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Abstract

Theoretic results have shown that the capacity of a channel does not decrease
if the receiver observes the transmitted signal in the presence of interference,
provided that the transmitter knows this interference non-causally. That is,
if the transmitter has non-causal access to the interference, by using proper
precoding this interference could be “avoided” (as if it were not present)
under the same transmit power constraint. It indicates that lossless (in the
sense of capacity) precoding is theoretically possible at any signal-to-noise-
ratio (SNR). This is of special interest in digital watermarking, transmission
for ISI channels as well as for MIMO broadcast channels. Recent research has
elegantly demonstrated the (near) achievability of this “existence-type” re-
sult, while the complexity is notable. An interesting question is what one can
do when very little extra complexity is permitted. This thesis treats such spe-
cial cases of this problem in order to shed some light on this question. In the
AWGN channel with additive interference, an optimum modulator is designed
under the constraint of a binary signaling alphabet with binary interference.
Tomlinson-Harashima precoding (THP), which is originally proposed for ISI
channels, is improved by picking up optimized parameters and then taken as
a benchmark. Simulation results show that the Optimum Modulator always
outperforms the THP with optimized parameters. The difference in perfor-
mance, in terms of mutual information between channel input and output as
well as coded bit error rate with Turbo codes, is significant in many scenar-
ios.
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Chapter 1

Introduction

1.1 Background

Recently the problem of canceling known interference in noisy channels with
channel state information (CSI) at the transmitter has attracted significant
interest. A classic information theoretic result given by Costa [1], “dirty pa-
per” coding (DPC), states that the capacity of a channel from A to B does not
decrease if B observes the signal from A embedded in interference, provided
A knows this interference non-causally. This result indicates that lossless
(in the sense of capacity) precoding is theoretically possible at any signal-
to-noise-ratio (SNR). Recent research [2, 3] shows that DPC can serve as a
building block in architecture for both inter-symbol interference (ISI) chan-
nels and for the downlink multiuser multiple-input multiple-output (MIMO)
channel. This is an “existence-type” result, but it indicates that one can
find efficient downlink precoding methods. Consequently, much research has
been devoted to find “practical” such methods.

1.2 Previous Works

Perhaps the simplest existing (but suboptimal) method for DPC is zero-
forcing (ZF) [4], which does linear channel inversion at the transmitter. ZF
precoding, however, increases the transmit power and suffers from the same
serious disadvantages as ZF receivers. In the case of additive interference, ZF
simply subtracts the interference and hence increases the power consumption.

Tomlinson [5] and Harashima [6] invented a nonlinear precoding method,
the so called Tomlinson-Harashima precoding (THP), which introduces a
modulo operation after the subtraction of the known interference in order
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to maintain the transmit power constraint. Wesel and Cioffi [7] investigated
the capacity loss of THP for uniformly distributed transmitting signals, given
the channel impulse response, the transmit power constraint and the AWGN
noise variance. Liu and Krzymień [8] applied THP to the downlink of mul-
tiple antenna multi-user systems and derived an improved THP based on a
“best-first” ordering of the rows of the channel matrix. An auxiliary feed-
back filter was introduced by Smee and Schwartz [9] in the receiver in order
to cooperate with the feedforward filter so that adaptive compensation for
THP can be done in case of channel or interference variations. It also showed
that the error propagation and the transient increases in mean-squared error
can be avoided by adaptively updating the precoder. Liavas [10] examined
the performance of THP in time-varying frequency-selective channels and
proposed a robust THP suitable for low SNR scenarios with partial channel
knowledge.

Another strategy for achieving capacity is known (the constructive proof
is precisely described in [1]; see also [11]): First quantize the interference
into a number of bins (this is essentially a source coding problem). Then,
depending on which bin the interference falls into, choose an appropriate
code for the encoding of the source signal. The best DPC results presented
in references [12–14], which have elegantly demonstrated (near) achievability
of the DPC limit, are based on this approach. However their complexity is
notable.

1.3 Project Purpose and Goal

It is natural to ask what one can do about the DPC problem when per-
mitted to add no, or very little, extra complexity to the system compared
to “classical” transmission. The goal of this thesis is to shed some light
on this question. More precisely, we consider the design of an optimal one-
dimensional scheme which does modulation based on a source signal and the
knowledge of interference so that the interference could be “avoided” (as if
the interference were not present) under the same transmit power constraint.
Since it is impossible to achieve the capacity with finite-dimensional modu-
lation, we focus on the investigation of what the best one can achieve in one
dimension, with low complexity.

In order to see how well the optimal scheme could perform, a good bench-
mark has to be introduced. The no interference cancellation scheme is ac-
ceptable but not good enough. Tomlinson-Harashima precoding seems to be
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a good choice in this one-dimensional scenario, while its heuristic parameters
harm the performance. A straightforward but very time-consuming way is
to find the optimized parameters for THP based on an exhaustive search.
This Optimal THP (THP with optimized parameters), together with the no
interference case, will serve as benchmarks for our new scheme.

1.4 Outline

This thesis is divided into chapters as follows:

Chapter 2 investigates the performance of Tomlinson-Harashima precod-
ing (THP) for one-dimensional DPC both with heuristic and optimized pa-
rameters. Both mutual information and bit error rate are used to evaluate
its performance.

Chapter 3 presents an optimum modulator for a special case of the one-
dimensional DPC problem: a binary signal through an AWGN channel with
BPSK interference known to the transmitter. Simplification of this Optimum
Modulator is also discussed.

Parts of the work in Chapter 2 and Chapter 3 resulted in a published
conference paper:
[22] Jinfeng Du, Erik G. Larsson, and Mikael Skoglund, “Costa precoding
in one dimension,” in Proc. of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Toulouse, France, May 2006, to
appear.

Chapter 4 examines the coding gains achieved by the Optimal THP and
the Optimum Modulator schemes based on the coded bit error rate when
they are combined with Turbo codes.

Chapter 5 presents a summary of our work and points out some possible
directions in which this one-dimensional Optimum Modulator could be ex-
tended.

3



1.5 Notation

Throughout this thesis the following notational conventions are used:
x lowercase letters denote random variables.
xi The ith realization of the random variable x.
Px(·) probability of a discrete random variable x.
fx(·) probability density function of a continuous random variable x.
Fx(·) cumulative density function of a continuous random variable x.
P (x ≤ t) probability of a random variable x so that x ≤ t.
P (x|y) conditional probability of a random variable x given y.
E[x] The expected value of random variable x.
x mod Λ modulator operator so that the result falls inside the interval [−Λ

2
, Λ

2
].

⌊x⌋ the largest integer that is smaller than x.
δ(·) the Dirac function.
n! n-factorial, a quantity defined as n! =

∏n

i=1 i.
log(·) the log operator.
ln(·) the log operator with base e.
log2(·) the log operator with base 2.
log10(·) the log operator with base 10.

