∗
d

for some α0, α1, . . . , αd ≥ 0.

This is parallel to the characterization of positive and monotone continuous rigid-

motion invariant valuations which is a direct consequence of Hadwiger’s Character-

ization [12].

Theorem 3.5. Let ϕ be a real-valued continuous rigid-motion invariant valuation

on convex bodies. Then ϕ is positive or monotone if and only if

ϕ = α0W0 + α1W1 + · · ·+ αdWd

for some α0, α1, . . . , αd ≥ 0.

The following lemma clarifies the role of the f∗-vector and is left as an enjoyable

exercise to the reader.

Lemma 3.1 ([14]). For all 0 ≤ i, j ≤ d,

f∗j (relint(∆i)) = δi,j .

In particular, f∗0 , f
∗
1 , . . . , f

∗
d form a basis of the vector space of lattice-invariant

valuations and for any lattice-invariant valuations ϕ,

ϕ = ϕ(relint∆0)f∗0 + ϕ(relint∆1)f∗1 + · · ·+ ϕ(relint∆d)f∗d .

From Lemma 3.1 and Theorem 3.2, it follows that Theorem 3.4 is equivalent to

showing that f∗0 , . . . , f
∗
d are combinatorially positive valuations. We will show even

more: For all translation-invariant valuations ϕ consider fϕ0 (P ), . . . , fϕd (P ) such

that

ϕP (n) =

d∑
i=0

fϕi (P )

(
n− 1

i

)
,

Theorem 3.6 ([14]). Let ϕ be a translation-invariant valuation. Then the follow-

ing are equivalent:

(i) ϕ is combinatorially positive.

(ii) fϕi is combinatorially positive for all 0 ≤ i ≤ d.

Proof idea. One direction follows from the observation that ϕ = fϕ0 . For the other

direction one can prove for all lattice polytopes P of dimension r that

fϕr−k(relintP ) =

r∑
i=k

hϕi (−P )

(
i

k

)
for all 0 ≤ k ≤ r by applying Theorem 2.4. Since ϕ is combinatorially positive

the right hand side of the equation is nonnegative and thus fϕr−k is combinatorially

positive by Theorem 3.2. Further details may be found in [14].
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Proof of Theorem 3.2. The discrete volume is combinatorially positive by Stan-

ley’s Nonnegativity Theorem (Theorem 1.3). Thus f∗0 , . . . , f
∗
d are combinatorially

positive by Theorem 3.6.

3.3. Weak h∗-monotone valuations

As will become apparent in the next section, it is also very natural to consider a

weaker notion of combinatorial monotonicity that takes into account the dimension

of Λ-polytopes. A translation-invariant valuation is called weakly h∗-monotone

if

hϕi (P ) ≤ hϕi (Q)

for all 0 ≤ i ≤ d whenever P ⊆ Q and dimP = dimQ. Using similar techniques as

in the proof of Theorem 3.2, the following characterization and classification results

were obtained in [14]:

Theorem 3.7 ([14]). Let ϕ be a translation-invariant valuation. The following

are equivalent:

(i) ϕ is weakly h∗-monotone.

(ii) ϕ(relint∆) + ϕ(relintF ) ≥ 0 for every simplex ∆ ∈ P(Λ) and any facet F

of ∆.

(iii) ϕ(S̃) ≥ 0 for every half-open Λ-simplex S̃.

Restricted to the class of lattice-invariant valuations weak h∗-monotonicity can

be characterized by considering the coefficients of the Ehrhart polynomial in (yet

another) basis. Let

EP (n) = f̃0(P )

(
n

0

)
+ f̃1(P )

(
n

1

)
+ · · ·+ f̃d(P )

(
n

d

)
.

Theorem 3.8 ([14]). Let ϕ be a lattice-invariant valuation. Then ϕ is weakly

h∗-monotone if and only if

ϕ = α0f̃0 + α1f̃1 + · · ·+ αdf̃d

for some α0, α1, . . . , αd ≥ 0.

We conclude this section by discussing the relationship of combinatorial positiv-

ity and weak h∗-monotonicity and monotonicity (ϕ(P ) ≤ ϕ(Q) whenever P ⊆ Q)

and positivity (ϕ(P ) ≥ 0). Clearly, combinatorial monotonicity/positivity implies

weak h∗-monotonicity. It can be furthermore seen from Theorem 3.7 by using half-

open decomposition that weak h∗-monotonicity implies monotonicity. Since every

valuation is 0 on the empty polytope, monotonicity implies positivity. Figure 3

summarizes the chain of implications. We note that the reverse implications do not

hold [14].
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combinatorial positivity

⇓
weak h∗-monotonicity

⇓
monotonicity

⇓
positivity

Fig. 3. Combinatorial positivity and its relatives.

