A Small Tour of Information Theory

Jinfeng Du

Royal Institute of Technology (KTH), Stockholm, Sweden

§Part I of the lecture given at ACROPOLIS Winter School, Barcelona.

2013-02-14

A theory to **quantify** the processing of information.

Mutual information I(X; Y) = I(Y; X)

A theory to **quantify** the processing of information. Entropy and Mutual Information

Entropy: a quantitative measure of information/uncertainty

Mutual information I(X; Y) = I(Y; X)

Relationship among entropy and mutual information I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X, Y)

• Lossless source compression: rate *R* > *H*

- Lossy source compression: rate-distortion theorem
- Channel coding: 0 < *R* < *C* is possible (Shannon'48)
- Separation theorem: first source coding, then channel coding
- Separation theorem II: separate/joint channel-network coding

Where's information theory

- Lossless source compression: rate R > H
- Lossy source compression: rate-distortion theorem

- Lossless source compression: rate *R* > *H*
- Lossy source compression: rate-distortion theorem
- Channel coding: 0 < R < C is possible (Shannon'48) Examples of Gaussian channel capacity: discrete real-valued Gaussian channel: $C = \frac{1}{2}\log(1 + \frac{P}{N})$ [bpcu] discrete complex-valued Gaussian channel: $C = \log(1 + \frac{P}{N})$ [bpcu] band-limited Gaussian channel: $C = W \log(1 + \frac{P}{WN_0})$ [bps]
- Separation theorem: first source coding, then channel coding
- Separation theorem II: separate/joint channel-network coding

- Lossless source compression: rate R > H
- Lossy source compression: rate-distortion theorem
- Channel coding: 0 < R < C is possible (Shannon'48)
- Separation theorem: first source coding, then channel coding

• Separation theorem II: separate/joint channel-network coding

- Lossless source compression: rate R > H
- Lossy source compression: rate-distortion theorem
- Channel coding: 0 < R < C is possible (Shannon'48)
- Separation theorem: first source coding, then channel coding
- Separation theorem II: separate/joint channel-network coding

- Lossless source compression: rate *R* > *H*
- Lossy source compression: rate-distortion theorem
- Channel coding: 0 < R < C is possible (Shannon'48)
- Separation theorem: first source coding, then channel coding
- Separation theorem II: separate/joint channel-network coding

- Lossless source compression: rate *R* > *H*
- Lossy source compression: rate-distortion theorem
- Channel coding: 0 < R < C is possible (Shannon'48)
- Separation theorem: first source coding, then channel coding
- Separation theorem II: separate/joint channel-network coding

Two-user broadcast channel: P, $|h_2| > |h_1|$

orthogonal TX: $t \in [0, 1]$, $[0, t]x = x_1$; $[t, 1]x = x_2$, $R_1 = t \log(1 + P|h_1|^2)$, $R_2 = (1 - t) \log(1 + P|h_2|^2)$ superposition: $x = \sqrt{\alpha}x_1 + \sqrt{1 - \alpha}x_2$, $\alpha \in [0, 1]$ $R_1 = \log(1 + \frac{\alpha P|h_1|^2}{1 + (1 - \alpha)P|h_2|^2})$, $R_2 = \log(1 + (1 - \alpha)P|h_2|^2)$

Two-user broadcast channel: P, $|h_2| > |h_1|$ orthogonal TX: $t \in [0, 1]$, $[0, t]x = x_1$; $[t, 1]x = x_2$, $R_1 = t \log(1 + P|h_1|^2)$, $R_2 = (1 - t) \log(1 + P|h_2|^2)$ superposition: $x = \sqrt{\alpha}x_1 + \sqrt{1 - \alpha}x_2$, $\alpha \in [0, 1]$ $R_1 = \log(1 + \frac{\alpha P|h_1|^2}{1 + (1 - \alpha)P|h_2|^2})$, $R_2 = \log(1 + (1 - \alpha)P|h_2|$

Two-user broadcast channel: P, $|h_2| > |h_1|$ orthogonal TX: $t \in [0, 1]$, $[0, t]x = x_1$; $[t, 1]x = x_2$, $R_1 = t \log(1 + P|h_1|^2)$, $R_2 = (1 - t) \log(1 + P|h_2|^2)$ superposition: $x = \sqrt{\alpha}x_1 + \sqrt{1 - \alpha}x_2$, $\alpha \in [0, 1]$ $R_1 = \log(1 + \frac{\alpha P|h_1|^2}{1 + (1 - \alpha)P|h_2|^2})$, $R_2 = \log(1 + (1 - \alpha)P|h_2|^2)$

Two-user broadcast channel: P, $|h_2| > |h_1|$ orthogonal TX: $t \in [0, 1]$, $[0, t]x = x_1$; $[t, 1]x = x_2$, $R_1 = t \log(1 + P|h_1|^2)$, $R_2 = (1 - t) \log(1 + P|h_2|^2)$ superposition: $x = \sqrt{\alpha}x_1 + \sqrt{1 - \alpha}x_2$, $\alpha \in [0, 1]$ $R_1 = \log(1 + \frac{\alpha P|h_1|^2}{1 + (1 - \alpha)P|h_1|^2})$, $R_2 = \log(1 + (1 - \alpha)P|h_2|^2)$

