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Abstract—We investigate the issue of distributed receiver coop-
eration in a multiple-relay network with memoryless independent
fading channels, where the channel state information can’t be
obtained. The received signals at distributed receiving nodes are
first compressed or quantized before being sent to the decoder via
rate-limited cooperation channels for joint processing. We focus
on the low SNR regime and analyze the capacity bounds using
network equivalence theory and a multiple-layer binning peaky
frequency shift keying (FSK). When the received signals at the
relaying nodes are in low SNR regime and the cooperation rates
are not sufficiently high, compressed/quantized observations at
relaying nodes become useless and only decoding can help.

Index Terms—Low SNR, distributed receivers, network equiv-
alence, peaky FSK, MMSE

I. INTRODUCTION

Wireless communication in the wideband regime experi-
ences dispersive fading channels both in time and in frequency.
The large bandwidth but finite power constraint leads to low
signal-to-noise ratio (SNR) which makes the system essen-
tially power/noise limited. Given the same average received
power constraint, the capacity of infinite-bandwidth fading
channel without channel state information and the capacity of
the infinite-bandwidth Gaussian channel are equal [1] [2, Sec.
8.6] for the case of Rayleigh fading. The key to achieve this
is the low duty-cycle (hence peaky) frequency shift keying
(FSK) transmission with non-coherent detection. This result
has been extended by Telatar and Tse [3] to general multipath
fading channels by using a threshold decoder instead of the
maximum likelihood decoder [2, Sec. 8.6]. Given average
receive power constraint P , single-side noise spectral density
N0, the achievable rate by peaky FSK is [3, Theorem 1]

R <
P

N0

(
1− 2Td

Tc

)
, [nats], (1)

where Td is the channel delay spread, Tc is the coherence time,
and C = P/N0 is the capacity of infinite-bandwidth Gaussian
channel. This achievable rate is improved in [4] to

R <
P

N0

(
1− Td

Tc

)
, [nats], (2)

where a multi-tone FSK with narrower frequency separation
is proposed to greatly improve the error exponent. In [5]
the boundaries of peaky signaling and coherent detection are
discussed and the concept of optimal spreading bandwidth is
illustrated in [5, Fig. 1] in the context of DS-CDMA over
time and frequency selective fading channels. A lower bound
of the achievable rates by non-peaky signaling is presented

by Lozano and Porrat in [6], where the concept of critical
bandwidth is proposed to identify the boundary of power
limited and bandwidth limited regions.

If the channel is doubly dispersive, i.e., selective both in
time and in frequency, Medard and Gallager point out in [7]
that without channel state information and without feedback,
the achievable rate goes to zero as bandwidth grows if the
signal energy spreads over the whole bandwidth. With such
“spread spectrum” like signals, Telatar and Tse [3] shows
that the mutual information is inversely proportional to the
number of resolvable paths. The critical importance of channel
knowledge has been discussed in [3], [6], [8]–[10], where the
loss of mutual information due to imperfectness of channel
estimation is upper and lower bounded in [8], and a flashing
signalling with unbounded amplitude is proposed in [9] for
the case with imperfect channel knowledge. If the signal
peakedness is constraint both in time and frequency, the non-
coherent capacity bounds have been characterized in [10].

In this paper, we focus on the wideband regime (low SNR)
and investigate the issue of distributed receiver cooperation
over memoryless fading channels, where channel state infor-
mation is not available. The cooperation among distributed re-
ceivers are realized via rate-limited orthogonal channels, either
noisy or noiseless. It has been shown [11] in the context of a
degraded relay network that the relay’s observation/estimation
passed through rate-limited relay-destination channel is useless
unless the relay can decode the message. In this paper we show
that it is also true in more general settings.

The rest of the paper is organized as follows. We describe
the channel model and revisit the peaky FSK scheme in Sec. II.
The capacity upper and lower bounds of a network with
distributed receiver cooperation are investigated in Sec. III.
Conclusion and discussions are in Sec. IV.