1.6 Acronyms

Abbreviations used in this thesis are listed below:

• AWGN Additive White Gaussian Noise

• BER Bit Error Rate

• BPSK Binary Phase Shift Keying

• CDF Cumulative Density Function

• CSI Channel State Information

• DPC Dirty Paper Coding

• IC Interference Cancellation

• INR Interference to Noise Ratio

• ISI Inter Symbol Interference

• MAP Maximum a Posteriori

4



• MIMO Multiple-Input Multiple-Output

• ML Maximum Likelihood

• M-PAM M-ary Pulse Amplitude Modulation

• PDF Probability Density Function

• RSC Recursive Systematic Convolutional

• SIR Signal to Interference Ratio

• SNR Signal to Noise Ratio

• THP Tomlinson-Harashima Precoding
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Chapter 2

Tomlinson-Harashima

Precoding

2.1 Introduction

In this chapter, the properties of scalar THP under a power constraint is
investigated in detail. The performance of THP both with heuristic and with
optimized parameters is compared in terms of Mutual Information between
the transmitter and the receiver. The optimal detector is derived to maximize
the performance. Also efforts are spent on improving the computational
efficiency of the Optimal THP method.

2.2 System Model

Figure 2.1 illustrates a general system with additive interference and AWGN
noise. Interference is non-causally known at the transmitter and its proba-
bility density function (PDF) is known at the receiver.

The channel output is given by

y(t) = x(t) + z(t) + n(t) (2.1)

where x(t), y(t), z(t), n(t) denote the transmitted signal, the received
signal, the interference and the AWGN noise at time instant t respectively.
In the following, the time index t will be suppressed for convenience. The
transmitted signal x is the output of the encoder given the information signal
w and the interference z, and therefore denoted by x(w, z). The information
signal w is a symbol from an M-ary Pulse Amplitude Modulation (M-PAM)

7



w(t)
Tx Rx

y(t)x(t)

n(t)
z(t)

Figure 2.1: System configuration

constellation with uniform spacing ∆w and points at

wi =

(
i − M − 1

2

)
∆w, i = 0, 1, ..., M − 1 (2.2)

The interference z is either Gaussian or taken from a finite alphabet {zn =
(n − N−1

2
)∆z, n = 0, 1, ..., N − 1}, with the following distribution function

fz (τ) =
1 − ρ√
2πσ2

z

e
− τ2

2σ2
z +

ρ

N

N−1∑

n=0

δ(τ − zn) (2.3)

The CDF of z is

Fz (τ) = P (z ≤ τ) =
∫ τ

−∞ fz(x)dx

= (1 − ρ)(1 − Q( τ
σz

)) + ρ

N






0 τ < −N−1
2

∆z;⌊
(τ + N−1

2
∆z)/∆z

⌋
+ 1 otherwise;

N τ ≥ N−1
2

∆z.

(2.4)

where ρ ∈ [0, 1] is a relative weight which determines to what extent z is
discrete or Gaussian.

Before introducing the strategy of Tomlinson-Harashima precoding, we
first present some baseline schemes for this problem.

2.2.1 No Interference

If there is no interference, the best thing one can do is to transmit the signal
w directly with all the available power (say, w = ±

√
P for BPSK modulated

signal). The received signal is

y = x + n = w + n

8



Since w and n are independent, the conditional distribution function of y
given w can be expressed as

fy(y|w) =
1√

2πσ2
e−

(y−w)2

2σ2 (2.5)

where σ2 denotes the variance of the AWGN noise n. The optimal receiver
(in the minimum error-probability sense) is the one that maximizes the a
posteriori probability of w when y is observed:

ŵMAP = arg max
w

P (w|y) = arg max
w

Pw(w)fy(y|w) = arg max
w

Pw(w)e−
(y−w)2

2σ2

2.2.2 No Interference Cancellation

If the transmitter does not know the interference but the receiver knows
fz(τ) (an assumption we do make throughout the thesis), transmitting the
signal w directly with all the available power is not necessarily optimal. In
our comparisons, we choose the value of Pw (subject to Pw ≤ P ) which
maximizes performance. With x = w, the the received signal is

y = x + z + n = w + z + n

For given w, the distribution function of y can be derived from the convolu-
tion of fz(τ) and fn(τ) (z and n are independent)

fy(y|w) =
1 − ρ√

2π(σ2
z + σ2)

e
− (y−w)2

2(σ2
z+σ2) +

ρ

N

N−1∑

n=0

1√
2πσ2

e−
(y−w−zn)2

2σ2 (2.6)

The optimal receiver therefore is

ŵMAP = arg max
w

P (w|y) = arg max
w

Pw(w)fy(y|w)

2.2.3 Interference Subtraction

If the transmitter knows the interference non-causally, the simplest way to
avoid this interference is to do interference subtraction (also called ZF). That
is, transmit x = w − z instead of w. The received signal can be expressed as

y = x + z + n = (w − z) + z + n = w + n

which is identical with no interference. It seems like a good choice to avoid
known interference at the first glance. However, this approach is not applica-
ble unless E[x2] = E[w2] + E[z2] ≤ P . In other words, when the power of the

9



interference Pz = E[z2] ≥ P − E[w2], this strategy becomes meaningless.

Is there anything we could do to maintain the performance of this “sub-
traction” strategy while largely reducing the transmit power? In early 1970s,
Tomlinson [5] and Harashima [6] introduced a modulo operation after sub-
traction and formed the so called Tomlinson-Harashima Precoding method,
which will be described in the following section.

2.3 Tomlinson-Harashima Precoding

The basic strategy of Tomlinson-Harashima precoding is to subtract the in-
terference z from the source signal w, and then pass the resulting signal
(w−z) through a modulo operator. Given a real valued variable a, the mod-
ulo operation “mod Λ” outputs a new real valued variable b which falls into
the region [−Λ

2
, Λ

2
], where Λ is called the modulo range. After this modulo

operation, the output signal x = (w − z) mod Λ is transmitted through the
noisy channel. The received signal y can be expressed by

y = x + z + n = (w − z) mod Λ + z + n (2.7)

where the modulo range Λ can be adjusted to achieve the best performance
while maintaining the power constraint. The above equation can be rewritten
as

y = w + (w − z) mod Λ − (w − z) + n
= w + kΛ + n

(2.8)

where k = 1
Λ

((w − z) mod Λ − (w − z)) is an integer with the following con-
ditional distribution

Pk|w = P (k = k|w) = P ((w − z) mod Λ − (w − z) = kΛ |w)
= P (w − z ∈ [−(k + 1/2)Λ,−(k − 1/2)Λ] |w)
= P (w + (k − 1/2)Λ ≤ z ≤ w + (k + 1/2)Λ |w)
= Fz(w + (k + 1/2)Λ) − Fz(w + (k − 1/2)Λ)

(2.9)

where the last equality comes from the cumulative density function (CDF)
of z, as shown in (2.4).