4. Combinatorial mixed valuations

A fundamental notion in convex geometry is the mixed volume MVd(P1, . . . , Pd) of

convex bodies P1, . . . , Pd. It can be defined in different equivalent ways and each

definition comes with certain advantages and disadvantages. A classical result is

Minkowski’s Identity (see, e.g., [11]) which states that Vol(t1P1 + · · · + tmPm)

is given by a homogeneous polynomial of degree d for convex bodies P1, . . . , Pm

and t1, . . . , tm ≥ 0. More precisely, with the definition MV(P1, . . . , Pd) :=
1
d! [t1 · · · td]Vol(t1P1 + · · · + tdPd), (that is, MV(P1, . . . , Pd) is defined as the co-

efficient of the monomial t1 · · · td divided by d!) Minkowski’s Identity states that

Vol(t1P1 + · · ·+ tmPm) =

m∑
j1,...,jd=1

MV(Pj1 , . . . , Pjd)tj1 · · · tjd .

In particular, MV is symmetric in its arguments and, by homogeneity,

MV(P1, . . . , Pm) = 0 if m < d. Furthermore, it can be seen that the mixed volume

is multilinear in each argument.

An alternative definition is the following:

MV(P1, . . . , Pm) :=
1

m!

∑
I⊆[m]

(−1)d−|I|Vol(PI)

where P∅ = {0} and PI =
∑

i∈I Pi for all ∅ 6= I ⊆ [m]. This definition has

the advantage that it is not necessarily trivial on less than d arguments and can

be extended to valuations. We define the combinatorial mixed valuation [13]

associated to a translation-invariant valuation ϕ of P1, . . . , Pr ∈ P(Λ) to be

CMrϕ(P1, . . . , Pr) :=
∑
I⊆[r]

(−1)r−|I|ϕ(PI) ,

where in the following we suppress the index r in CMrϕ whenever the number of ar-

guments is clear from the context. Similar to mixed volumes in Minkowski’s Identity,

combinatorial mixed volumes can be interpreted as coefficients of a polynomial. The

Bernstein-McMullen Theorem [4, 17, 19] states that for any translation-invariant

valuation ϕ and arbitrary Λ-polytopes P1, . . . , Pr, ϕ(n1P1 + · · ·nrPr) is given by a

polynomial for integers n1, . . . , nr ≥ 0. The following theorem is a discrete version

of Minkowski’s Identity.
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Theorem 4.1 ([13]). Let P1, . . . , Pr ∈ P(Λ) and ϕ be a translation-invariant val-

uation. Then

ϕ(n1P1 + · · ·+ nrPr) =
∑

k∈Zr
≥0

CMϕ(P1[k1], · · · , Pr[kr])

(
n1
k1

)
· · ·
(
nr
kr

)
where Pi[ki] denotes the ki-fold appearance of Pi.

In particular, since the coefficients are uniquely determined,

Pi 7→ ϕ(P1[k1], · · · , Pr[kr])

defines a translation-invariant valuation for all i and all k.

A desirable, non-trivial property of the mixed volume is that it is always non-

negative and, moreover, monotone with respect to inclusion, that is

0 ≤ MV(P1, . . . , Pr) ≤ MV(Q1, . . . , Qr)

whenever Pi ⊆ Qi for all 1 ≤ i ≤ r. It turns out, that this is true for combinatorial

mixed valuations as well under the assumption of weak h∗-monotonicity.

Theorem 4.2 ([13]). Let ϕ be a weakly h∗-monotone valuation. Then

0 ≤ CMϕ(P1, . . . , Pr) ≤ ϕ(Q1, . . . , Qr)

whenever P1 ⊆ Qi for all 1 ≤ i ≤ r.

The goal of this section is to proof Theorem 4.2. We will use the language of the

polytope algebra introduced by McMullen [18].

Let ZP(Λ) be the free abelian group with generators JP K for all P ∈ P(Λ). Let

U be the subgroup generated by elements of the form

• JP ∪QK + JP ∩QK− JP K− JQK for all P,Q ∈ P(Λ)

for which P ∩Q,P ∪Q ∈ P(Λ) and J∅K = 0, and

• JP + tK− JP K for all P ∈ P(Λ) and t ∈ Λ.

