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Abstract: Orthogonal frequency division multiplexing (OFDM) technique has gained increasing popularity in both wired and
wireless communication systems. However, in the conventional OFDM systems the insertion of a cyclic prefix (CP) and the
transmission of periodic training sequences for purpose of channel estimation decrease the system’s spectral efficiency. As an
alternative to OFDM, isotropic orthogonal transform algorithm (IOTA)-based multicarrier system adopts a proper pulse
shaping with good time and frequency localisation properties to avoid interference and maintain orthogonality in real field
among sub-carriers without the use of CP. In this study, the authors propose linearly precoded IOTA-based multicarrier
systems to achieve blind channel estimation by utilising the structure of auto-correlation and cross-correlation matrices
introduced by precoding. The results show that the proposed IOTA-based multicarrier systems achieve better power and
spectral efficiency compared with the conventional OFDM systems.
1 Introduction

Orthogonal frequency division multiplexing (OFDM) [1, 2] is
well suited for broadband applications because of its
robustness against multipath fading by transforming a
frequency selective channel into parallel flat fading
channels. The OFDM technique has been adopted in the
majority of current and future communications standards,
for example, asymmetric digital subscriber line (ADSL),
digital audio/video broadcasting, power line
communications (PLC), IEEE 802.11 WLAN system, IEEE
802.16 WiMAX, IEEE 802.22 WRAN and 3GPP LTE etc.

In conventional OFDM systems, quadrature phase shift
keying (QPSK)/quadrature amplitude modulation (QAM)
symbols are shaped with a rectangular window. In such a
case, no pulse filtering is needed, and inter-symbol
interference (ISI) and inter-carrier interference (ICI) are
avoided by adding a cyclic prefix (CP) before data
transmission. However, CP is not for free, it increases
power consumption and reduces spectral efficiency. For
example, in IEEE 802.11 and long term evolution (LTE)
standards, only 80% of a sub-frame is used for data
transmission.

One way to solve this problem is to adopt a proper pulse
shaping (prototype) function, which is well localised in
time and frequency so that the ISI and ICI can be combated
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efficiently without CP. In the meantime, this prototype
function must also guarantee orthogonality between
sub-carriers. Unfortunately, according to the Balian–Low
theorem [3], orthogonal basis and compactly supported
pulses cannot be achieved simultaneously for OFDM/QAM
systems without CP. Functions satisfying these two
conditions do exist, but the optimally localised ones only
guarantee orthogonality on real values. This dilemma
excludes pulse-shaping OFDM/QAM from the candidate
list and brings an alternative scheme OFDM/OQAM [4, 5]
into the scene.

With offset modulations, for example, OQPSK, OQAM, the
orthogonality can be maintained with proper pulse shaping
design. We need to choose pulses with good time and
frequency localisation (TFL) properties. The localisation in
time aims to limit ISI and the localisation in frequency aims
to limit ICI caused for instance by Doppler effects. Among
different prototype filters, such as half-cosine, root-raised-
cosine [6], isotropic orthogonal transform algorithm (IOTA)
[4, 5], extended Gaussian function (EGF) [7] etc. the
localisation property is optimal with the IOTA function,
which has the same shape in time and frequency domains.
We refer to such kind of IOTA-based multicarrier system as
IOTA system in the sequel.

In a point-to-point single-user scenario, IOTA has a higher
complexity than OFDM, but the difference is not significant
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since its complexity can be largely reduced by filter bank
implementation [7–9]. Since CP is not required, the IOTA
system leads to higher power and spectral efficiency
compared with conventional OFDM systems. IOTA also has
advantages over OFDM in time and frequency dispersive
channels since it is more robust to frequency offset, Doppler
effects etc. The TFL properties of IOTA makes it favourable
for mobile applications. Furthermore, the assumption of a flat
fading channel over each sub-carrier remains valid as long as
the number of sub-carriers is chosen to be sufficiently large,
and the equalisation of IOTA signals is similar to that of
OFDM [10, 11].

In a multiuser system, the high sensitivity of OFDM to
carrier frequency offset among different users and the need
for interference cancellation (IC) methods to reduce this
sensitivity lead to very complex and yet not very effective
systems. In filter bank multicarrier (FBMC) systems such as
IOTA, on the other hand, near-optimal performance is
achieved without any additional signal processing, such
asIC, because of the excellent frequency-localised filters
employed in FBMC-based systems [12]. The added
complexity arising from IC blocks in an OFDM-based
system makes it significantly more complex than its IOTA
counterpart.