II. CHANNEL MODEL AND THE PEAKY FSK

The low duty-cycle FSK scheme, which is peaky both in
time and in frequency, is briefly described here based on the
work in [3, Theorem 1] and [4]. Assuming the channel is
dispersive both in time and in frequency, with a delay spread
Td and a coherence time1 Tc, the channel impulse response
(without noise) can be written as

h(t) =
∑
l al(t)δ(t− τl(t)), (3)

1It is widely adopted that the coherence bandwidth Bc = 1/Td and the
coherence time Tc ' 1/fd where fd is the Doppler spread.
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Ȳ1,2

X̄2,3
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Fig. 1. Wireless relay network where the source S transmit a message W
to destination node D via the wideband fading channel with average transmit
power constraint P . This transmitted signal is over heard by m relay nodes.
Channels between relay nodes and from relay to destination are orthogonal.

where al(t) represents the channel gain of path l and τl(t)≥0
is the corresponding delay. We further assume that al(t) and
τl(t) remains constant during time [nTc, nTc+Tc) for all n∈Z
but changes independently after each duration of Tc. By the
definition of delay spread we have maxl τl(t) ≤ Td and the
maximum number of resolvable paths equals BTd, where B
is the signal bandwidth since we can only differentiate signals
that arrive with interval larger than 1/B.

Given a message m that is uniform over {0, 1, . . . ,M−1},
i.e., log(M) nats per message, the peaky FSK chooses a
sinusoid waveform

xm(t) =

{√
P/θexp(j2πfmt), for t ∈ [0, Ts],

0, otherwise,
(4)

where j=
√
−1, Ts ≤ Tc is the symbol duration, and fm is the

carrier frequency chosen from { k
Ts−Td

: k=1, . . . ,m} to send
message m. P is the average power constraint and θ ∈ (0, 1]
is the duty-cycle parameter for transmission in time such that
the transmission only occurs at a fraction θ of time at power
P/θ to satisfy the average power constraint. A repetition code
is use to transmit the same signal N times, which helps to
smooth out the channel uncertainty. Based on [3, Theorem 1]
and choosing Ts arbitrarily close to Tc, peaky FSK can achieve
the rate in (2) as N→∞ and θ→0. If Td � Tc, it achieves
the wideband capacity P/N0.

In [12] peaky FSK is combined with structured binning
where the message set is evenly split into bins of the same size.
Operation at the source node remains unchanged and the bin
index (the “base”) is decoded at the relay node. Then the bin
index is forwarded to the destination node via an orthogonal
channel using another peaky FSK. Upon the reception of the
bin index, the destination node retrieves the “satellite” message
out of that bin based on the received signal from the source.

III. DISTRIBUTED RECEIVER COOPERATION

We consider a relay network illustrated in Fig. 1 where
the source S broadcasts message W to the destination node
D and m relay nodes Ri, i=1, . . . ,m. Cooperation among
relay nodes and from relay to destination are realized via
orthogonal rate-limited channels. All channels are memoryless
block fading as described in (3) with coherence time Tc and
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Fig. 2. The upper bounding model from network equivalence theory where the
orthogonal channels from relays to the destination are replaced by bit-pipes
with rate Ci= maxPXi

I(Xi; Ỹi), channels from Ri→Rj are replaced by
bit-pipes with rate C̄i,j= maxPX̄i,j

I(X̄i,j ; Ȳi,j), and the BC from the
source is replaced by hyper-arcs with rates R1, R2, . . . , Rm and RD .

delay spread Td (<Tc). Given abundant bandwidth and limited
power, we are interested in transmission schemes that can
approach the capacity, although the capacity itself may not
be fully characterized. A serial of network equivalence tools
have been developed in [13]–[15] and we use these tools to
develop capacity upper bounds, which help us to evaluate the
performance of transmission schemes.

A. Network equivalence upper bound
In [13] it has been shown that the capacity of a network

remains unchanged if we replace an independent point-to-
point noisy channel by a noiseless bit-pipe with rate equals
the capacity of the original noisy channel. Therefore, we can
replace the orthogonal channels from relay node Ri to D and
to Rj by bit-pipes with rate, respectively,

Ci = max
PXi

I(Xi; Ỹi), C̄i,j = max
PX̄i,j

I(X̄i,j ; Ȳi,j). (5)

Based on the framework developed in [14], [15], the upper
bounding model for the broadcast channel originated at the
source node can be constructed by utilizing hyper-arc — a
single-tail multiple-head bit-pipe. One such model is illustrated
in Fig. 2 where the rates of hyper-arcs are given by

R1 = max
pX

I(X;Y1 · · ·YmYD)− I(X;Y2 · · ·YmYD),

Rk = max
pX

I(X;Yk · · ·YmYD)− I(X;Yk+1 · · ·YmYD),

Rm = max
pX

I(X;YmYD)− I(X;YD), (6)

RD = max
pX

I(X;YD).