Since kΛ depends only on w, z and Λ, it is independent of noise n. Ac-
cording to the Bayesian rule, One can derive from (2.8) and (2.9) that

fy(y|w) =

∞∑

k=−∞
f(y, k|w) =

∞∑

k=−∞
Pk|wf(y|w, k) =

∞∑

k=−∞
Pk|w

1√
2πσ2

e−
(y−w−kΛ)2

2σ2 (2.10)
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where σ2 denotes the variance of the AWGN noise n. This likelihood function
can be directly used in the decoder or to calculate the mutual information,
as one will see in Section 2.4. The optimal receiver is

ŵMAP = arg max
w

Pw(w)
∞∑

k=−∞
Pk|we−

(y−w−kΛ)2

2σ2

which differs from the heuristic (and suboptimal) detector that is given by
(2.14) and usually used in papers dealing with THP.

When the interference z is known and the power of n is kept constant,
the likelihood function fy(y|w) depends only on the alphabet of information
signals w and the modulo range Λ. Most of the contributions related to THP
link these two parameters as

Λ =
3

2
· Ωw (2.11)

where Ωw is the constellation size of w. For M-PAM modulated signal w, we
have

Ωw = (M − 1) · ∆w

where ∆w is the same as in (2.2). In the special case of 2-PAM (BPSK)
modulated w, we have Ωw = ∆w. Below we show how to choose ∆w and Λ to
optimize performance. It turns out that optimal choice of (∆w, Λ) improves
significantly over (2.11).

2.4 Performance Analysis

The performance of a communication link can either be evaluated in terms
of the capacity or the bit error rate. When capacity is concerned, only the
mutual information between the received signal y and the information signal
w will be computed as an indicator of the capacity. When BER is computed,
the optimal receiver will be used.

2.4.1 Mutual Information

According to information theory, the mutual information between y and w
is

I(y; w) = H(w) − H(w|y)

=
∑M−1

i=0

∫ ∞
−∞ P (y, wi) log P (wi|y)dy −

∑M−1
i=0 Pw(wi) log Pw(wi)

=
∑M−1

i=0

[∫ ∞
−∞ fy(y|wi)Pw(wi) log fy(y|wi)Pw(wi)

fy(y)
dy − Pw(wi) log Pw(wi)

]

=
∑M−1

i=0 Pw(wi)
∫ ∞
−∞ fy(y|wi) log fy(y|wi)

fy(y)
dy

(2.12)
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where fy(y) =
∑M−1

j=0 fy(y|wj)Pw(wj) and the last equality comes from the

fact that
∫ ∞
−∞ fy(y|wi)dy = 1, ∀i. The different fy(y|w) accompanied with

different precoding schemes are shown in the following table:

Scheme Tx(x) Rx(y) fy(y|w)

No Interf w w + n (2.5)
No IC w w + z + n (2.6)

Subtract w − z w + n (2.5)
THP (w − z) mod Λ w + kΛ + n (2.10)

2.4.2 Bit Error Rate

The optimal Maximum a Posteriori (MAP) receiver suitable for all strategies
can be expressed as

ŵMAP = arg max
w

P (w|y) = arg max
w

Pw(w)fy(y|w) (2.13)

For THP, there is also a suboptimal receiver which is given by

ŵsubopt = arg min
w

[(y mod Λ) − w]2 (2.14)

2.5 Numerical Results

Both Mutual Information and Bit Error Rate are used as a measure of per-
formance. If not especially mentioned, following assumptions are used in the
simulations:

• The information bits are modulated by one dimensional M-PAM with
equal probability Pw = 1/M using Gray mapping;

• The interference z either comes from discrete symbols with equal prob-
ability or Gaussian symbols with variance σ2

z . It is available at the
transmitter and its distribution function is available at the receiver;

• A truncated sum (11 items, k = −5, ..., 5) is used for fy(y|w) in (2.10)
and Monte-Carlo integration will be used when necessary.

When calculating the mutual information for different schemes, an ex-
haustive search has been used to achieve the maximum achievable mutual
information for each scheme under the power constraint. For the No In-
terference scheme, we simply used all available power in transmission; for
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other schemes, the optimal choice to achieve the maximum mutual informa-
tion does not necessarily use all available power. Hence we use the transmit
power “smartly” so that the system could get the best performance under the
power constraint. As the Interference Cancellation (subtraction) is identical
to the No Interference case except for the transmit power, it is not included
in the simulations in Section 2.5.2 and Section 2.5.3 where the comparison is
based on the same transmit power constraint.

Note that, strictly speaking, for a given power constraint P/σ2, the ac-
tual SNR may be less than P/σ2, because the optimal transmitter does not
necessarily use all available power, as we mentioned earlier. Yet we refer to
P/σ2 as SNR because it facilitates a well-defined comparison with the No
Interference case.

2.5.1 Investigation of THP

The performance of THP is compared with three other cases, No Interfer-
ence, Interference Subtraction (Cancellation) precoding, and No Interference
Cancellation. As the transmit power P = E[x2] varies with different cases,
adjustment of noise level has been made to ensure the same SNR level in
each case.

Fig. 2.2 shows the mutual information for THP versus the modulo range
Λ with SNR = 6dB together with the other three schemes. Fig. 2.3 shows the
corresponding curves for the bit-error-rate with the optimal MAP detector
described in (2.13). Both of them are carried out under 2-PAM modulated
source signal with ∆w = 2 and equally distributed discrete interference z,
which is 4-PAM modulated with ∆z = 1. Both of these two figures show
that THP performs much better than the Interference Subtraction (Cancel-
lation) scheme and the No Interference Cancellation scheme for some values
of Λ. Three local minimum values of BER have been achieved at the points
of modulo range 0.58, 0.79 and 1.37, which are the very points where three
local maximum values of mutual information have been achieved at 0.859,
0.835 and 0.785 (bits) respectively, compared with 0.912 (bits) for the No
Interference case and 0.68 (bits) for the Interference Subtraction.

Therefore in this particular case, it is possible to achieve quite good per-
formance (comparable to the No Interference case) by properly choosing the
parameters for THP. This motivates us to find the optimized parameters un-
der a power constraint for THP and thus form the Optimal THP scheme, as
described later in Section 2.5.2.
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Figure 2.2: Mutual information vs. modulo range Λ with SNR=6dB

Those values of Λ where the THP achieves its local optimal performances,
could be crudely identified from the minimum distance of the receive con-
stellation normalized by the noise variance, as shown in Fig. 2.4 with

dy = min
i6=j

|yi − yj| where yi, yj ∈ {y|y = (w − z)modΛ + z}

As the component with the minimum distance forms the dominating term
of error probability, those with large normalized minimum distance will defi-
nitely achieve good performance. While since there are still other components
that contribute to the error probability, the corresponding points in perfor-
mance might vary slightly (cf. Fig. 2.4).

As indicated by Fig. 2.2 and Fig. 2.3, mutual information and bit error
rate provide the same information about performance via different perspec-
tives. In what follows we will mainly use the mutual information to measure
the performance for different precoding methods.
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Figure 2.5: Mutual information vs. power constraint, discrete interference

2.5.2 Comparison of Optimal THP and Heuristic THP

As mentioned in Section 2.3, the Heuristic THP is suboptimal. In the follow-
ing simulations we investigate the performance of this Heuristic THP and an
Optimal THP which uses optimized parameters by exhaustive search over all
possible values of ∆w and Λ under the power constraint.