IOTA and OFDM systems in a realistic mobile
communication context (both time and frequency
dispersive) have been compared in [13–15] where it was
shown that the performance advantage of IOTA over
OFDM can be up to 4.5 dB depending on different type of
wireless propagation channels. This concurs with our
experimental results illustrated in the following sections of
this paper.

The performance of a communication system depends
largely on its ability to retrieve an accurate measurement of
the underlying channel. The estimated channel information
is used to enable coherent data detection in order to combat
the detrimental effect of fading. To this end, training
sequences including pilots and preambles are widely
employed in practical OFDM and IOTA systems to estimate
or identify channel information. For example, preamble
based channel estimation methods have been proposed
in [16, 17] where the intrinsic interference has been utilised
to assist the channel estimation, which can achieve up
to 2.4 dB gain over OFDM in double dispersive channels.

However, periodic transmission of training sequences
decreases spectral efficiency. Blind channel estimation
schemes avoid the use of training sequences, which makes
them good candidates for achieving high spectral efficiency
and allows more data to be used for information transfer.
In this paper, we will study blind channel estimation
schemes for linearly precoded IOTA systems. Blind channel
estimation is achieved at the receiver by using the structure
of auto-correlation and cross-correlation matrices introduced
by precoding [18]. To the best of our knowledge, linear
precoding-based blind channel estimation has not yet been
investigated for FBMC systems in general and IOTA
systems in particular.

The remainder of this paper is organised as follows: in
Section 2, a polyphase filter implementation of the MIMO-
IOTA system is presented. In Section 3, we propose a
linearly precoded multiple-input, multiple-output (MIMO)-
IOTA system, which enables blind channel estimation in
order to avoid the transmission of training sequence in
addition to the elimination of CP. This is the main
contribution of this paper. Finally, the conclusions are
drawn in Section 4 based on the presented simulation results.
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& The Institution of Engineering and Technology 2012
2 Implementation of MIMO-IOTA system
with polyphase filters

An OFDM system can be efficiently implemented by fast
fourier transform (FFT)/inverse fast fourier transform
(IFFT) modules, whereas in an IOTA system extra filters
are needed to do pulse shaping. A direct implementation of
the IOTA system with finite impulse response filters on
each sub-carrier will be highly complex and cause a long
delay. As the duration of the prototype function can be very
long, a large delay needs to be introduced to make the
system causal and thus realisable.

The filter banks employed in multicarrier systems, like in
[7–9], are designed to satisfy the perfect reconstruction
(PR) condition under ideal channel setup, that is, no
channel distortion is considered. However, the PR condition
is difficult to achieve when the signal is passed through
time-varying channels. As the wireless channel is doubly
dispersive (hence time-varying) in nature and the PR
property designed under perfect channel condition will no
longer be PR under practical channel conditions, leading to
a considerable amount of ISI/ICI. Therefore as long as the
ISI/ICI can be reduced to a certain level according to the
system requirements, it is not advisable to confine ourselves
to the PR condition when designing a multicarrier system.
Rather than deriving the implementation structure from
filter bank theory as in [7–9], we propose to directly
discretise the continuous time model and approximate the
integration operation in the detector by corresponding
Riemann sum, and our method will be described in details
next.

The transmitted signal in a multicarrier system (including
CP-based OFDM system and filter bank-based IOTA
system) can be written in a general form as

s(t) =
∑1

n=−1

∑N−1

m=0

am,ngm,n(t) (1)

where am,n is the symbol modulated by the mth sub-carrier
during the symbol time of index n, and gm,n(t) represents
the synthesis basis, which is obtained by the time–
frequency shifted version of the prototype function g(t).
In an OFDM system, the synthesis basis can be expressed as

gm,n(t) = exp (j2pmFt) nT0 − Tcp ≤ t ≤ nT0 + T
0 otherwise

{
(2)

where F ¼ 1/T is sub-carrier frequency spacing, Tcp is the
length of CP, T0 ¼ T + Tcp is OFDM symbol duration and
am,n is a complex valued symbol.