Note that the upper bounding model represents a layered
cooperation structure since ∀k = 1, . . . ,m,

RD +

m∑
i=k

Ri = max
pX

I(X;Yk · · ·YmYD). (7)

The upper bounding model in Fig. 2 only contains point-to-
point(s) bit-pipes, and we can calculate its capacity Cupp by
the max-flow min-cut principle and evaluate the value of all
possible cuts (keeping the hyper-arcs in mind). Naturally, we
have (only focusing on two cuts)

Cupp ≤ RD + min {
∑m
i=1Ri,

∑m
i=1 Ci} . (8)



Since the wideband channels in the relay network are mem-
oryless independent fading, channel state information is not
available at either the transmitter or receiver side. Assuming
perfect channel knowledge at the receiver, the capacity of
infinite bandwidth fading channel equals the capacity of an
infinite bandwidth Gaussian channel with the same received
SNR. We can therefore upper bound the rate constraints in (6)
by their corresponding Gaussian channel capacities. Denoting
the average received power at relay node Ri as αiP , where
αi > 0, i = 1, . . . ,m, represents the average power gain (or,
loss). Without loss of generality, assuming

α1 ≥ α2 ≥ · · · ≥ αm ≥ αD > 0, (9)

the rate constraints in (6) in the wideband (i.e., low SNR)
regime can be written as (in nats)

RD = αD
P

N0
, Rk = αk

P

N0
, k = 1, . . . ,m. (10)

B. Multi-layer binning Peaky FSK lower bound

We generalize the peaky FSK with binning [12] to many-
layer binning and build a lower bound. This generalization is
based on the observation that decoding the bin index alone
requires the same rate as decoding the whole message. This is
due to the nature of FSK where signal randomness comes
from its potential frequency carrier positions and the fact
that threshold decoding is done for every possible frequency
carriers. The encoding and decoding process are described
as follows. For convenience of description, we assume the
average channel gain from source to relay nodes as in (9),
and we denote the average received SNR on relay-to-relay
link Ri→Rj as ᾱi,jP/N0 and the average received SNR on
relay-to-destination link Ri→D as α̃iP/N0.

For a given set of positive integers {M1, . . . ,Mm,MD}, the
messages are chosen uniformly at random from the message
set W , {0, 1, . . . ,M − 1} where

M = MD

m∏
i=1

Mi, (11)

and a message w∈W is represented by a vector of (m+1)
non-negative integers bin(w) = [k1, k2, · · · , km, kD] such that

0 ≤ kD ≤MD − 1, 0 ≤ ki ≤Mi − 1, i = 1, . . . ,m,

w = kD + kmMD +

m−1∑
i=1

kiMD

m∏
j=i+1

Mj . (12)

The encoding at the source node is the same as described
in Sec. II where a waveform xw(t) with symbol length Ts
as defined in (4) is used at low duty-cycle θ ∈ (0, 1] with a
length-N repetition coding. Since the total transmission time
is NTs/θ, the information rate is

r =
θ

NTs
log(M) = rD +

∑
i ri, [nats], (13)

where ri = θ
NTs

log(Mi) represents the information rate
carried by the ith-layer bin index.

The decoding process at relaying nodes are described as
follows. At relay node R1, the average received SNR is α1

P
N0

.
M parallel matched filters are applied to the received signal
Y1 over all the M frequency carriers and all the N repeating
copies. We denote the output at frequency fk and the nth
repetition copy as

A
(1)
k,n =

1√
N0(Ts − Td)

∫ nTc+Ts

nTc+Td

exp(−j2πfkt)y(t)dt.

Then we take the average power of all the N outputs A(1)
k,n,

S
(1)
k =

1

N

N∑
n=1

|A(1)
k,n|

2, 0 ≤ k ≤M − 1,

and evaluate them against a predefined threshold

B(1) = 1 + (1− ε1)
α1P (Ts − Td)

θN0
,

for some ε1 ∈ (0, 1). If there exist a unique ŵ ∈ W such that
S

(1)
ŵ exceeds the threshold B(1), we declare ŵ is received;

otherwise we declare an error. Following the similar error
analysis as in [3], as N→∞ and θ→0, the probability of error
can be made arbitrarily small if

r = rD +

m∑
i=1

ri < (1− ε1)
α1P

N0

(
1− Td

Ts

)
. (14)

The relay node R1 then transmits the layer-1 bin index k1

to the destination and to relays by peaky FSK via orthogonal
channels. Reliable transmission of k1 is possible if

r1 < (1− ε̃1)
α̃1P

N0

(
1− Td

Ts

)
, (15)

r1 < (1− ε̄1,j)
ᾱ1,jP

N0

(
1− Td

Ts

)
, j=2, . . . ,m, (16)

for some ε̃1, ε̄1,j ∈ (0, 1).
After successfully receiving the layer-1 bin index k1 from