Two-user broadcast channel:
$$P$$
, $|h_2| > |h_1|$
orthogonal TX: $t \in [0, 1]$, $[0, t]x = x_1$; $[t, 1]x = x_2$,
 $R_1 = t \log(1 + P|h_1|^2)$, $R_2 = (1 - t) \log(1 + P|h_2|^2)$
superposition: $x = \sqrt{\alpha}x_1 + \sqrt{1 - \alpha}x_2$, $\alpha \in [0, 1]$
 $R_1 = \log(1 + \frac{\alpha P|h_1|^2}{1 + (1 - \alpha)P|h_1|^2})$, $R_2 = \log(1 + (1 - \alpha)P|h_2|^2)$

Where's information theory: MAC

Two-user multiple-access channel: P_1, P_2

orthogonal TX: $R_1 = t \log(1 + P_1/t)$, $R_2 = (1 - t) \log(1 + P_2/(1 - t))$, $t \in [0, 1]$ capacity region: $y = x_1 + x_2 + n$, successive interference cancellation $R_1 = \log(1 + \frac{P_1}{1+P_2})$, $R_2 = \log(1 + P_2)$ or $R_1 = \log(1 + P_1)$, $R_2 = \log(1 + \frac{P_2}{1+P_1})$ Any other points on the boundary can be achieved by time-sharing.

Two-user multiple-access channel: P₁, P₂

orthogonal TX: $R_1 = t \log(1 + P_1/t), R_2 = (1 - t) \log(1 + P_2/(1 - t)), t \in [0, 1]$

capacity region: $y = x_1 + x_2 + n$, successive interference cancellation $R_1 = \log(1 + \frac{P_1}{1+P_2})$, $R_2 = \log(1 + P_2)$ or

Two-user multiple-access channel: P_1, P_2

orthogonal TX: $R_1 = t \log(1 + P_1/t), R_2 = (1 - t) \log(1 + P_2/(1 - t)), t \in [0, 1]$

capacity region: $y = x_1 + x_2 + n$, successive interference cancellation $B_1 = \log(1 + P_1)$, $B_2 = \log(1 + P_2)$ or

Two-user multiple-access channel: P_1, P_2

orthogonal TX: $R_1 = t \log(1 + P_1/t), R_2 = (1 - t) \log(1 + P_2/(1 - t)), t \in [0, 1]$

capacity region: $y = x_1 + x_2 + n$, successive interference cancellation $R_1 = \log(1 + \frac{P_1}{1+P_2}), R_2 = \log(1 + P_2)$ or

Two-user multiple-access channel: P_1, P_2

orthogonal TX: $R_1 = t \log(1 + P_1/t), R_2 = (1 - t) \log(1 + P_2/(1 - t)), t \in [0, 1]$

capacity region: $y = x_1 + x_2 + n$, successive interference cancellation $R_1 = \log(1 + \frac{P_1}{1+P_2}), R_2 = \log(1 + P_2)$ or

repetition redundance: $log(1 + P_1 + P_2 + ...)$ incremental redundance: $log(1 + P_1) + log(1 + P_2) + ...)$

Overheard signal in wireless transmission

interference: has to be mitigated resource: when cooperation among nodes is allowed

repetition redundance: $log(1 + P_1 + P_2 + ...)$ incremental redundance: $log(1 + P_1) + log(1 + P_2) + ...$

Overheard signal in wireless transmission

interference: has to be mitigated resource: when cooperation among nodes is allowed

repetition redundance: $log(1 + P_1 + P_2 + ...)$ incremental redundance: $log(1 + P_1) + log(1 + P_2) + ...$

Overheard signal in wireless transmission

interference: has to be mitigated

resource: when cooperation among nodes is allowed

repetition redundance: $log(1 + P_1 + P_2 + ...)$ incremental redundance: $log(1 + P_1) + log(1 + P_2) + ...$

Overheard signal in wireless transmission

interference: has to be mitigated resource: when cooperation among nodes is allowed

repetition redundance: $log(1 + P_1 + P_2 + ...)$ incremental redundance: $log(1 + P_1) + log(1 + P_2) + ...$

Overheard signal in wireless transmission

interference: has to be mitigated resource: when cooperation among nodes is allowed

Information theory results provide

the performance limit

the existence of schemes to achieve the predicted performance

Insights from information theory results

anything beyond the theoretical limit is impossible gap from the theoretical limit indicates possibility of improvement predicted performance can be surprised to up-to-date knowledge the existence results can guide practical solution design

Information theory results provide

the performance limit

the existence of schemes to achieve the predicted performance

Insights from information theory results

anything beyond the theoretical limit is impossible gap from the theoretical limit indicates possibility of improvement predicted performance can be surprised to up-to-date knowledge the existence results can guide practical solution design

Shannon'48 C. E. Shannon,

"A mathematical theory of communication," *Bell System Technical Journal*, vol. 27, pp. 379–423 & 623–656, Jul. & Oct. 1948.

CT'06 T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 2006.

KEM'10 R. Koetter, M. Effros, and M. Médard,
"A theory of network equivalence-part I: point-to-point channels," *IEEE Transactions on Information Theory*, vol. 57, pp. 972–995, Feb. 2011.