For the IOTA system

gm,n(t) = exp (j(m + n)p/2) exp (j2pmn0t)

g(t − nt0), n0t0 = 1/2 (3)

where g(t) is the well-designed pulse filter, such as EGF and
IOTA pulses. In IOTA systems, the transmitted symbols are
real-valued with symbol duration t0 and sub-carrier spacing
n0. One can either set n0 ¼ F, t0 ¼ T/2 or n0 ¼ F/2,
t0 ¼ T. Here, we adopt the former approach, that is, the
sub-carrier spacing is kept the same as in OFDM, but
symbol duration is reduced by half. In this case, the output
IET Commun., 2012, Vol. 6, Iss. 16, pp. 2695–2704
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signal of the IOTA modulator can be expressed as

s(t) =
∑1

n=−1

∑N−1

m=0

[aR
m,ngm,2n(t) + aI

m,ngm,2n+1(t)]

=
∑1

n=−1

∑N−1

m=0

[aR
m,ng(t − 2nt0) + jaI

m,ng(t − (2n + 1)t0)]

× exp (jp(m + 2n)/2) exp (j2pmn0t) (4)

where aR
m,n and aI

m,n are the real and imaginary parts of the
OQAM/OQPSK symbol am,n conveyed by the sub-carrier of
index m during the symbol time of index n. Note that in
OQAM/OQPSK modulation, the I component aR

m,n and Q
components aI

m,n are mis-aligned by half an OFDM symbol
interval.

The demodulated signal at the m-sub-carrier and nth
symbol can be expressed as

âR
m,n = Re

∫
s(t)g∗

m,2n(t)dt

{ }

âI
m,n = Re

∫
s(t)g∗

m,2n+1(t)dt

{ } (5)

where Re(.) denotes the real part of a complex variable.
By sampling s(t) at rate 1/Ts during time interval [nT 2 t0,

nT + t0), the transmitted signal can be written as

s(nT + kTs) =
∑1

l=−1

∑N−1

m=0

[aR
m,lg(nT + kTs − lT )

+ jaI
m,lg(nT + kTs − lT − T/2)]

× exp (jp(m + 2l)/2) exp (j2pmk/N )

(6)

where k ¼ 2N/2, . . . , N/2 2 1. Denoting sk[n] ¼
s[nN + k] ¼ s(nT + kTs), the above equation can be
reformed as

sk[n] =
∑

p

g(pT + kTs)

∑N−1

m=0

aR
m,n−p exp [jp(m + 2n − 2p)/2] exp [j2pmk/N ]

{ }

+
∑

p

g(pT + kTs − T/2)

∑N−1

m=0

jaI
m,n−p exp [jp(m + 2n − 2p)/2] exp [j2pmk/N ]

{ }

=
∑

p

{gk [p]Ak
N (aR

m,n−p) + gk−N/2[p]Ak
N (jaI

m,n−p)}

= gk [n] ⊗ Ak
N (aR

m,n) + gk−N/2[n] ⊗ Ak
N (jaI

m,n) (7)

where ⊗ denotes the convolution operation, and

Ak
N (xm,n) =

∑N−1

m=0

xm,n exp (jp(m + 2n)/2) exp (j2pmk/N ),

k =−N/2, . . . , N/2− 1 (8)
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gk[n] = g[nN + k] = g(nT + kTs) (9)

The structure of the IOTA transmitter is illustrated in the
upper diagram of Fig. 1. According to the above analysis,
the IOTA modulator in the transmitter can be easily
implemented by an IFFT block defined in (8) followed by a
bank of filters, which are obtained by partitioning the
polyphase representation of g(t) in the way defined in (9).
Note that there are separate IFFT chains for the I and Q
components, which are combined after polyphase filtering.
The phase correction ( j (m+2n) for the I channel and
j (m+2n + 1) for the Q channel) before the IFFT operation is
because of the first exponential term in (8). An N/2 rotation
of IFFT output is needed here to shift the zero frequency
sub-carrier to middle position.