Ȳ2, the relay node R2 applies M/M1 parallel matched filters
to Y2 over the frequency carriers inside the layer-1 bin k1, and
compares their N -copy averages to a predefined threshold

B(2) = 1 + (1− ε2)
α2P (Ts − Td)

θN0
,

for some ε2 ∈ (0, 1). Following the similar error analysis as
in [12], the probability of error can be arbitrarily small if

rD +

m∑
i=2

ri < (1− ε2)
α2P

N0

(
1− Td

Ts

)
. (17)

Then R1 transmits the layer-2 bin index k2 to the destination
and to relays. Reliable transmission of k2 is possible if

r2 < (1− ε̃2)
α̃2P

N0

(
1− Td

Ts

)
, (18)

r2 < (1− ε̄2,j)
ᾱ2,jP

N0

(
1− Td

Ts

)
, j=3, . . . ,m, (19)

for some ε̃2, ε̄2,j ∈ (0, 1).



We continue this process for R3, . . . ,Rm. The destination
node successfully recovers bin indexes [k1, . . . , km] from the
relaying nodes, and it applies M/(M1M2 · · ·Mm) = MD

parallel matched filters to YD over the frequency carriers inside
the layer-m bin given by [k1, k2, . . . , km], and evaluates their
average against a predefined threshold

B(D) = 1 + (1− εD)
αDP (Ts − Td)

θN0
,

for some εD ∈ (0, 1). As before, the probability of error can
be made arbitrarily small if

rD < (1− εD)
αDP

N0

(
1− Td

Ts

)
. (20)

By choosing Ts arbitrarily close to Tc and all ε arbitrarily
small (→ 0), the achievable rate is given by

RFSK = rD +

m∑
i=1

ri, (21)

rD <
αDP

N0

(
1− Td

Tc

)
, ri <

α̃iP

N0

(
1− Td

Tc

)
, (22)

ri <
ᾱi,jP

N0

(
1− Td

Tc

)
, ∀j = i+1, . . . ,m, (23)

rD +

m∑
k=i

rk <
αiP

N0

(
1− Td

Tc

)
. (24)

Note that the upper and lower bounds meet when the channels
from source/relay to the destination are the bottleneck.

C. When relay can’t decode

It has been known since [7] that, without channel state
information and without feedback, the achievable rate tends
to zero as bandwidth grows if the signal energy spreads over
the whole bandwidth. Instead, as suggested in [6], if signals
concentrate on a fraction of available bandwidth such that
that signal bandwidth is large enough to enjoy the benefit of
linear scaling in the low SNR regime, but small enough to
enable channel estimation at low cost, the achievable rate can
approach the wideband Gaussian capacity within a small gap.

However, if a relay node can’t decode, as shown in [11],
even an Minimum Mean Square Error (MMSE) estimator can’t
help, resulting in a distortion with power approaching the
signal power if Gaussian codewords are used for transmission.
Even if we use peaky FSK instead, as in Sec. III-B and [12],
the relay can’t decode the bin index without decoding the
whole message. Since the received signals at relay nodes are
in low SNR regime with large bandwidth, we can claim that
a relay’s contribution is useless if it can’t decode, as long as
the rate of relay-destination channel is not sufficiently high,
i.e., the received signal at relay node can’t be forwarded to
the destination without being contaminated by extra noise.

IV. CONCLUSION AND DISCUSSION

In this work, we have characterized the capacity upper and
lower bounds of a multiple-relay network in the wideband
regime over memoryless independent fading channels, which

channel state information is not available. The upper bound is
obtained by network equivalence tools and the lower bound is
based on a multiple-layer binning peaky FSK. If a relay note
can’t decode, its contribution is useless as long as the rate of
the cooperation channel is not sufficiently high.

It is interesting to compare out work to the distributed trans-
mitter/receiver cooperation proposed in [16] where signals at
distributed receivers are first quantized into fixed Q bits and
then forwarded to the destination for decoding. For extended
networks, as the number of nodes n scales up, the distance
between clusters increases such that all the nodes in the
receiving cluster end up in the low SNR regime. If Gaussian
codebooks are used, they can either decode all the bits, which
is not realistic, or they can’t decode and thus useless. To solve
this problem, [16] uses bursty transmission over frequency-flat
channels (fixed known channel gain but random phase). Since
the low duty-cycle goes to zero as n scales up, it is challenging
to fulfill the channel model assumption.
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