Fig. 2.5 and 2.6 display the maximum mutual information each scheme
can achieve under the same power constraint with known interference from
a discrete 4-PAM constellation and Gaussian interference respectively. The
source signal is 2-PAM modulated and the interference to noise ratio (INR)
is 17dB. The optimal THP performs much better than the Heuristic THP
both with discrete interference and with Gaussian interference.

Fig. 2.7 and 2.8 display the corresponding bit error rate each scheme
achieves under the same power constraint. Here the detector used by the
Heuristic THP is given by (2.14) and the detector used by the Optimal THP
is given by (2.13). The suboptimal detector fails to work with some “unlucky”
choices of ∆w and Λ while the optimal detector works well regardless of Λ.
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2.5.3 Encoder Simplification

The Optimal THP works pretty well and seems more robust compared with
the Heuristic THP, but finding the optimal (∆w, Λ) is time consuming. Is
it possible to simplify the Optimal THP? In other words, is there any way
to modify the Heuristic THP so that it can achieve almost the same perfor-
mance as the Optimal THP?

The answer is affirmative. Let us turn to the idea when we come up
with Optimal THP. We search over all possible values of ∆w and Λ to find
the best parameters. Is there any simple and straightforward relationship
between these optimal parameters? First let us turn to the simple case of
a 2-PAM modulated signal with 2-PAM modulated interference. Fig. 2.9
displays the relationship between the mutual information of THP and these
parameters when the power of the interference is the same as the power of
the noise. It is quite clear that, the line which denotes Λ = ∆w −∆z is where
the optimal performance of THP would be achieved. (Strictly speaking, this
rule does not work when Λ < ∆z, as shown in Fig. 2.9. Thus we choose
Λ = ∆z instead in such scenario.) This claim is further supported by Fig.
2.10, which shows the same relationship when the power of the interference
is two times of the power of the noise.
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Figure 2.9: Mutual information vs. ∆w and Λ, with SNR = SIR

Now it is quite simple to apply this rule to the Heuristic THP to achieve
better performance without increasing the complexity. However the rule that
Λ = ∆w − ∆z is not exact at all, it is simply deduced from the figure and
thus rather heuristic. Let us resort to simulation again.

Fig. 2.11 and Fig. 2.12 display the mutual information for all different
schemes versus the power constraint in two different scenarios (INR = 3dB,
0dB respectively). The Heuristic THP uses the parameter Λ = ∆w − ∆z

(strictly speaking, Λ = max{∆w − ∆z, ∆z}), as mentioned earlier. It is
the same for the following cases when using this rule, and hence we will not
explain it in the following paragraphs. With this rule applied, the Heuristic
THP performs almost as good as Optimal THP in the high SNR region when
the power of the interference is two times as large as the power of noise (INR
= 3dB), as shown in Fig. 2.11. In a different scenario, however, it does not
work (Fig. 2.12 with INR = 0dB). Although slightly modification of this rule
regarding of specific scenarios is possible to make it work, it is not easy find
a general expression of this rule that is suitable for all scenarios.

In more complicated cases, say 2-PAM modulated signal with 4-PAM
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Figure 2.10: Mutual information vs. ∆w and Λ, with SNR = SIR + 3dB
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Figure 2.11: Mutual information vs. power constraint, with Λ = ∆w − ∆z
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Figure 2.12: Mutual information vs. power constraint, with Λ = ∆w − ∆z

modulated interference, there also seems to be similar relationships between
these optimal parameters Λ, ∆w, and ∆z, as shown in Fig. 2.13. This
completes our discussion of THP.

2.6 Summary

Tomlinson-Harashima precoding could largely decrease the transmit power
while maintaining the same communication quality, both in the mutual in-
formation sense and in terms of bit error rate. With optimized parameters,
THP can eliminate most of the effects brought in by the known interference,
regardless of whether it consists of discrete symbols or Gaussian components.
The optimal MAP detector works better than the suboptimal detector.

Note that, all the deductions in this chapter are valid without any assump-
tions on the PDF of the information signal. And the distribution function
for the interference could also be changed to a more general one. Such kind
of changes may affect the results we have presented here while the way to
investigate the performance remains the same.

However, there are also some inherent shortcomings in the construction
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Figure 2.13: Mutual information vs. ∆w and Λ, with SNR = SIR + 17dB

of THP. Subtraction of interference before the modulo operation reduces the
freedom of arranging transmit constellation and hence may cause perfor-
mance loss in some special cases (say, the power constraint range between
0dB and 3dB in Fig. 2.12). Additionally, the symmetry in the constel-
lations of w and z as well as the modulo operation introduces extra con-
straints on the mapping of x(w, z). For example, x(w1, z1) = −x(w0, z0)
and x(w1, z0) = −x(w0, w1) always hold in case of a binary signaling al-
phabet with binary interference. This extra constraint is unnecessary from
the point of view of modulation design. Could one find a better precoding
(rather, modulation) scheme so that such shortcomings could be conquered?
This motivation inspires us to examine what is the best one can do for this
problem. It consequently results in an Optimum Modulator which will be
displayed in the next chapter.
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Chapter 3

Modulator Optimization

3.1 Introduction

In this chapter we turn to a more specific case of Dirty Paper coding, namely
for BPSK signals with BPSK Interference. An Optimum Modulator is pro-
posed to mitigate the interference and in some cases it shows a performance
close to that of the No Interference system. It generally outperforms the Op-
timal Tomlinson-Harashima precoding(THP). Simulation results show that,
the Optimum Modulator suffers at most 1.5dB loss against the No Interfer-
ence system.

3.2 System Model

In the special case under study, both w and z are BPSK modulated with
following distribution functions

fw (τ) = αδ(τ − w0) + (1 − α)δ(τ − w1), 0 < α < 1 (3.1)

fz (τ) = βδ(τ − z0) + (1 − β)δ(τ − z1), 0 < β < 1 (3.2)

where

wi =

(
i − 1

2

)
∆w, i = 0, 1

zj =

(
j − 1

2

)
∆z, j = 0, 1

Then the CDF of z described in (2.4) could be rewritten as

Fz (τ) =






0 τ < −∆z

2
;

β otherwise;
1 τ ≥ ∆z

2
.

(3.3)
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In the following discussions, both the signal w and interference z are
supposed to be evenly distributed on their own alphabet (α = β = 1

2
), which

is a reasonable assumption in communication systems.