At the receiver, we sample the received signal r (t) at rate 1/
Ts (5) can be reformed as

âR
m,n = Re

∫
s(t)g∗

m,2n(t)dt

{ }
≃

Ts

∑1
l=−1

∑N/2−1

k=−N/2

r(lT + kTs)g
∗
m,2n(lT + kTs)

{ }

= Re Ts exp [ − jp((m + 2n)/2]
∑N/2−1

k=−N/2

{

∑1
l=−1

rk[l]gk[l − n] exp [ − j2pmk/N ]

}

= Re Ts exp [ − jp((m + 2n)/2]
∑N/2−1

k=−N/2

{

rk[n] ⊗ gk[ − n] exp [ − j2pmk/N ]}

= Re Tsj
(m−2n)

∑N/2−1

k=−N/2

rk[n] ⊗ gk[ − n]

{

exp ( − j2pm(k + N/2)/N} (10)

Similarly, we can obtain

âI
m,n = Re

∫
s(t)g∗

m,2n+1(t)dt

{ }
≃

Tsj
−(m+2n)

∑N−1

k=0

rk [n]⊗ gk−N/2[− n] exp (− j2pmk/N

{ }

(11)

where

gk [− n] = g[− nN + k] = g(−NT + kTs)

Note that the approximation in (10) and (11) is because of the
fact that the Riemann sum can be made as close as desired to
the original integral inside the Re{.} operator by reducing the
interval Ts (i.e. by increasing N for a fixed symbol duration
T ), as long as the original integral itself is integrable.
Therefore the approximation only incurs minor distortion as
long as the system parameters (FFT size N and sub-carrier
frequency spacing 1/T ) are carefully designed. A more
detailed examination of the approximation accuracy under
2697
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Fig. 1 Block diagrams for IOTA transmitter and receiver
ideal channel condition with different pulse shapes can be
found in [19].

According to (10) and (11), the IOTA demodulator can be
implemented by filter banks gk[n] and gk2N/2[n] followed by
an FFT block, as shown in the lower diagram of Fig. 1. The
pulse filtering is implemented efficiently using polyphase
filter banks G(n) and G(n–N/2). Like in the transmitter, the
FFT operations are conducted separately for the I and Q
components of OQAM symbols. The real part of the
equalised and phase corrected signal from the I channel is
combined with the imaginary part of the equalised and phase-
corrected signal from the Q channel, based on which the
2698
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transmitted symbols can be detected. As indicated by Fig. 1,
the imaginary part of the equalised and phase corrected signal
from the I channel and the real part of the equalised and
phase corrected signal from the Q channel are regarded as
intrinsic interference and not used for data detection.

The implementation of MIMO-IOTA is based on the
transmitter and receiver structure depicted in Fig. 1, which
only shows an uncoded single-input, single-output (SISO)-
IOTA system. In MIMO-IOTA transmitter, several parallel
chains of the SISO-IOTA transmitter is utilised, one for
each transmitting antenna. The MIMO-IOTA receiver,
however, needs to be modified to facilitate efficient channel
Fig. 2 Sub-carrier mapping and demapping in MIMO-IOTA
IET Commun., 2012, Vol. 6, Iss. 16, pp. 2695–2704
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estimation and equalisation. In MIMO-IOTA receiver,
equalisation is performed on per-sub-carrier basis, that is,
symbols corresponding to the same sub-carrier at different
antennas are jointly equalised. This necessitates the signal
mapping between FFT block and the equaliser as well as
the demapper (demodulator). The mapping and demapping
processes are elaborated in Fig. 2 using N ¼ 2 sub-carriers
and Nr ¼ 2 receive antennas system as an example. For
simplicity, the filter banks and phase correction are omitted
in the figure. A soft demapper (demodulator) is applied to
the output of equaliser to derive soft estimate of the
transmitted bits, which serve as inputs for the channel
decoder to facilitate soft-input decoding.

Note that the proposed MIMO-IOTA implementation can be
easily integrated into OFDM-based systems as they share many
functional blocks. The separation of real and imaginary
branches in IOTA implementation facilitates parallel
processing and functional block sharing at the cost of
increased memory and processing delay. The complexity of
the IOTA transmitter can be further decreased by utilising
the special structure of the input to IFFT blocks: the input
symbol in the I branch onto the mth sub-carrier of the IFFT
is either purely real-valued (for even m) or purely imaginary-
valued (for odd m) all the time, and it is the other way
around for the Q branch. Such special input structure to
IFFT block can be utilised to greatly reduce the computation
complexity based on the two-way machine-specific single-
instruction, multiple-data instructions as explained in [20].