Then the polytope algebra is defined as Π(Λ) := P(Λ)/U . The polytope algebra

has the universal property that for every translation-invariant valuation ϕ : P(Λ)→
G there is a unique homomorphism of abelian groups ϕ̄ : Π(Λ) → G such that

ϕ̄([P ]) = ϕ(P ), and conversely. The product structure on Π(Λ) is defined by the

Minkowski sum of polytopes, that is, for P,Q ∈ P(Λ) we have JP K · JQK := JP +

QK. Even though it is not relevant in the following, it allows us to express the

combinatorial mixed valuation in a particularly nice form. The following corollary

is obtained by applying Theorem 4.1 to the universal valuation P 7→ JP K.

Corollary 4.1 ([13]). Let P1, . . . , Pr be Λ-polytopes. Then

Jn1P1 + · · ·+ nrPrK =
∑

k∈Zr
≥0

CMJP1[k1], . . . , Pr[kr]K
(
n1
k1

)
· · ·
(
nr
kr

)
,

where CMJP1, . . . , PrK :=
∑

I⊆[r](−1)r−|I|JPIK = Πr
i=1(JPiK− 1).
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In order to proof Theorem 4.2 we will need to interpret combinatorial mixed volumes

geometrically. A Minkowski sum P = P1 + · · · + Pr is called exact if dimP =

dimP1 + · · ·+dimPr. If P1, . . . , Pr are simplices then their Minkowski sum is called

a cylinder whenever it is exact. It is further called a k-cylinder if dimPi > 0 for

exactly k-many summands Pi. For k = 0, . . . , d let

Z̃k := Z≥0{JSK : S half-open k-cylinder }

be the cone generated by half-open k-cylinders, and let

W = Z≥0{JrelintSK + JrelintF K : S ∈ P(Λ) simplex, F ⊆ S facet} .

Then, by Theorem 3.7, every weakly h∗-monotone ϕ evaluates nonnegatively on W .

Thus, by the following lemma which is left as an exercise to the reader, every such

valuation also evaluates nonnegatively on cylinders.

Lemma 4.1 ([13]).

Z̃d ⊆ Z̃d−1 ⊆ · · · ⊆ Z̃1 = W .

It therefore suffices to prove that combinatorial mixed valuations are contained in

Z̃k for some k.

Proposition 4.1 ([13]). Let S̃ be a half-open simplex. Then

JnS̃K = ζ0 + ζ1

(
n

1

)
+ · · ·+ ζd

(
n

d

)
where ζk ∈ Z̃k for all k = 0, . . . , d.

Proof. We illustrate the proof idea on a 2-dimensional half-open triangle. Similar

to the proof of Theorem 2.3, the key idea is to partition the integer dilates in a

suitable way with congruent pieces. The n-th dilate of the half-open triangle S̃ in

Figure 4 can be dissected into
(
n
1

)
translates of S̃ and

(
n
2

)
translates of a half-open

parallelepiped which is exact since it is a Minkowski sum of two segments. With

the notation as in Figure 4, we then have

ϕ = ϕ(S̃)

(
n

1

)
+ ϕ(T )

(
n

2

)
.

In higher dimensions, one can assume that S̃ is obtained by removing facets from

a simplex S = {x ∈ Rd : 0 ≤ x1 ≤ · · · ≤ xd ≤ 1}. For a generic point p ∈ nS, let

p̄ = (bx1c, bx2c, . . . , bxdc). Then p− p̄ is contained in a cylinder of the formx ∈ Rd :

0 ≤ x1 ≤ · · · ≤ xb1 ≤ 1

0 ≤ xb1+1 ≤ · · · ≤ xb2 ≤ 1
...

0 ≤ xbn−1+1 ≤ · · · ≤ xbn ≤ 1

 ,

for some 0 ≤ b1 ≤ · · · ≤ bn−1 ≤ bn = d. These cylinders dissect nS, and counting

the number of occurrences up to translation of every such cylinder yields the result.

For full details see [14].



October 1, 2018 14:20 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in ValuationsonLatticePolytopes page 16

16

S̃
T

S̃ 2S̃ 3S̃

Fig. 4. Decomposition of integer dilates of S̃ into translates of S̃ and T .

More generally, by applying Proposition 4.1 to every Minkowski summand in a

cylinder we obtain the following.