3.3 Optimum Modulator

3.3.1 Constellation Design

For different combinations of w and z, four different values of x are possible,
as shown in Fig. 3.1.

x1

w1w0

z0

z1
z

w

x3

x2x0
Figure 3.1: Constellation for optimum modulator

The symmetry in the BPSK constellations for w and z decreases the
degree of freedom for x. We can assume that x comes from the following
finite alphabet

x ∈ {−b,−a, a, b} , where E[x2] =
a2 + b2

2
≤ P

for some positive constants a, b. With no constraint on the ordering of a and
b, there are totally 4! = 24 possibilities, of which 12 are redundant (because
a and b are not ordered). The set of possible mappings to be considered
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therefore is

(I) x0 = a, x1 = −a, x2 = b, x3 = −b
(II) x0 = a, x1 = −b, x2 = b, x3 = −a
(III) x0 = −b, x1 = −a, x2 = a, x3 = b
(IV) x0 = −a, x1 = −b, x2 = a, x3 = b
(V) x0 = −b, x1 = a, x2 = b, x3 = −a
(VI) x0 = −a, x1 = a, x2 = b, x3 = −b
(VII) x0 = −a, x1 = a, x2 = −b, x3 = b
(VIII) x0 = −b, x1 = a, x2 = −a, x3 = b
(IX) x0 = a, x1 = b, x2 = −b, x3 = −a
(X) x0 = a, x1 = b, x2 = −a, x3 = −b
(XI) x0 = a, x1 = −b, x2 = −a, x3 = b
(XII) x0 = a, x1 = −a, x2 = −b, x3 = b

(3.4)

A more intuitive description for the 12 mappings is displayed in Fig. 3.2

(VII)

a

−a −b

b a

−b −a

b −b

−a b

a −a a

b−b a

−b b

−a a

−a b

−b

−a

a b

−b −b

a b

−a a

b −a

−b

b

a −a

−b −b

a −a

b −a

a

b

−b

(VIII) (IX) (X) (XI) (XII)

(VI)(V)(IV)(III)(II)(I)

Figure 3.2: The 12 possible mappings for the Optimum Modulator

3.3.2 Strategy for Optimal Mapping

The Optimum modulator works as follows: For a given power constraint,
interference and noise level, it first searches over different values of a, b. For
each pair of (a,b), every mapping in the 12 combinations is used to calcu-
late the mutual information. The one with the largest mutual information
is recorded as the optimal constellation associated with that point (a,b).
Among these recorded points, the one with the maximum mutual informa-
tion and with power less than or equal to the power constraint is selected as
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the optimal mapping for this given scenario.

As one can see from the above 12 different mappings, there is a lot of
symmetry. This set actually could be further reduced to 4, or even 2 without
an apparent loss of performance. This topic will be further discussed in
Section 3.5.2.

3.3.3 Conditional Probability

The independence of z and n gives the distribution function of y conditioned
on w as

fy(y|w) =
∑1

i=0
1√

2πσ2
e−

(y−zi−x(w,zi))
2

2σ2 Pz(z = zi)

= 1

2
√

2πσ2
(e−

(y−z0−x(w,z0))2

2σ2 + e−
(y−z1−x(w,z1))2

2σ2 )
(3.5)

This results in a very simple form of the optimal receiver

ŵMAP = arg max
w

(
e−

(y−z0−x(w,z0))2

2σ2 + e−
(y−z1−x(w,z1))2

2σ2

)

3.4 Mutual Information

The Mutual information between the received signal y and the information
signal w will be computed as an indicator of the performance of the commu-
nication system. The achievable mutual information for different methods
will be studied under a power constraint to examine how much gain the Op-
timum Modulator could achieve over the Optimal THP.

According to information theory, the mutual information between y and
w is

I(y; w) = H(w) − H(w|y)

=
∑1

i=0

∫ ∞
−∞ P (y, wi) log P (wi|y)dy −

∑1
i=0 Pw(wi) log Pw(wi)

=
∑1

i=0

[∫ ∞
−∞ fy(y|wi)Pw(wi) log fy(y|wi)Pw(wi)

fy(y)
dy − Pw(wi) log Pw(wi)

]

=
∑1

i=0 Pw(wi)
∫ ∞
−∞ fy(y|wi) log fy(y|wi)

fy(y)
dy

(3.6)

where

fy(y) =

1∑

j=0

fy(y|wj)Pw(wj)
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and the last equality comes from the fact that

∫ ∞

−∞
fy(y|wi)dy = 1, i = 0, 1

The conditional PDF fy(y|w) for the Optimal THP and the Optimum Mod-
ulator are given by (2.10) and (3.5) respectively.

3.5 Numerical Results

In the numerical simulation, we assume that both w and z are equally distrib-
uted. That is, both α and β equal to 0.5. Mutual information is calculated by
Monte-Carlo integration and the infinite summation in (2.10) is truncated. A
transmit power constraint is applied everywhere and expressed via the signal
to interference ratio (SIR) or the signal to noise ratio (SNR).

3.5.1 Mutual Information Simulation

Fig. 3.3 examines how the gap between the Optimum Modulator system and
the No Interference system varies when the SIR increases while the SNR is
kept constant. We fix Pz = 4, simultaneously vary P and σ2 while keeping
the ratio P/σ2 (SNR) constant and equal to 1dB (marker “∆”), 3dB (marker
“O”) and 6dB (marker “∗”) respectively. The No Interference Cancellation
(IC) case is also included as a reference. The largest loss the Optimum
Modulator suffers is 1.5dB (at least for the SNR values shown in Fig. 3.3).

Fig. 3.4 illustrates how the Optimum Modulator relates to the No Inter-
ference system and the Optimal THP precoding. The Heuristic THP utilizes
the modulo range as Λ = 1.5·∆w. The No Interference Cancellation (IC) case
is also included as a baseline. The interference to noise ratio (INR) equals
to 3dB. The gap between the Optimum Modulator and the No Interference
system is relatively small while the gain over the Optimal THP is pretty
large.

Fig. 3.5 shows the performance comparison when both the power of the
noise and that of the interference are constant and equal to each other. The
largest loss for the Optimal Modulator against the No Interference case is no
larger than 1.5dB for all values of SNR. The Heuristic THP only works well
in the high SNR region while the Optimal THP is pretty good at high SNR
but suffers at SNR between 0 to 3dB.
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Figure 3.4: Mutual information vs. power constraint, with INR = 3dB.
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Figure 3.5: Mutual information vs. power constraint, with SIR = SNR.
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Figure 3.6: Received constellation regardless of noise, SNR = 1dB. Arrows
above axis stand for z1, otherwise for z0.

An explanation for why the THP even with optimized parameters still
can perform worse than the No Interference Cancellation case is that, the
inherent structure of THP (subtract the interference and then do modulo
operation) confines its performance in some special cases. The No Interfer-
ence Cancellation scheme we used here is actually not as simple as its name
indicates: we use the available transmit power “smartly” as indicated in Sec-
tion 2.5. This improves the performance of the No IC scheme and makes it
possible for some cases to outperform the THP scheme even with optimized
parameters. Fig. 3.6 tries to give an intuitive but crude explanation for why
the Optimal THP in some special case is worse than the No IC by exam-
ining the minimum distance in the received constellation with SNR = 1dB.
The minimum distance between w0 (“-”) and w1 (“+”) dominates the per-
formance.