In Figs. 3 and 4, we compare a coded MIMO-IOTA system
with a coded MIMO-OFDM system. The structure of the
coded MIMO-IOTA system is similar to the one shown in
Fig. 5, but without precoding and blind channel estimation.
For MIMO-OFDM, we use QPSK/16-QAM modulation,
the length of CP is 0.8 ms. For MIMO-IOTA, we use
OQPSK/16-OQAM modulation, and the number of filter
taps for each sub-carrier is 6. In our experiments, we use
the following channel model adopted by the IEEE 802.11
working group [21]

hk = N (0, 0.5s2
k) + jN (0, 0.5s2

k )

s2
k = s2

0 exp (−kTs/TRMS)

s2
0 = 1 − exp (−Ts/TRMS)

(12)

Fig. 3 Performance comparison between OQPSK-modulated
MIMO-IOTA and QPSK modulated MIMO-OFDM
IET Commun., 2012, Vol. 6, Iss. 16, pp. 2695–2704
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where N (m, s2) denotes the normal distribution with mean
value m and variance s2, hk is the complex channel gain of
the kth tap, TRMS is the RMS delay spread of the channel,
Ts is the sampling period and s2

0 is chosen so that the
condition

∑
k s

2
k = 1 is satisfied to ensure same average

received power. The number of samples to be taken in the
impulse response should ensure sufficient decay of the
impulse response tail, for example, kmax ¼ 10 × TRMS/Ts.
The simulation parameters, which are common for both
IOTA and OFDM are summarised in Table 1.

As indicated by Fig. 3, the OQPSK modulated MIMO-
IOTA system yields a performance gain of 1 dB over the
QPSK modulated MIMO-OFDM system. Compared with
OFDM, IOTA achieves improved power efficiency (better
error rate performance) and spectral efficiency (elimination
of CP). The similar conclusion can be drawn for Fig. 4,
where we show the performance comparison between the
16-OQAM modulated MIMO-IOTA system and 16-QAM
modulated MIMO-OFDM system.

3 Blind channel estimation and data
detection for linearly precoded MIMO-IOTA
system

In this section, we introduce blind channel estimation
schemes for linearly precoded IOTA systems. To ease
understanding, we start with an analysis of single antenna
IOTA system and see how the signal can be recovered
given the knowledge of the channel. Then we extend our
analysis to MIMO-IOTA system and describe our proposed
blind channel estimation algorithm.

Recall that the signal at the input of IOTA modulator can be
expressed in the following general form as

s(t) =
∑1

n=−1

∑N−1

m=0

am,ngm,n(t)

where gm,n(t) is the shifted version of g(t) in time and
frequency, and am,n(t) is real-valued symbol, can be either
aR

m,n(t) or aI
m,n(t) in (4). Owing to the real-orthogonality

condition on the prototype function g(t), we have [16]

Re{gm,n(t)g∗
m0,n0

(t)} = dm,m0
dn,n0

(13)

Fig. 4 Performance comparison between 16-OQAM-modulated
MIMO-IOTA and 16-QAM modulated MIMO-OFDM
2699
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Fig. 5 Block diagrams for precoded MIMO-IOTA transmitter and receiver
In the absence of fading and noise, the demodulated symbol
corresponding to the mth sub-carrier and the nth symbol
can be expressed as

âm,n =
∫

s(t)g∗
m,n(t)dt = am,n

+
∑

(m′,n′)=(m,n)

am′,n′

∫
gm′,n′(t)g

∗
m,n(t)dt

︸


















︷︷


















︸
A

(i)
m,n

(14)

According to (13), the intrinsic interference A(i)
m,n = ja(i)

m,n in
(14) is purely imaginary. Thus, we can perfectly recover the
transmitted symbol by simply taking the real part of the
demodulation output âm,n.
2700
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In the presence of fading and noise, the received signal
becomes

s(t) =
∑1

n=−1

∑N−1

m=0

Hm,nam,ngm,n(t) + n(t)

where Hm,n denotes the channel response at the mth
sub-carrier during the nth symbol period. In this case, the
demodulated symbol becomes

âm,n =
∫

s(t)g∗
m,n(t)dt = Hm,nam,n

+
∑

(m′,n′)=(m,n)

