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What’s information theory

A theory to quantify the processing of information.

Entropy: a quantitative measure of information/uncertainty
H(X ): the amount of information you get by observing X .
H(X ,Y ): - - - - - - - - : - - - - - - - - by observing X and Y .
H(X |Y ): - - - - - - - - : - - - - - - - - by observing X if you know Y .
H(X ,Y ) = H(X |Y ) + H(Y ) = H(Y |X ) + H(X ).
H(X ,Y ) ≤ H(X ) + H(Y ): equality holds iff X and Y are
independent.
H(X |Y ) ≤ H(X ): condition reduces entropy!

Mutual information I(X ;Y ) = I(Y ;X )

the amount of information of X you can get by observing Y
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A story of entropy and mutual information

Relationship among entropy and mutual information
I(X ;Y ) = H(X )−H(X |Y ) = H(Y )−H(Y |X ) = H(X )+H(Y )−H(X ,Y )
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Where’s information theory

Lossless source compression: rate R > H
Lossy source compression: rate-distortion theorem
Channel coding: 0 < R < C is possible (Shannon’48)
Separation theorem: first source coding, then channel coding
Separation theorem II: separate/joint channel-network coding
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Where’s information theory

Lossless source compression: rate R > H
Lossy source compression: rate-distortion theorem
Channel coding: 0 < R < C is possible (Shannon’48)
Examples of Gaussian channel capacity:
discrete real-valued Gaussian channel: C = 1

2 log(1 + P
N ) [bpcu]

discrete complex-valued Gaussian channel: C = log(1+ P
N ) [bpcu]

band-limited Gaussian channel: C = W log(1 + P
WN0

) [bps]
Separation theorem: first source coding, then channel coding
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Lossy source compression: rate-distortion theorem
Channel coding: 0 < R < C is possible (Shannon’48)
Separation theorem: first source coding, then channel coding
Separation theorem II: separate/joint channel-network coding

[KEM’10]
TX power P, independent AWGN noise with power N
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Where’s information theory

Lossless source compression: rate R > H
Lossy source compression: rate-distortion theorem
Channel coding: 0 < R < C is possible (Shannon’48)
Separation theorem: first source coding, then channel coding
Separation theorem II: separate/joint channel-network coding

[KEM’10]
Separate channel-network coding: R = log(1 + P/N)
Joint channel-network coding: R = log(1 + mP/N)
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Where’s information theory: BC

Two-user broadcast channel: P, |h2| > |h1|
orthogonal TX: t ∈ [0,1], [0, t ]x = x1; [t ,1]x = x2,
R1 = t log(1 + P|h1|2), R2 = (1− t) log(1 + P|h2|2)
superposition: x =

√
αx1 +

√
1− αx2, α ∈ [0,1]

R1 = log(1 + αP|h1|2
1+(1−α)P|h1|2

), R2 = log(1 + (1− α)P|h2|2)
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Where’s information theory: MAC

Two-user multiple-access channel: P1,P2

orthogonal TX: R1 = t log(1 + P1/t), R2 = (1− t) log(1 + P2/(1− t)),
t ∈ [0,1]
capacity region: y = x1 + x2 + n, successive interference cancellation
R1 = log(1 + P1

1+P2
), R2 = log(1 + P2) or

R1 = log(1 + P1), R2 = log(1 + P2
1+P1

)
Any other points on the boundary can be achieved by time-sharing.
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Where’s information theory: HARQ, and more

HARQ: soft combining
repetition redundance: log(1 + P1 + P2 + ...)
incremental redundance: log(1 + P1) + log(1 + P2) + ...

Overheard signal in wireless transmission
interference: has to be mitigated
resource: when cooperation among nodes is allowed

Diversity order, Water-filling, Outage probability, and more ...
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How to use information theory

Information theory results provide
the performance limit
the existence of schemes to achieve the predicted performance

Insights from information theory results
anything beyond the theoretical limit is impossible
gap from the theoretical limit indicates possibility of improvement
predicted performance can be surprised to up-to-date knowledge
the existence results can guide practical solution design
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Want to know more about information theory?

Shannon’48 C. E. Shannon,
“A mathematical theory of communication,”
Bell System Technical Journal,
vol. 27, pp. 379–423 & 623–656, Jul. & Oct. 1948.

CT’06 T. M. Cover and J. A. Thomas,
Elements of Information Theory. New York: Wiley, 2006.

KEM’10 R. Koetter, M. Effros, and M. Médard,
“A theory of network equivalence–part I: point-to-point
channels,” IEEE Transactions on Information Theory,
vol. 57, pp. 972–995, Feb. 2011.
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