Corollary 4.2 ([13]). Let S1 + · · ·+ Sr be a half-open cylinder. Then there exist

ζk ∈ Z̃|k| such that

Jn1S1 + · · ·+ nrSrK =
∑

k∈Zk
≥0

ζk

(
n1
k1

)
· · ·
(
nk
kr

)

where ζk ∈ Z̃|k| for all k.

By Corollary 4.2 it is therefore sufficient to see that every Minkowski sum n1P1 +

· · ·+ nrPr has a dissection into cylinders Ri = Ri1 + · · ·+Rir with Rij ⊆ Pj . This

can be achieved by the Cayley-trick (see [9]): the Cayley polytope of polytopes

P1, . . . , Pr ⊂ Rd is defined as

Cay(P1, . . . , Pr) := conv

(⋃
i

Pi × {ei}

)
⊆ Rd × Rr .

One observes that 1
r (P1 + · · · + Pr) = Cay(P1, . . . , Pr) ∩W where W = {(x, y) ∈

Rd × Rr : yi = 1
r for all i}. Now it can be shown that every triangulation of

Cay(P1, . . . , Pr) restricts to a subdivision of P1 + · · · + Pr into cylinders as we

wanted.

Theorem 4.3 ([13]). Let P1, . . . , Pr, Q1, . . . , Qr ⊆ P(Λ) such that Pi ⊆ Qi for all

1 ≤ i ≤ r. Then

Jn1Q1 + · · ·+ nrQrK− Jn1P1 + · · ·+ nrPrK =
∑

k∈Zr
≥0

ζk

(
n1
k1

)
· · ·
(
nr
kr

)

with ζk ∈ Z̃|k|.
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Proof idea. Since Pi ⊆ Qi for all 1 ≤ i ≤ r it follows that Cay(P1, . . . , Pr) ⊆
Cay(Q1, . . . , Qr). If dim(P1 + · · · + Pd) = dim(Q1 + · · · + Qr) then both Cayley

polytopes have the same dimension. Triangulating Cay(P1, . . . , Pr) and extending

it to a triangulation of Cay(Q1, . . . , Qr) yields a subdivision into cylinders of P1 +

· · ·+Pr that gets extended to a subdivision into cylinders of Q1+· · ·+Qr. Choosing

a general point in P1+· · ·+Pr yields a partition of (Q1+· · ·+Qr)\(P1+· · ·+Pr) into

half-open cylinders and the result follows with Lemma 4.2. If dim(P1 + · · ·+Pd) <

dim(Q1 + · · ·+Qr) a slightly more refined argument has to be applied. See [14] for

the full details.

We are now ready to proof the main theorem of this section (Theorem 4.2).

Proof of Theorem 4.2. By Theorem 4.1, ζk = CMJQ1[k1], . . . , Qr[kr]K −
CMJP1[k1], . . . , Pr[kr]K in Theorem 4.3 which is evaluated to a nonnegative number

for every weakly h∗-monotone valuation, by Lemma 4.1.

5. Outlook

The route taken in this course only showed a glimpse of the past and current re-

search on valuations on lattice polytopes and is strongly biased by the authors own

research. To learn more about current research on valuations on lattice polytopes

we recommend [8].

Acknowledgements: The author was supported by the Knut and Alice Wal-

lenberg Foundation. She would like to thank Takayuki Hibi and Akiyoshi Tsuchiya

for the organization and the invitation to speak at the “Summer Workshop on Lat-

tice Polytopes” at Osaka University, and Sebastian Manecke, Raman Sanyal and

Liam Solus for many helpful comments on this manuscript.

References

[1] M. Beck and S. Robins, Computing the Continuous Discretely: Integer-point Enu-
meration in Polyhedra Undergraduate Texts in Mathematics (Springer, New York,
2007).

[2] M. Beck, S. Robins and S. V. Sam, Positivity theorems for solid-angle polynomials,
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i Priložen. 10, 72–73 (1976).

[5] U. Betke, Das Einschließungs-Ausschließungsprinzip für Gitterpolytope, unpublished
manuscript (1984).

[6] U. Betke and M. Kneser, Zerlegungen und Bewertungen von Gitterpolytopen, J.
Reine Angew. Math. 358 202–208 (1985).

[7] F. Breuer, Ehrhart f∗-coefficients of polytopal complexes are non-negative integers,
Electron. J. Combin. 19, Paper 16, 22 (2012).



October 1, 2018 14:20 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in ValuationsonLatticePolytopes page 18

18
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