Hm′,n′am′,n′

∫
gm′,n′(t)g

∗
m,n(t)dt

︸






















︷︷






















︸
Im,n

+nm,n (15)
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As the prototype function g(t) is chosen to be well localised
both in time and frequency, the intrinsic interference Im,n in
(15) only depends on a restricted set of time–frequency
positions (m′, n′) around the symbol of interest. Assuming
that the channel remains relatively constant at those
positions, that is, Hm

′
,n
′ ≈ Hm,n, the intrinsic interference

Im,n can be approximated as [16]

Im,n ≃ Hm,n

∑
(m′,n′)=(m,n)

am′,n′

∫
g

m′,n′
(t)g∗

m,n(t) dt

︸


















︷︷


















︸
ja(i)

m,n

= Hm,nja(i)
m,n (16)

Combining (15) and (16) yields

âm,n ≃ Hm,n[am,n + ja(i)
m,n] + nm,n (17)

With the system model shown in Fig. 1, the input to the first
and the second equaliser at the IOTA receiver can be
expressed as

yR
m,n = Hm,n[aR

m,n + ja(i)
m,n] + nR

m,n

yI
m,n = Hm,n[a(r)

m,n + jaI
m,n] + nI

m,n

(18)

where a(i)
m,n and a(r)

m,n are the intrinsic interference for the first
and second FFT chains, respectively. Given the knowledge
of the channel coefficient Hm,n, the transmitted OQPSK/
OQAM symbol am,n can be recovered by ZF equalisation,
that is

âm,n = Re{yR
m,n/Hm,n} + j{yI

m,n/Hm,n}

= aR
m,n + jaI

m,n + {nR
m,n/Hm,n} + {nI

m,n/Hm,n}

= am,n + vm,n (19)

where vm,n is the combined noise term. An MMSE
equalisation can be designed similarly.

Next we discuss how the channel frequency response Hm,n

(m ¼ 1, . . . , N; n ¼ 1, . . . , B) can be estimated without pilot
symbols.

Fig. 5 shows the linear precoded MIMO-IOTA system with
Nt transmit antennas and Nr receive antennas. Denote
di [ C

N×1 as the kth block of data stream transmitted by

Table 1 Simulation parameters

Channel model IEEE 802.11a

system bandwidth 20 MHz

carrier frequency 5 GHz

FFT size N ¼ 64

OFDM symbol duration 3.2 ms

length of CP for OFDM 0.8 ms

correlation window length Nwin ¼ 32

TRMS 50 ns

sampling frequency 20 MHz

polynomial of convolutional code (133 171)8

interleaver random interleaver

of size 256

equaliser type MMSE

number of transmit antennas Nt ¼ 2

number of receive antennas Nr ¼ 2
IET Commun., 2012, Vol. 6, Iss. 16, pp. 2695–2704
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the ith transmit antenna, where N is the number of
sub-carriers (FFT size). Each block of data goes through
linear precoding, resulting in

ai = Adi = aR
i + jaI

i [ CN×1

where A is the precoding matrix. The real and imaginary parts
of the precoded data aR

i and aI
i are processed by separate

IFFT chains and bank of filters, then transmitted from each
transmit antenna. Note that we have left out the symbol
index k to simplify notation whenever no ambiguity arises.

Denote the impulse response of a L-path channel between
the ith transmit antenna and the jth receive antenna as hji[l ],
l ¼ 0, . . . , L 2 1. The frequency-domain channel response
for each transmit–receive antenna pair is defined as

H ji = Hji[0] Hji[1] · · · Hji[N − 1]
[ ]T

[ C
N×1

where

Hji[m] =
∑L

l=0

hji[l] exp ( − j2pml/N )

According to (18), the output of IOTA demodulator at the jth
receive antenna at can be expressed as

yR
j =

∑Nt

i=1

diag{Hji}[aR
i + ja(i)

i ] + nR
j

yI
j =

∑Nt

i=1

diag{Hji}[a
(r)
i + jaI

i] + nI
j

where nR
j and nI

j are zero mean white Gaussian noise vectors
with covariance matrix ((N0)/(2))I.