3.5.2 Constellation Simplification

As mentioned previously in Section 3.3.2, the set of constellations could be
reduced. A statistical result that shows how frequently each of the 12 com-
binations are recorded when searching over (a,b) and how frequently each of
the 12 combinations are selected as the optimal constellation is shown in the
table bellow:
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Combinations (I) (II) (III) (IV) (V) (VI)
Recorded. No 5 76 14988 137 133 8438

Frequency 0.0001 0.0016 0.3145 0.0029 0.0028 0.1770
Selected No 0 0 21 0 0 26
Frequency 0 0 0.2234 0 0 0.2766

Combinations (VII) (VIII) (IX) (X) (XI) (XII)
Recorded. No 269 7 14941 124 92 8451

Frequency 0.0056 0.0001 0.3135 0.0026 0.0019 0.1773
Selected No 0 0 22 0 0 25
Frequency 0 0 0.2340 0 0 0.2660

Based on this we believe that the combinations (III), (VI), (IX), and
(XII) should be enough to be used by this Optimum Modulator. The set
could be reduced to 4, or even 2, due to symmetry between (III) and (IX),
(VI) and (XII). The statistical result for how frequently each mapping would
be recorded seems to converge to some constant values as more and more
simulations are carried out under different conditions. The most important
result derived from this statistics is that four combinations seem to be suffi-
cient for Optimum Modulator. This opinion is also supported by numerous
simulations which have not been displayed here. It is meaningless, however,
to check the specific percentage that indicates how frequently each of these
four mappings are selected as the optimal constellation. According to sim-
ulation records, the Optimum Modulator will pick up (VI) or (XII) as the
optimal constellation in the low SNR region and (III) or (IX) in the high SNR
region. (More often than not, shown by simulations, 3dB serves as a good
dividing line between low and high SNR regions in the scenario with INR =
0dB.) Therefore as the number of simulation trials increases, the percentage
for (VI) and (XII) will become identical. It is the same case for (III) and (IX).

An intuitive explanation for why the Optimum Modulator performs better
than other schemes in the presence of interference is given in Fig. 3.7, which
displays the received constellations without noise with fixed Pz = σ2 = 4 at
SNR = 0dB (a < b, (XII) selected), 1dB (a > b, (VI) selected), 4dB (a > b,
(IX) selected) and 6dB (a > b, (III) selected) respectively. The Optimal
Modulator utilizes the information of the interference z in a “smart” way. It
also shows clearly the symmetry between (III) and (IX), (VI) and (XII).

Three different simulations have been carried out with different sets con-
sisting of 12 (dashed line), 4 (solid line) and 2 (dotted line) combinations
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Figure 3.7: Receive constellations regardless of noise, Pz = 4, σ2 = 4. Arrows
above axis stand for w1, otherwise for w0.

respectively, as shown in Fig. 3.8 and Fig. 3.9. The set of 2 combinations
could either be {(III),(VI)} or {(IX),(XII)}. In Fig. 3.8, we fix Pz = 9 and
simultaneously vary P and σ2 while keeping the ratio P/σ2 (SNR) constant
and equal to certain values (1, 3 and 6dB). The difference between set size
12 and 4 is too small to be noticed, and the difference between set size 4 and
2 is mainly caused by the Monte-Carlo simulation.

In Fig. 3.9, we fix Pz = 10, σ2 = 5 (INR = 3dB, marker “∇”) or 10 (INR
= 0dB, marker “O”) for two different cases. There is no difference between
set size 12 and 4, and the difference between set size 4 and 2 is small. The
redundancy of mapping sets could be removed to increase the Monte-Carlo
simulation efficiency with little or almost no performance loss.

Another straightforward and attractive question is whether it is possible
to get rid of the exhaustive search over (a, b). That is to say, if there is
any simple relationship between the optimal (a, b) and ∆z. A mathematical
statement of this question would be like:
Given ∆z and σ2 in this Optimum Modulator system, for any P > 0, is there
a positive real number a and a real-valued function f(a, ∆z), so that

{
E[x2(a, f)]

∆
= (a2 + f 2(a, ∆z))/2 ≤ P

I(a, f) = maxE[x2]≤P I(y; w)
always hold?
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Figure 3.8: Mutual information versus power constraint (SIR = P/Pz), with
fixed SNR = 1dB, 3dB (marker “∇”) and 6dB (marker “∗”) respectively.
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Figure 3.10: Recorded mutual information versus (a,b), with ∆z = 4, σ2 = 4.

This is a difficult problem. The simulation provides some hints, as shown
in Fig. 3.10 which displays the mutual information for every point (a, b)
when doing the exhaustive search. It does not seem possible to find a simple
function b = f(a, ∆z) to achieve the optimum.

3.6 Summary

The Optimum Modulator for BPSK signals with BPSK interference can come
close in performance to the No Interference case. The largest loss the Op-
timum Modulator suffers compared with the No Interference system is less
than 1.5dB. Simulations show that the algorithm efficiency could be possibly
increased by reducing the set of combinations. And it is possible to further
reduce the complexity. Although this problem has not been solved in this
thesis due to time limitations, it could be a good topic for further work.

Note that, the Optimal THP is a special case of the Optimum Modulator:

• for THP: x(w, z) = (w − z) mod Λ
The symmetry of w and z as well as the modulo operation confines
the constellation choices of x. Equality x(w1, z1) = −x(w0, z0) and
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x(w1, z0) = −x(w0, w1) always holds and this places an extra constraint
on THP.

• for Optimal Modulator: x(w, z) ∈ {−b,−a, a, b}, a, b are positive con-
stants. The constraint of THP does not exist here.

It is now clear that the Optimum Modulator has a larger number of de-
grees of freedom in the constellation design than THP, and this is the inherent
reason why the Optimal Modulator always outperforms the THP. This con-
cludes our discussion of the Optimum Modulator. In the next section, we
will apply this scheme to the system with a Turbo code as the outer code
and examine the gain it could achieve in a coded bit error rate sense.
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Chapter 4

Combination with Turbo

Coding

4.1 System Configuration

A DPC communication system with a Turbo code as the outer code is de-
picted in Fig. 4.1. This system is used in all the simulations in this chapter
to compute the coded bit error rate for different precoding schemes which
have been mentioned in earlier chapters.

4.2 Turbo Coding

Turbo code, invented by C. Berrou, A. Glavieux, and P. Thitimajshima in [15]
and [16], is well known for its capability to approach the Shannon limit. From
then on, numerous efforts have been spent on reducing the complexity of the
decoder. Those results and their byproducts have made Turbo code the
most popular outer code in many communication systems. A comprehensive
description of the Turbo Code can be found in [17, 18].

Turbo

decoderencoder

Turbo
Tx Rx

z(t)

d(t) w(t)

n(t)

w(t) d(t)
~~

Figure 4.1: System configuration with Turbo code as the outer code
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Figure 4.2: Turbo encoder

4.2.1 Turbo Encoder

A Turbo code is formed by a parallel concatenation of two Recursive System-
atic Convolutional (RSC) codes, linked together by an interleaver, as shown
in Fig. 4.2.