The auto-correlation matrix of the received signal can be
derived as

Rjj = E[yR
j (yR

j )H + yI
j(y

I
j)
H]

= E
∑Nt

i=1

diag{Hji}[aR
i + ja(i)

i ] + nR
j

( )[

∑Nt

i=1

diag{Hji}[aR
i + ja(i)

i ] + nR
j

( )H⎤⎦

+ E
∑Nt

i=1

diag{Hji}[a
(r)
i + jaI

i] + nI
j

( )[

∑Nt

i=1

diag{Hji}[a
(r)
i + jaI

i] + nI
j

( )H⎤⎦

≃
∑Nt

i=1

diag{Hji}AAHdiag{Hji}H + N0I (20)

=
∑Nt

i=1

(H jiH
H
ji )⊙(AAH) + N0I (21)

where ⊙ denotes element-by-element multiplication.
Note that the intrinsic interference is omitted in

(20), therefore it is an approximation rather than
an equality. Equation (21) holds since ai = Adi = aR

i + jaI
i
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and E[did
H
i ] = I . If the matrix AAH has unit diagonal entries

and non-zero off-diagonal entries, which can always be
satisfied with proper choice of A, we can perform an
element-by-element division of Rjj to obtain

W jj = Rjj./(AAH) =
∑Nt

i=1

(H jiH
H
ji ) + N0I [ CN×N (22)

where ./ denotes element-by-element division. Let us define

H j = H j1 H j2 . . .H jNt

[ ]
[ C

N×Nt

Equation (22) can be reformed as

W jj = H jH
H
j + N0I

Assume Hj has full column rank, performing the singular
value decomposition of Wjj yields W jj = U jLjV

H
j . Then

the channel Hj can be estimated as

Ĥj = U jL
1/2
j = H jQj (23)

where Ĥj is an estimate of Hj, and Qj is an unitary ambiguity
matrix.

After Hj is estimated, an estimate of channel Hk, k = j can
be derived from the cross-correlation of the signals received at
kth and the jth antennas

Rkj = E[yR
k (yR

j )H + yI
k(yI

j)
H]

= E
∑Nt

i=1

diag{Hki}[aR
i + ja(i)

i ] + nR
k

( )[

∑Nt

i=1

diag{Hji}[aR
i + ja(i)

i ] + nR
j

( )H⎤⎦

+ E
∑Nt

i=1

diag{Hki}[a
(r)
i + jaI

i] + nI
k

( )[

∑Nt

i=1

diag{Hji}[a
(r)
i + jaI

i] + nI
j

( )H⎤⎦

≃
∑Nt

i=1

diag{Hki}AAHdiag{Hji}H =
∑Nt

i=1

(H kiH
H
ji )⊙(AAH)(24)

Performing element-wise division of Rkj by AAH, yields

W kj = Rkj./(AAH) =
∑Nt

i=1

(H kiH
H
ji ) = H kHH

j (25)
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Based on (25), an estimate of Hk can be derived as

Ĥk = W kj(Ĥ
H
j )† = HkHH

j (H jQj)
† = HkQj (26)

where † denotes the pseudo-inverse, and Ĥj is an estimate of
Hj given in (23). By repeating the above process to all the
remaining receive antennas, the channel matrices can be
estimated up to the same unitary ambiguity matrix Qj.

Now we show how the unitary ambiguity matrix Qj can be
identified by using just one pilot placed at the pth sub-carrier.
After the IOTA demodulation, the received signal at the pilot
sub-carrier can be expressed as

Y p = HpTp + Np [ C
Nr×B (27)

where Hp [ CNr×Nt is the channel matrix corresponding to
the pth sub-carrier between Nt transmit antennas and Nr

receive antennas. Yp and Np denotes the received signal and
noise matrices, respectively. The pilot matrix Tp [ CNt×B is
defined as

Tp =
t1(p, 1) t1(p, 2) . . . t1(p, B)

..

. . .
. . .

. ..
.

tNt
(p, 1) tNt

(p, 2) . . . tNt
(p, B)

⎡
⎢⎣

⎤
⎥⎦

where B is the number of data blocks, tm(p, n) is the pilot
symbol transmitted from the mth transmit antenna and
inserted at the pth sub-carrier of the nth data block.

Based on (27), the pilot channel can be estimated as

H̃p = Y pT†
p

As Ĥp = H̃pQj, where Ĥp is the estimated pilot channel
derived from the above procedure shown in (21)–(26), the
unitary ambiguity matrix Qj can thus be identified as

Qj = H̃
−1
p Ĥp = [Y pT†

p]−1Ĥp

Once the channel has been estimated, coherent data detection
can be carried out using the estimated channel.