The Turbo encoding process is carried out block by block. For each
block of transmitted bits, the data flow (dk at time k) goes directly to the
RSC encoder C1 and feeds another RSC encoder C2 (by dn at time k) af-
ter interleaving, where C1 and C2 are generally different. The data dk are
systematically transmitted as symbols xk. The parity symbols Yk1 generated
by encoder C1 and Yk2 by C2 are then combined (after punctuation when
necessary) to form the transmitted parity symbols Yk associated with xk at
time k. The aim of introducing punctuation is to increase the effective data
rate. Generally, punctuation patterns must be chosen with care.

4.2.2 Iterative Turbo Decoder

The common structure of an iterative decoder for Turbo codes is shown in
Fig. 4.3. For each received block, the input data are firstly separated into
systematic symbols yk, parity symbols Pk1 associated with encoder C1, and
parity symbols Pk2 associated with C2. Zeros will be inserted into the parity
symbol sequences according to the punctuation operation rule in the encoder
if necessary.

For component decoder 1 (decoder 2), information about the transmitted
data dk (dn after interleaving) is collected from three different sources: 1)
the systematic symbols yk (yn); 2) parity symbols Pk1 (Pk2) associated with
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corresponding encoder C1 (C2); 3) the a-priori information vk(un) about
the transmitted data yk (yn) provided by decoder 2 (decoder 1) after de-
interleaving (interleaving). Interleaving and De-interleaving are exploited
properly to make sure that different information about the same bit shall
appear in the same position.

Let’s take a closer look at how this iterative decoder works. In the first
iteration, the component decoder 1 starts without any a-priori information
from 3). Based on yk and Pk1, decoder 1 gives out a soft output. Then de-
coder 2 starts to work based on yd and Pk2, as well as the information from 3)
provided by decoder 1. As this additional information from 3) is independent
from 1) and 2), it provides an “second opinion” about the transmitted bits
and hence could help to improve the performance. After decoder 2 gives out
the a-posteriori information about the transmitted bits, the first iteration
ends. Then the second iteration starts. This time decoder 1 gets information
from 1), 2) and 3) which is provided by decoder 2 in the first iteration and
hence it gives a better result compared with the first iteration and feeds it to
decoder 2. Then decoder 2 will also be able to give a better result compared
with the first iteration due to this improved information.

This iteration continues. In each iteration, information from 1) and 2) is
constant while information from 3) is updated. Hence we manage to get a
better understanding about the block of transmitted bits after each iteration.
It is important in this iterative decoding to make sure that the same kind
of information shall be used only one time in each iteration. That’s why the
information from 1) and 3) is removed from the soft output before bing fed
to another decoder as the a-priori information. After several iterations, the
soft output zn from component decoder 2 is passed to make hard decision
after de-interleaving.

4.2.3 Turbo Decode Algorithm

Two kinds of decoders are used in the iterative decoding of Turbo codes:
the Soft Output Viterbi Algorithm (SOVA) decoder and the Maximum a
Posteriori (MAP) decoder. As their names indicate, the SOVA decoder min-
imizes the sequence error probability whereas the MAP decoder minimizes
the coded BER. However, the MAP decoder has higher complexity.

In order to be used in the iterative decoding, both of these component
decoders (see Fig. 4.3) should output soft decisions in terms of so-called
Log Likelihood Ratios (LLRs): the magnitude gives the sign of the bit while
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Figure 4.3: Iterative decoder

the amplitude indicates the probability of a correct decision. Working with
the logarithm of the likelihood functions makes it possible to reduce the
complexity of the MAP decoder. According to the Jacobian logarithm

ln(ex1 + ex2) = max(x1, x2) + ln(1 + e−|x1−x2|) (4.1)

where the second part on the right side can be treated as a correction term.
When this correction term is omitted in approximation, the resulting decoder
is named as “Max-Log-MAP” decoder [19, 20]. When the exact rather than
approximate value of the correction item is calculated, it will result in the
“Log-MAP” decoder [21]. One can also build up a lookup table to find the
approximate value of the correction term instead of computing the accurate
one to improve the algorithm efficiency [21]. For a detailed comparison of
different component decoders, see [18].

4.2.4 Recursive Systematic Convolutional Codes

Two Recursive Systematic Convolutional (RSC) encoders with constraint
length K = 3 (memory length v = K − 1), rate R = 1/2, and generator
polynomials (G0 = 7, G1 = 5) in octal format or (G0 = 111, G1 = 101) in
binary format are depicted in Fig. 4.4. G0 and G1 stand for the feedback
loop and the parity output branch respectively.

At time instant k, the input to the RSC encoder is a bit dk and the
corresponding output consists of the systematic transmitted bit xk and the
parity bit yk as follows

{
xk = dk

yk =
∑v

i=0 g1iak−i g1i = 0, 1
(4.2)
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Figure 4.4: RSC encoders with constraint length K = 3 and different gener-
ator polynomials: (a) G0 = 7, G1 = 5 (b) G0 = 5, G1 = 7

where gni is the ith bit of Gn in the binary format and ak is the input of the
shift register given by

ak = dk +

v∑

i=1

g0iak−i g0i = 0, 1 (4.3)

Setting g00 = 1, rewriting (4.3) based on binary operation and putting it
together with (4.2), we get






xk = dk

yk =
∑v

i=0 g1iak−i g1i = 0, 1
ak =

∑v

i=0 g0iak−i g0i = 0, 1
(4.4)

Hence the generator polynomials (G0, G1) are sufficient to describe the
RSC encoders.

4.2.5 Interleaving Sequence

Interleaving plays an important role in Turbo codes. Large efforts have been
spent on this topic. Detailed information about the effect of the interleaving
sequences can be found in [18].

4.3 Numerical Results

In the following simulations, a Turbo code frequently appearing in many
papers, consisting of two identical RSC encoders with constraint length K =
3 and generator polynomial (G0 = 7, G1 = 5), is used. The number of
iterations in the Turbo decoder is set to 8 and two MAP algorithms, “Log-
MAP” and “Max-Log-MAP”, are used in the component decoders. Both
random interleaving sequences and WCDMA interleaving sequences are used
with a sequence length 1000 bits. The coded bit rate is either 1/2 with
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punctuation or 1/3 without. When rate R = 1/2 is exploited, parity symbols
from the RSC encoder C1 and C2 are alternatively punctured so that the
redundancy information for the original bits and the interleaved bits is kept
evenly. Interference z(t) comes from a binary alphabet {

√
Pz,−

√
Pz} with

Pz as its power level and the power of the AWGN noise n(t) is expressed as
σ2. When the curves of coded BER are drawn, it is Eb/N0 rather than SNR
that would be more reasonable to be used for comparison between different
rates. With P = Eb · R and N0/2 = σ2, we get

SNR = P/σ2 =
Eb · R
N0/2

= Eb/N0 + 10 · log10(2 · R) (dB) (4.5)

To measure the coded BER, 100M bits Monte-Carlo simulation is used with
a minimum number of 200 bit errors recorded for each scenario.

Fig. 4.5 displays the coded BER curves versus Eb/N0 for the different
schemes. The “Log-MAP” algorithm and random interleaving sequences are
used. With bit rate R = 1/2, we get SNR = Eb/N0 as indicated in (4.5).
With interference power Pz = 4 and noise power σ2 = 2, we have INR = 3dB.
At BER = 10−4, the Optimum Modulator suffers about 0.7dB loss against
the No Interference case and achieves about 2.9dB gain over the Optimal
THP, just as indicated by Fig. 3.4 in the sense of mutual information at
about 0.6 bits.

All the above conclusions are still kept when the “Max-Log-MAP” algo-
rithm is used, as shown in Fig. 4.6. The only difference is that the absolute
performance for each scheme is slightly better (0.1dB) when using the “Log-
MAP” decoder than that when using the “Max-Log-MAP” decoder. It is
the relative gain between different schemes rather than their absolute per-
formance that is of more interest to us. Meanwhile, the “Max-Log-MAP”
algorithm is much more time efficient than the “Log-MAP” algorithm. Thus
only the “Max-Log-MAP” algorithm will be exploited in the following simu-
lations.

Fig. 4.7 displays the coded BER with a 1/2 rate Turbo code. The
“Max-Log-MAP” algorithm and random interleaving sequences are used with
INR = 0dB. At BER = 10−4, the Optimum Modulator suffers about 1.4dB
loss against the the No Interference case and achieves about 0.8dB gain over
the Optimal THP. It is the same gain as displayed in Fig. 3.5 with mutual
information at about 0.6 bits. The Optimal THP performs worse than the
No Interference Cancellation (No IC) scheme when Eb/N0 (SNR) is less than
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Figure 4.5: Coded BER with Turbo code vs. Eb/N0, INR = 3dB, “Log-
MAP” decoder, bit rate R = 1/2, random interleaving.
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Figure 4.7: Coded BER with Turbo code vs. Eb/N0, INR = 0dB, “Max-Log-
MAP” decoder, bit rate R = 1/2, random interleaving.

3dB, as shown before in Fig. 3.5.

Fig. 4.8 displays the coded BER with a 1/2 rate Turbo code. The “Max-
Log-MAP” algorithm and WCDMA interleaving sequences are used with
INR = 0dB. At BER = 10−4, the Optimum Modulator suffers about 1.5dB
loss against the No Interference case and achieves about 0.8dB gain over
the Optimal THP. The benefit of using WCDMA interleaving sequences is
obvious in high Eb/N0 (SNR) region.

Fig. 4.9 displays the coded BER with a 1/3 rate Turbo code (with-
out punctuation). According to (4.5) we get SNR = Eb/N0 − 1.76dB. The
“Max-Log-MAP” algorithm and random interleaving sequences are used with
INR = 0dB. As this 1/3 rate Turbo code is very strong, only the part with
SNR < 3.8dB (or Eb/N0 < 5.56dB in equivalent) is shown. As indicated
already by Fig. 4.7, the Optimal THP performs worse than the No Inter-
ference Cancellation scheme in the SNR region of 0.2dB–3dB, corresponding
to the Eb/N0 region of 1.96dB–4.76dB in Fig. 4.9. This corresponds well to
the conclusion drawn in Fig. 3.5 in Chapter 3.5.1. At BER = 10−4, the Op-
timum Modulator suffers about 1.5dB loss against the No Interference case
and achieves about 1.8dB gain over the Optimal THP.
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Figure 4.8: Coded BER with Turbo code vs. Eb/N0, INR = 0dB, “Max-Log-
MAP” decoder, bit rate R = 1/2, WCDMA interleaving.

Fig. 4.10 displays the coded BER with a 1/3 rate Turbo code. The
“Max-Log-MAP” algorithm and WCDMA interleaving sequences are used
with INR = 0dB. The upper part with BER < 10−4 is almost identical
to Fig. 4.9 while the lower part shows the gain of introducing WCDMA
interleaving sequences over random interleaving sequences. At BER = 10−4,
the Optimum Modulator displays the same gain as in Fig. 4.9.

4.4 Summary

Simulations in this chapter show that the capacity gains that the Optimum
Modulator achieves in different scenarios over the Optimal THP in the sense
of coded BER correspond to the gains in mutual information found in Chap-
ter 3. The Optimum Modulator always outperforms the Optimal THP. Pa-
rameter adjustments inside the Turbo code does not change the difference in
performance significantly.
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Figure 4.9: Coded BER with Turbo code vs. Eb/N0, INR = 0dB, “Max-Log-
MAP” decoder, bit rate R = 1/3, random interleaving.
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Figure 4.10: Coded BER with Turbo code vs. Eb/N0, INR = 0dB, “Max-
Log-MAP” decoder, bit rate R = 1/3, WCDMA interleaving.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we discussed the problem of modulation for interference avoid-
ance on the AWGN Channel, more precisely, in one dimension. Firstly
the performance of scalar Tomlinson-Harashima precoding (THP) in one-
dimensional both with heuristic and optimized parameters was investigated.
Both mutual information and bit error rate are exploited to evaluate its per-
formance. Simulation shows that THP with optimized parameters always
outperforms the Heuristic THP. Next we propose an Optimum Modulator
based on exhaustive constellation search to further improve the coding gain.
Numerous efforts have been spent on reducing the complexity of finding the
optimized parameters for THP and the optimized constellation for the Op-
timum Modulator. Simulation results show that the complexity could be
greatly reduced without performance loss. The Mutual information between
the transmitter and the receiver as well as the Bit Error Rate have been
used to compare the performance with several other methods. At the end,
the coded Bit Error Rate (BER) with a Turbo Code as the outer code was
examined to display the coding gain achieved by these two new precoding
methods. Simulations show that the capacity gains that the Optimum Mod-
ulator achieves in different scenarios over the Optimal THP in the sense of
coded BER correspond to those predicted by the mutual information.

5.2 Future Work

All conclusions we have drawn under the assumption of binary constellations
do not necessarily translate (at least not quantitatively) to the case of larger
constellations. However, our study does indicate that rather impressive inter-
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ference avoidance performance can be achieved in a single dimension. This
result serves as motivation to continue studying low-complexity approaches
to the Costa problem.

The work can be extended in several directions. First, the constraint of
binary signal constellations may be relaxed. In this case, it is not clear how
the resulting optimization problem can be solved: an exhaustive search over
the mapping x(w, z) does not seem feasible. Second, one may attempt to ex-
tend our strategy to a higher (but small) dimension; that is, let x, w, z, n, y
be vectors and work with a multivariate mapping x(w, z). An implementa-
tion of Costa precoding in practice will likely rely on operations in a space
of small dimension, so the problems outlined here would be of much interest.
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