The simulation results of the proposed blind channel
estimation and data detection for the linear precoded
MIMO-IOTA system are shown in Figs. 6 and 7.
Performance comparison is also made between IOTA and
OFDM systems. We use the IEEE 802.11 WLAN channel
model with 11 sample-spaced multipaths. The FFT size is
64. The employed convolutional codes has a rate of 1/2,
constraint length of 7 and generator polynomial (133,171)8.
The number of antennas is 2 for both transmitter and
receiver. For MIMO-OFDM, we use QPSK modulation, the
length of CP is 16. For MIMO-IOTA, we use OQPSK
modulation, number of filter taps each sub-carrier is 6. For
linear precoding, we adopt the circulant precoding matrix
from [22] (see (28))

where 0 , p , 1. With the precoding matrix A specified in
A =

��
p

√ �������������
1 − pN − 1

√
. . .

�������������
1 − pN − 1

√�������������
1 − pN − 1

√ ��
p

√
. . .

�������������
1 − pN − 1

√

..

. ..
. . .

. ..
.�������������

1 − pN − 1
√

. . .
�������������
1 − pN − 1

√ ��
p

√

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (28)
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(28), AAH can be obtained as

AAH =

1 a . . . a

a 1 a a

..

. ..
. . .

. ..
.

a . . . a 1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (29)

which satisfies the conditions that it has unit diagonal
elements and non-zero off-diagonal elements. The off-
diagonal element a can be adjusted by changing p in the
precoding matrix A. In our experiments, we set the value of
p to 0.5.

Fig. 6 shows that the proposed blind channel estimation
and data detection scheme for MIMO-IOTA performs better
than that of the MIMO-OFDM system at low-to-medium
SNRs, however, their performance converge at high SNR.
In this experiment, we assume the channel remains
relatively static during the transmission of B ¼ 200 data
blocks. The performance loss in the IOTA system is
because of the intrinsic interference, which causes imperfect
estimate of the auto-correlation and cross-correlation
matrices expressed by (21) and (24). Although the IOTA
system does not show much improved power efficiency
compared with OFDM in this case, it is still a preferred
solution since it improves the spectral efficiency by 20% as
a result of the elimination of CP.

One can also see from Fig. 6 that given perfect channel
estimation, the MIMO-IOTA system outperforms MIMO-
OFDM by 1 dB, which concurs with the experimental
results shown in the previous section. This means the IOTA
system has better potential to improve power efficiency
once the intrinsic interference is mitigated.

Fig. 7 shows the performance of blind channel estimation
for the MIMO-IOTA system when the data block size
changes from B ¼ 50 to 300. Apparently, the performance
improves as the block size increases since the auto-
correlation and cross-correlation matrices can be more
accurately estimated. One can also observe that the
convergence can be reached with relatively short block size,
the performance becomes saturated when B goes beyond
200. This is a desired feature since shorter block size means
smaller detection latency in data detection process.

Fig. 6 Performance of blind channel estimation and data detection
for linearly precoded MIMO-IOTA and MIMO-OFDM
IET Commun., 2012, Vol. 6, Iss. 16, pp. 2695–2704
doi: 10.1049/iet-com.2012.0029
4 Conclusions

In this paper, we investigate the design of IOTA multicarrier
systems with an aim to improve the power and spectral
efficiencies of a wireless communication system. First, we
presented a polyphase implementation of the MIMO-IOTA
system. Results show that in addition to the improved
spectral efficiency because of the elimination of CP, the
proposed MIMO-IOTA system also achieves improved
power efficiency. We proposed a linearly precoded IOTA
system in order to facilitate blind channel estimation so that
both CP and training sequences can be avoided, resulting in
a multicarrier system with a much higher spectral efficiency
than conventional OFDM systems considering that the
overhead imposed by training data and CP can be up to 50%
for fast-fading channels. Our results show that the proposed
blind channel estimation scheme reaches convergence with
relatively small block size, hence short detection latency in
data detection process. It achieves better performance
compared with the OFDM system at low to medium SNRs,
and comparable performance at high SNRs. The IOTA
system is also shown to have better potential to improve
power efficiency compared with the OFDM system. How to
mitigate the intrinsic interference in IOTA in order to exploit
its potential will be the future research topic for the authors.
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